Towards the measurements of mass hierarchy and CP violation in neutrino oscillations

Frontiers in Particle Physics: From Dark Matter to the LHC and Beyond Aspen, USA Jan. 18-24, 2014

Walter Winter Universität Würzburg / DESY

Contents

- Current knowledge of neutrino oscillations
- Mass hierarchy determination
- Measurement of the CP phase
- Summary

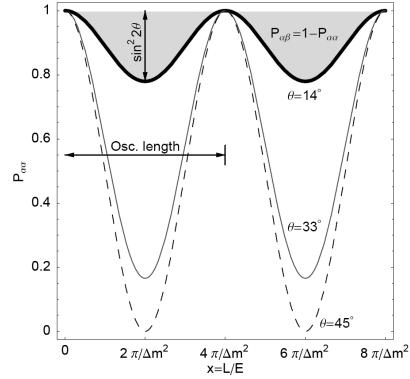
Neutrino oscillations (two flavors)

4E

Two parameters:

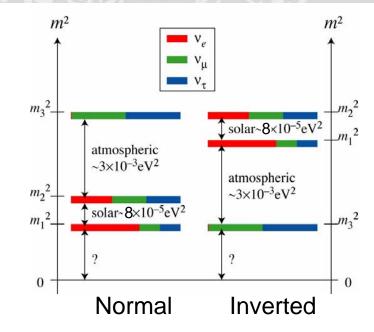
$$U = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$$

Disappearance or survival probability


$$P_{\alpha\alpha} = 1 - \sin^2 2\theta \, \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$

Appearance probability

$$P_{\alpha\beta} = \sin^2 2\theta \, \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$


Evidence for massive neutrinos!

$$\Delta m^2 \equiv m_2^2 - m_1^2$$

Three flavors: Masses and mixings

- Two independent mass squared splittings, typically Δm^2_{21} (solar) Δm^2_{31} (atmospheric)
- Mixing: Use same parameterization as for CKM matrix (4 params)

$$(s_{ij} = \sin \theta_{ij} \ c_{ij} = \cos \theta_{ij})$$

$$U_{\text{PMNS}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

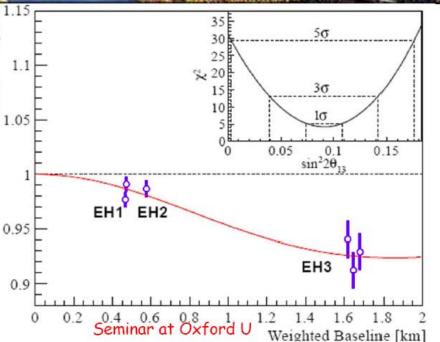
(short distance)

Observation of Mixing Angle θ_{13}

in the Daya Bay Reactor Antineutrino Experiment

 $P_{\bar{e}\bar{e}} \simeq 1 - \sin^2(2\theta_{13}) \sin^2 \Delta_{31}$

We observe that $\sin^2 2\theta_{13} = 0.092 \pm 0.016 \text{ (stat.)} \pm 0.005 \text{ (syst.)}$ after 55 days of operation with 6 detectors at 3 sites close to 3 pairs of ~ 3 GW reactors.


F.P. Ahn *et al.* Phys. Rev. Lett. **108**, 171803 (2012).

4/24/2012

(also: T2K, Double Chooz, RENO)

KT McDonald

Kirk T McDonald

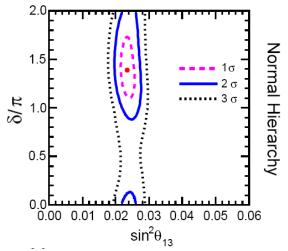
Princeton U

(April 24, 2012)

on behalf of the Daya Bay Collaboration

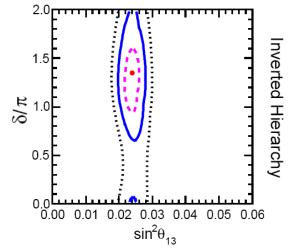
Precision of parameters?

