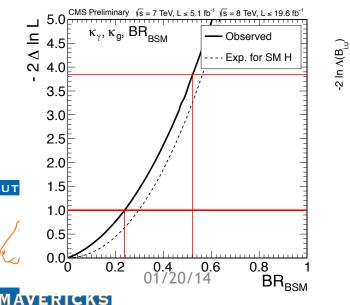
BSM Higgs Searches at the LHC and Tevatron

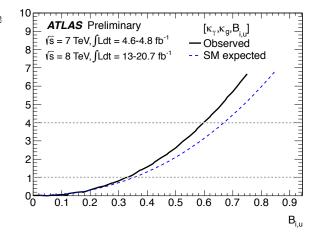
Justin Griffiths

University of Texas Arlington

On behalf of the ATLAS, CMS, D0 and CDF experiments


- Motivation for Exotic/BSM Higgs Searches
- Searches for Invisible Higgs Decays
- Overview of MSSM Higgs Searches highlighting recent results from ATLAS and CMS
- A look at NMSSM Scenarios in which the newly discovered Higgs could decay to undiscovered bosons
- A brief look at other Exotic Searches
 - Hidden Valley, Displaced Vertices, FCNC Searches with the Higgs Boson.

Current Higgs Couplings

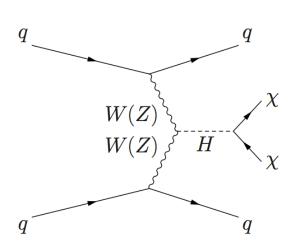

• Since the discovery of the <u>Higgs</u>, coupling measurements were performed and are consistent with a SM Higgs, but there is still significant room for non-SM decays.

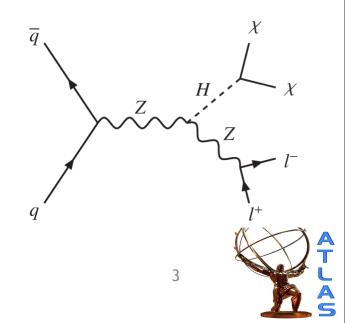
	BR _B	BR _{BSM} < xx		
	68% CL	95% CL		
СМЅ	0.24	0.52		
ATLAS	0.33	0.6		

CMS-PAS-HIG-13-005

ATLAS-CONF-2013-034

Aspen DM Conference


$$\Gamma_{\rm H} = \frac{\kappa_{\rm H}^2(\kappa_i)}{(1 - BR_{\rm inv.,undet.})} \Gamma_{\rm H}^{\rm SM}$$


- Single Resonance at 125.5 GeV
- Zero-Width Approximation
- New particle is CPeven
- More Details on methodology:
 - <u>arXiv:1209.0040</u>
 - <u>arXiv:1101.0593</u>
 - <u>arXiv:1201.3084</u>
- See Michela BIGLIETTI's talk

Higgs to Invisible

- The observation of a significant branching ratio for $H \rightarrow$ Invisible would provide evidence for new physics beyond the SM.
 - SUSY (often) predicts a stable neutral lightest SUSY particle (LSP)
 - Some Extra dimension theories predict graviscalars
- Searches performed in:
 - VBF: <u>CMS</u>
 - ZH: ATLAS and CMS
- The main backgrounds in ZH include:
 - − ZZ→2 ℓ 2v Irreducible background ~70%
 - − WZ→ ℓ v2 ℓ 20-25% of background
 - Other backgrounds include: WW, top, W/Z
 +jets
- The main backgrounds in VBF include:
 - $(Z \rightarrow vv)$ +jets $(W \rightarrow \ell v)$ +jets and QCD multijet events

01/20/14

MAVERICKS

Higgs to Invisible (ZH)

	ATLAS-CONF-2013-011	<u>CMS-PAS-HIG-13-018</u>	
	ATLAS Selection	CMS Selection	
E _T ^{miss}	90 GeV	110 GeV	
$\Delta \varphi(\ell \ell, E_T^{miss})$	> 2.6	> 2.6	
$ E_T^{miss}-p_T^{\ell\ell} /p_T^{\ell\ell}$	< 0.2	< 0.2	
No Jets	> 20 GeV; η < 2.5	> 30 GeV	

- Backgrounds estimated by:
 - Dominant ZZ and WZ backgrounds estimated using simulation and normalized to their NLO Cross Section.
 - Z background estimated in γ +jets events in CMS and an ABCD method in ATLAS.
 - Remaining backgrounds are estimated in a $e\mu$ Control Region.
- Final discriminating variable used in analyses were m_T (MET, $\ell\ell$)(CMS) and MET (ATLAS).

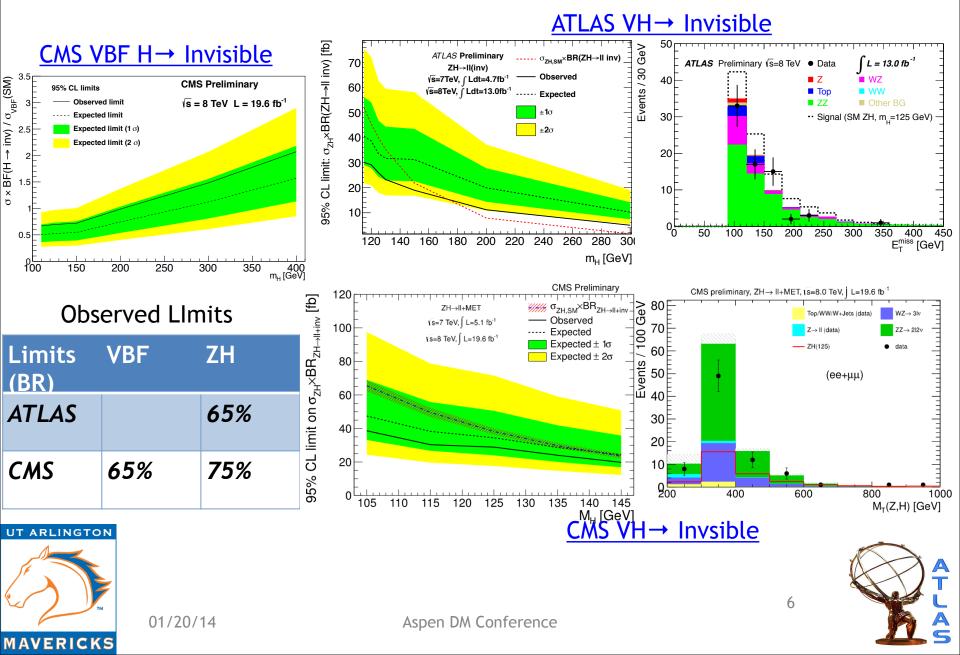
01/20/14

Aspen DM Conference

Higgs to Invisible (VBF) CMS

• Triggering is a challenge since there are no leptons to trigger on. A dedicated VBF trigger along with E_{T}^{miss} was used.

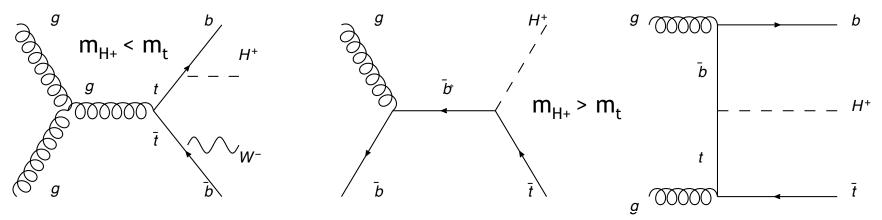
CMS-PAS-HIG-13-013


	Trigger Threshold	Offline Threshold
Jet p _T [GeV]	40	50
<i>Δη</i>	3.5	4.7
M _{jj} [GeV]	800	1100
E ^{miss} [GeV]	65	130

- Backgrounds estimated by:
 - W/Z+jets estimated from data using visible Control regions
 - QCD multijet estimated with an ABCD
 - Remaining backgrounds estimated using simulation

UT A

Invisible Higgs Results


MSSM Searches

Signature	ATLAS (fb ⁻¹)	(fb ⁻¹) CMS (fb ⁻¹) Tevat	
$\varphi \rightarrow \tau \tau$	<u>4.7</u>	<u>4.9+19.7</u>	1.8(CDF)+2.2(D0)
φ→μμ	<u>4.7</u>		
φ→bb		<u>4.8</u>	2.6(CDF)+5.2(D0)
$H^+ \rightarrow \tau^+ v$	<u>19.5</u>	<u>4.9</u>	
$H^+ \rightarrow t \bar{b}$			<u>0.9 (D0)</u>