Gonzalez-Garcia, Maltoni, Salvado, Schwetz, JHEP 1212 (2012) 123 NuFIT 1.2 (2013) bfp $\pm 1\sigma$ 3σ range $\sin^2 \theta_{12}$ $0.306^{+0.012}_{-0.012}$ $0.271 \rightarrow 0.346$ ± 2% $33.57^{+0.77}_{-0.75}$ $\theta_{12}/^{\circ}$ $31.38 \rightarrow 36.01$ $0.446^{+0.007}_{-0.007} \oplus 0.587^{+0.032}_{-0.037}$ $\sin^2 \theta_{23}$ $0.366 \rightarrow 0.663$ ±4% $41.9_{-0.4}^{+0.4} \oplus 50.0_{-2.2}^{+1.9}$ $\theta_{23}/^{\circ}$ $37.2 \rightarrow 54.5$ (or better) $0.0229\substack{+0.0020\\-0.0019}$ $\sin^2 \theta_{13}$ $0.0170 \rightarrow 0.0288$ $8.71_{-0.38}^{+0.37}$ $\pm 4\%$ $\theta_{13}/^{\circ}$ $7.50 \rightarrow 9.78$ ⇒ More 265^{+56}_{-61} $\delta_{\rm CP}/^{\circ}$ $0 \rightarrow 360$ details: $\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$ ± 3% $7.45_{-0.16}^{+0.19}$ talk by $6.98 \rightarrow 8.05$ **R.** Patterson $\frac{\Delta m_{31}^2}{10^{-3} \text{ eV}^2}$ (N) $+2.417^{+0.013}_{-0.013}$ $+2.247 \rightarrow +2.623$ ± 3% $\frac{\Delta m_{32}^2}{10^{-3} \ {\rm eV}^2} \ {\rm (I)}$ $-2.410^{+0.062}_{-0.062}$ $-2.602 \rightarrow -2.226$ Age of the **Open issues:** precision flavor physics - Degeneracies (mass ordering, octant) of the lepton sector - CP phase

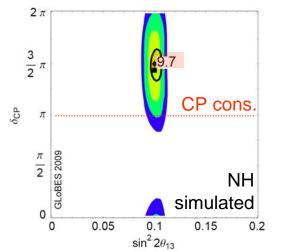

Julius-Maximilians-

UNIVERSITÄT

WÜRZBURG

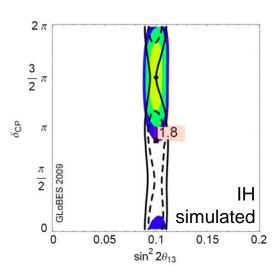

Latest fits vs. projection

Indication for δ_{CP} , no evidence for mass hierarchy



LBL Acc + Solar + KL + SBL Reactors + SK Atm

Capozzi, Fogli, Lisi, Marrone, Montanino, Palazzo, arXiv:1312.2878


Potential of existing equipment

T2K, NOvA, Double Chooz, Daya Bay; 5 years each

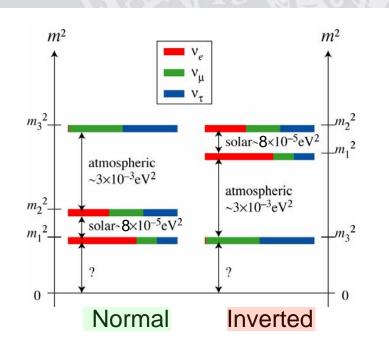
High CL determination requires new equipment

Huber, Lindner, Schwetz, Winter, JHEP 0911 (2009) 044

Short-distance anomalies ... unresolved 2.0 $\Delta m_{41}^2 L/(4E)$

Example: 3+1 scenario

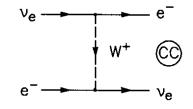
- $P_{ee} = 1 4 |U_{e4}|^2 (1 |U_{e4}|^2) \sin^2 \Delta_{41}, ?$
- $P_{\mu\mu} = 1 4 |U_{\mu4}|^2 (1 |U_{\mu4}|^2) \sin^2 \Delta_{41}, \, \mathbf{\clubsuit}$


 $P_{e\mu} = P_{\mu e} = 4 |U_{e4}|^2 |U_{\mu 4}|^2 \sin^2 \Delta_{41}, \quad \Rightarrow \text{ MiniBoone }$

- ➢ Well known tension between appearance and disapp. data (appearance ⇒ disapp. in both channels)
- Need one or more new experiments which can test
 - v_e disappearance (Gallium, reactor anomalies)
 - v_{μ} disappearance (overconstrains 3+N frameworks)
 - $v_e v_\mu$ oscillations (LSND, MiniBooNE)
 - Neutrinos and antineutrinos separately (CP violation? Gallium vs reactor?)
- Summary of options: Appendix of white paper arXiv:1204.5379
- Example: completely self-consistent test at vSTORM - Neutrinos from STORed Muons

Mass hierarchy determination

Why would one like to measure the mass hierarchy?