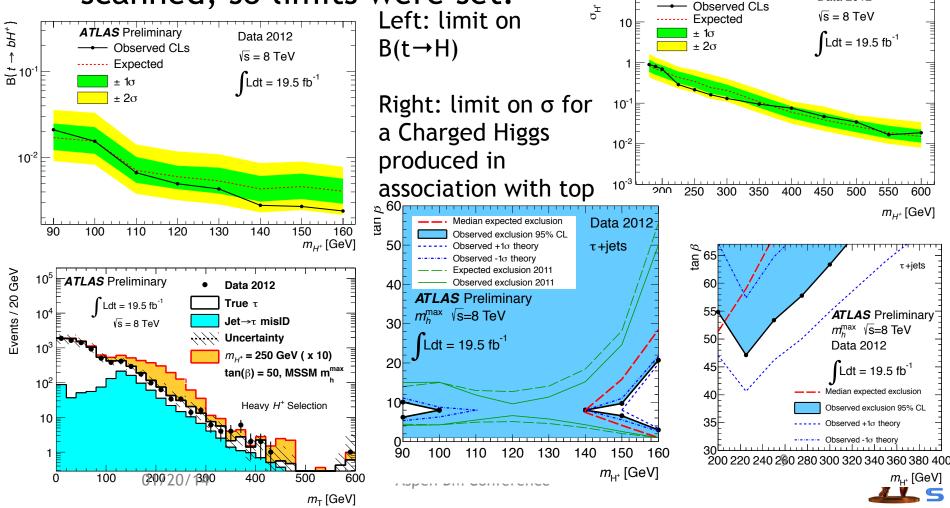
- Supersymmetry offers a solution to the hierarchy problem.
- Minimal Supersymmetric Standard Model (MSSM) is an extension to the SM that introduces two higgs doublets resulting in 5 Higgs: CP-even (H, h), CPodd (A), and two Charged Higgs.
 - Neutral Higgs often denoted ϕ
- At tree level, the Higgs sector of MSSM can be described by two parameters: the m_A and tan(B). At high values of tan(B), couplings to down-type fermions are enhanced motivating searches in the bb ττ final states.
- ATLAS, CMS, and the Tevatron experiments have performed multiple MSSM searches. The more recent ATLAS $H^+ \rightarrow \tau^+ v$ result and the CMS neutral $H \rightarrow \tau \tau$ results will be summarized here. In addition the D0 H⁺ \rightarrow tb search will also be shown

MAVERICKS

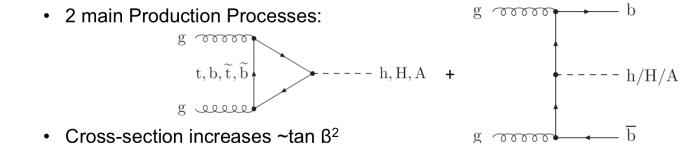
Search for $H^+ \rightarrow \tau^+ v$ in ATLAS

- ATLAS <u>searched</u> for a charged Higgs (90 < m_{H+} < 600 GeV)
 - $m_{H^+} < m_t$; Searching for a charged higgs in top decays.
 - $-m_{H_+} > m_t$; Searching for a charged higgs produced in association with a top.
- Final state: $H^+ \rightarrow \tau^+ v \rightarrow \tau_h vv$, (τ_h hadronically decaying tau) and the top quark decays hadronically
- The main backgrounds include:
 - tt events, W/Z+jets, single top, and QCD multijet
- Backgrounds are classified in 4 groups based on what object is identified as the τ_h candidate: A true τ_h , an electron, a muon, or a jet.
 - This last background is estimated from data using a matrix method while all other backgrounds are estimated using simulation.

01/20/14


UT AR

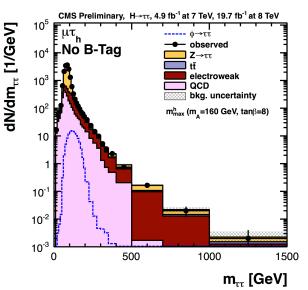
Search for $H^+ \rightarrow \tau^+ v$ in ATLAS

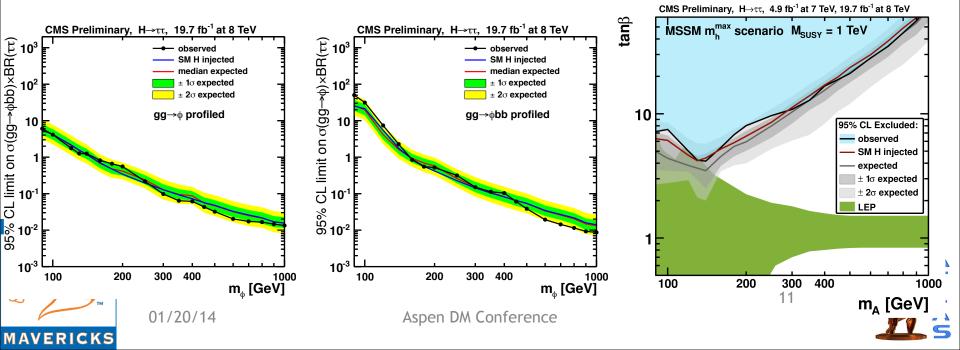

• The final $m_T(\tau_h, E_T^{miss})$ is used as the discriminating variable in the final fit.

Data 2012

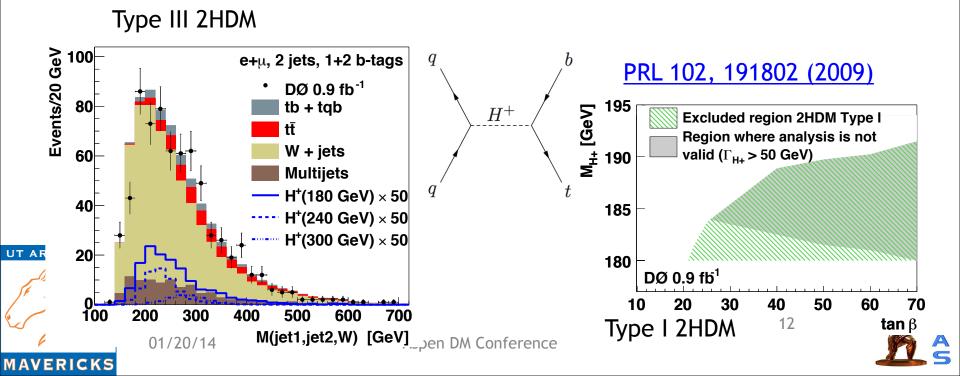
• No excess was observed over the mass range scanned, so limits were set.

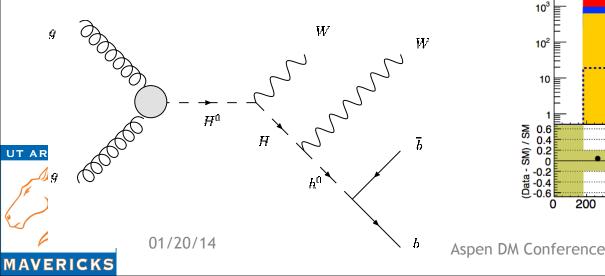
Search for MSSM h/H/A $\rightarrow \tau \tau$ in CMS

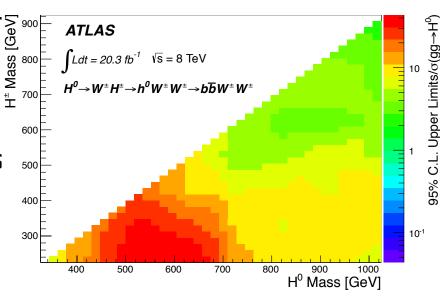

- CMS <u>searched</u> for a neutral Higgs using the entire 7+8 TeV data set in 5 possible ττ decay modes and two production modes:
 - et_h, μ t_h, e μ , μ μ , and t_ht_h
 - b-tagged and non-b-tagged categories
- The main background: $Z \rightarrow \tau \tau$ estimated using $Z \rightarrow \mu \mu$ events from data where the reconstructed muons are replaced by simulated and reconstructed tau decays.
- Other significant backgrounds: QCD multijet estimated in data, W/Z+jets, tt, and dibson.
- The final ττ invariant mass is reconstructed using a maximum likelihood which attempts to compute a ditau mass which is most compatible with the visible momentum of the tau decay products. The resulting tau-pair mass distribution is consistent with the true invariant mass with a resolution of 15-20%. (MMC)

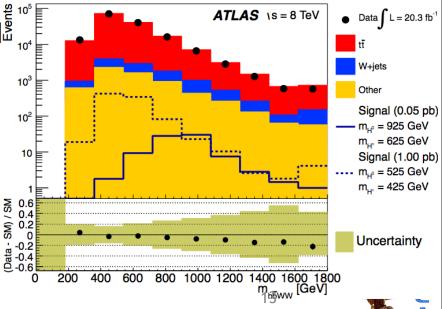


Search for MSSM h/H/A→ττ in CMS


- Fit is performed using the reconstructed ττ mass as input. The fit is performed simultaneously:
 - In all 5 ττ final states
 - In b-tagged and non-b-tagged production modes

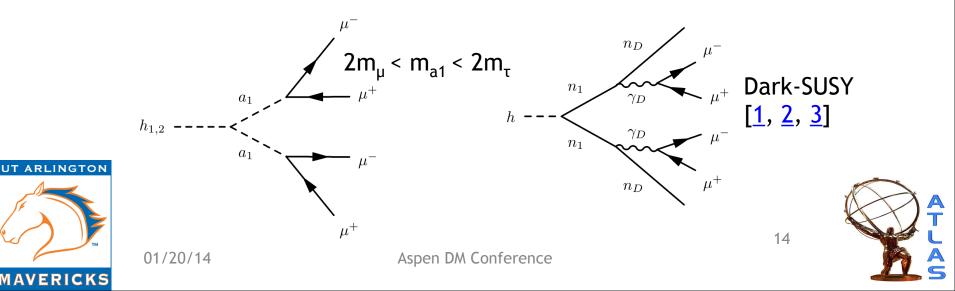

$H^+ \rightarrow t\bar{b} \rightarrow \ell v b\bar{b}$ Search at D0


- D0 performed a search for a heavy Charged Higgs (180 < $m_{\rm H^+}$ < 300 GeV) in 0.9 fb^-1 of data.
- The main backgrounds W+jets, tt
 , single top were modeled with simulation while QCD Multijet background was estimated from data
- The discriminating variable is the invariant mass of the W and two b-jets.
- The 2D exclusion plane is only shown for the Type I 2HDM since the analysis was not as sensitive in the TYPE II and III 2HDM models.



Higgs Cascade searches at ATLAS and CDF

- <u>ATLAS</u> and <u>CDF</u> have searched for $\underline{S}^{\circ\circ\circ}$ heavy Higgs cascade. - H0 \rightarrow H⁺W⁻ \rightarrow W⁺W⁻h⁰ \rightarrow jj ℓ vb \bar{b}
 - The main background is tt.
 - CDF enhances S/B with constraints on m_{H0} and m_{H+} and used the m(bb) as discriminating variable.
 - ATLAS uses a BDT: m_{H0} , m_{H+} , and h_0 , $\Delta R(b, b)$, and candidate top quark masses. The number of events that pass the BDT threshold is used to set limits.



NMSSM Searches

- NMSSM provides a solution to the µ problem in MSSM and introducing a new gauge singlet field under U(1)_{PQ} symmetry in the Higgs sector of the superpotential.
 - A total of 7 Higgs are now possible, 3 CP-even $(h_{1,2,3})$, 2 CP-odd $(a_{1,2})$ and two charged Higgs bosons.
- Searches have been performed at ATLAS, CMS, Babar, Tevatron, and LEP
- <u>CMS</u> searched for a Higgs boson decaying to two new CPod bosons that subsequently decayed to muons utilizing the entire 8 TeV data set.

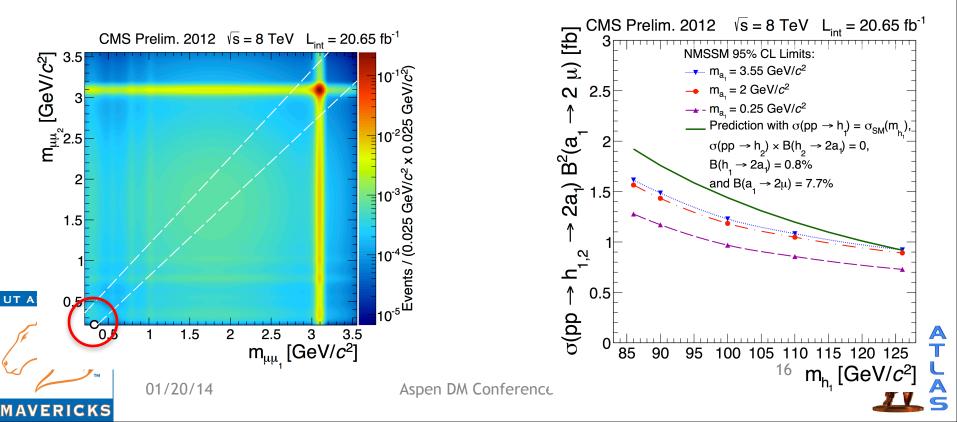
NMSSM $h \rightarrow 2a+X \rightarrow 4\mu+X$ CMS

- Four muons with pT > 8 GeV are required with one of the muons having at least 17 GeV (triggerconstraint).
- Opposite signed muons are paired and required to have $m_{\mu\mu}$ < 5 GeV and are consistent with the same vertex. Two pairs of muons are then required to have a consistent mass and come from the same pp vertex:

 $- |z_{\mu\mu1} - z_{\mu\mu2}| < 1 \text{ mm}$

and be isolated from other activity in the event.

- Main backgrounds:
 - b mesons, estimated in background rich control regions.
 - Direct J/ψ production, estimated with Pythia8 and scaled to data
 - other SM backgrounds negligible


15

01/20/14

UT A

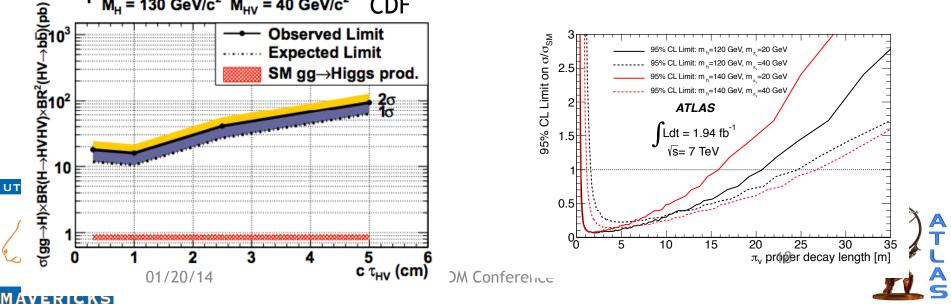
NMSSM $h \rightarrow 2a + X \rightarrow 4\mu + X CMS$

- 1 event passed all signal selections with a predicted background of 3.8±2.1 events.
- Limits were derived in the context of NMSSM (shown), Dark-SUSY, and in a model independent manner.

Other MSSM and NMSSM Searches

- No significant excess observed in the following.
- ATLAS performed two searches in 2010/2011 Data:
 - *− <u>a</u>→μμ* 36 pb⁻¹
 - <u>H→aa→4γ</u> 4.9 fb⁻¹
 - <u>H⁺→cs</u> 0.36 fb⁻¹
- CMS has performed in 7 TeV data
 - <u>a→µµ</u> different mass range for a: [5.5-8.7] and [11.5,14] GeV
- D0 performed a search:
 - <u>Η→αα→μμμμ/μμττ</u>

01/20/14



Hidden Valley, Long Lived Particle searches

- There are multiple scenarios in which a Higgs boson could decay to particles that couple weakly to the SM. For example:
 - $H \rightarrow \pi_v \pi_v$

where the $\pi_{\rm v}$ are Hidden Valley neutral particles that have displaced fermion/anti-fermion vertices.

 <u>ATLAS</u> performed a search for displaced vertices in its Muon Spectrometer using 1.94 fb⁻¹ of 7 TeV data. <u>CDF</u> and <u>DO</u> performed similar searches.
 M_H = 130 GeV/c² M_{HV} = 40 GeV/c² CDF

FCNC in top Decays t->cH in ATLAS

- ATLAS and CMS searched for a Flavor Changing Neutral Current in top decays: – t→cH
- t→cH(Z) processes are forbidden at tree level in the SM and highly suppressed at higher orders. The presence of signal would signify <u>new physics</u> beyond the SM.
- ATLAS considered scenarios with $H \rightarrow \gamma \gamma$.
- CMS considered scenarios with H→WW/ZZ/ττ in part of a more generalized ≥ 3 lepton SUSY search.
- No significant excess was observed in either analysis so limits on the branching ratio t→cH of 0.83% (ATLAS) and 1.28% (CMS) were derived.

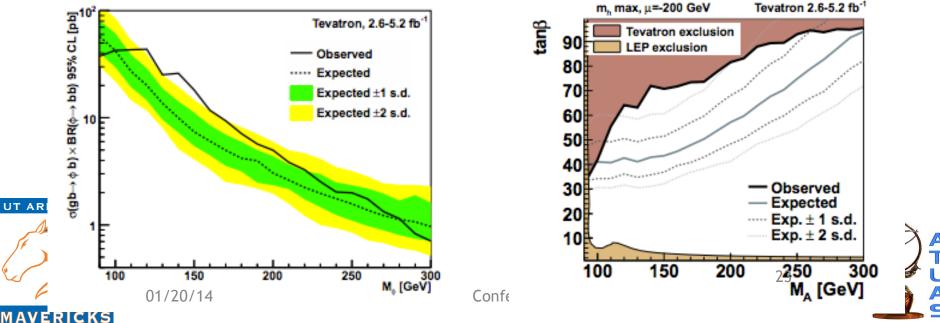
Summary

- Although at the moment the newly discovered Higgs boson appears to be SMlike, there is still potential for new physics beyond the SM.
 - Based on our current coupling measurements from CMS and ATLAS, there is still the possibility for Higgs physics beyond the Standard Model.
- Many searches have been performed at the LHC and at the Tevatron. So far, no evidence for exotic decays have been observed.

BACKUP

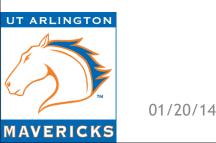
Aspen DM Conference

Higgs Discovery


- In July 2012, the discovery of a Higgs-like boson was jointly announced by the <u>ATLAS</u> and <u>CMS</u> collaborations.
 - The decay channels with the highest significance where the $H \rightarrow ZZ$ and $\gamma\gamma$.
- Since then, both experiments have further confirmed that this particle is indeed SM-Higgs like
 - Evidence observed in the WW and $\tau\tau$ final states
 - ggF, VBF, VH, and ttH production modes have all been studied and $\sigma/\sigma SM$ consistent with 1.
- Combined Higgs searches from CDF and D0 at the <u>Tevatron</u> yield a 3σ observed excess for a 125 GeV Higgs.
- So far detailed coupling studies have been performed by both experiments. No significant deviations from the SM have been observed.
 - <u>ATLAS</u> and <u>CMS</u> have shown that the new particle is most consistent with a 0⁺ particle.

01/20/14

MSSM Searches at the **Tevatron**


- The most recent result from the Tevatron still only covers half of the total luminosity 2.6(5.2) fb⁻¹ at CDF(D0)
- The search looks for a neutral Higgs produced in association with one or more b-quarks that decays to b quarks.
- The main background is from QCD multijet events

FCNC in top Decays t->cH in ATLAS

• Theoretical values of FCNC top decays in the Standard Model and other Models.

Process	SM	QS	2HDM-III	FC-2HDM	MSSM
$t \rightarrow u\gamma$	$3.7 \cdot 10^{-16}$	$7.5 \cdot 10^{-9}$	_	_	$2 \cdot 10^{-6}$
$t \rightarrow uZ$	$8 \cdot 10^{-17}$	$1.1 \cdot 10^{-4}$	_	_	$2 \cdot 10^{-6}$
$t \rightarrow uH$	$2 \cdot 10^{-17}$	$4.1 \cdot 10^{-5}$	$5.5 \cdot 10^{-6}$	_	10-5
$t \rightarrow c\gamma$	$4.6 \cdot 10^{-14}$	$7.5 \cdot 10^{-9}$	~ 10 ⁻⁶	~ 10 ⁻⁹	$2 \cdot 10^{-6}$
$t \rightarrow cZ$	$1 \cdot 10^{-14}$	$1.1 \cdot 10^{-4}$	~ 10 ⁻⁷	$\sim 10^{-10}$	$2 \cdot 10^{-6}$
$t \rightarrow cH$	$3 \cdot 10^{-15}$	$4.1 \cdot 10^{-5}$	$1.5 \cdot 10^{-3}$	$\sim 10^{-5}$	10-5

24