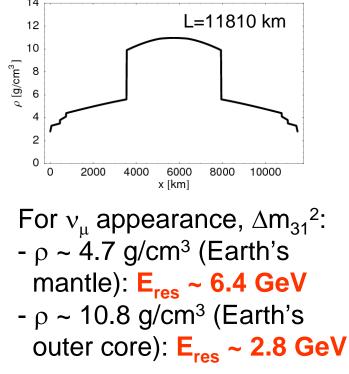


- Mass hierarchy is a good model discriminator (Albright, Chen, 2006)
- Leading indicator for flavor model? [determines structure of couplings in hierarchical models]

5	Referen	ce	Hierarchy						
	Anarchy Model:								
	dGM	[18]	Either						
	$\mathbf{L}_{\mathbf{e}} - \mathbf{L}_{\mu} - \mathbf{L}_{\tau}$ Models:								
	BM	[35]	Inverted						
	BCM	[36]	Inverted						
	GMN1	[37]	Inverted						
	GL	[38]	Inverted						
	\mathbf{PR}	[39]	Inverted						
	S ₃ and S ₄ Models:								
	CFM	[40]	Normal						
	HLM	[41]	Normal						
			Normal						
	KMM	[42]	Inverted						
	MN	[43]	Normal						
	MNY	[44]	Normal						
	MPR	[45]	Normal						
	RS	[46]	Inverted						
			Normal						
	TY	[47]	Inverted						
	Т	[48]	Normal						
	A ₄ Tetr	ahed	lral Models:						
	ABGMP	[49]	Normal						
	AKKL	[50]	Normal						
	Ma	[51]	Normal						
	SO(3) N	lode	ls:						
	М	[52]	Normal						
	Texture	Texture Zero Models:							
	CPP	[53]	Normal						
			Inverted						
			Inverted						
	WY	[54]	Either						
			Either						
			Either						

Parameter mapping ... for two flavors, constant matter density

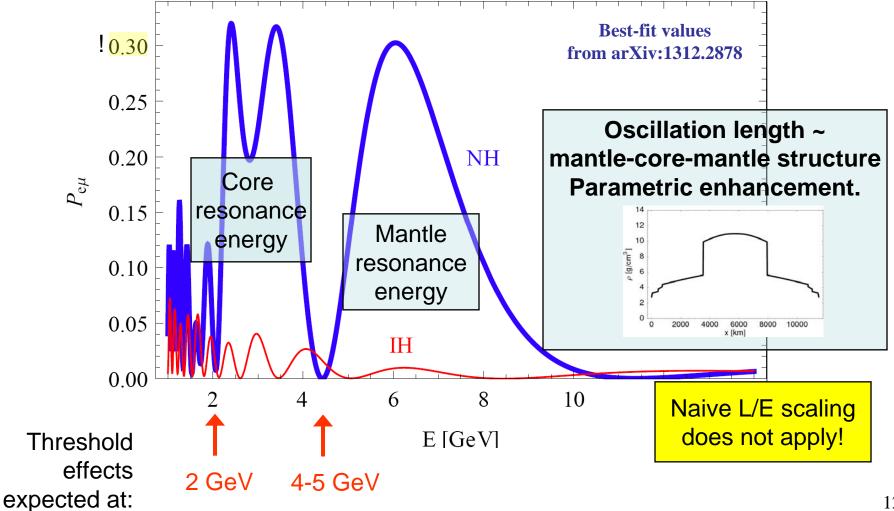
• Oscillation probabilities in vacuum: $P_{\alpha\alpha} = 1 - \sin^2 2\theta \sin^2 \frac{\Delta m^2 L}{4E}$ matter: $P_{\alpha\alpha} = 1 - \sin^2 2\tilde{\theta} \sin^2 \frac{\Delta \tilde{m}^2 L}{4E}$



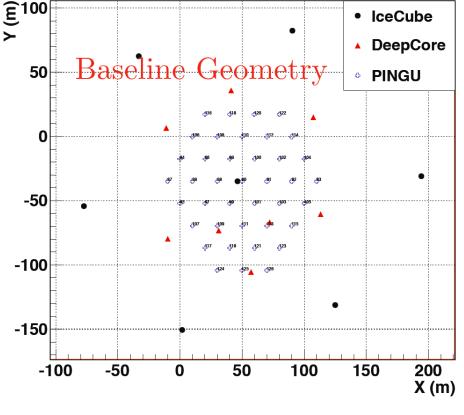
(Wolfenstein, 1978; Mikheyev, Smirnov, 1985)

$$\Delta \tilde{m}^{2} = \xi \cdot \Delta m^{2}, \quad \sin 2\tilde{\theta} = \frac{\sin 2\theta}{\xi},$$

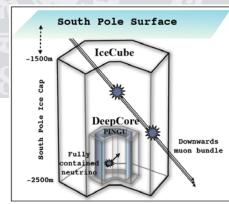
$$\xi \equiv \sqrt{\sin^{2} 2\theta} + \left(\cos 2\theta - \hat{A}\right)^{2},$$


$$\hat{A} = \frac{2EV}{\Delta m^{2}} = \frac{\pm 2\sqrt{2E}G_{F}n_{e}}{\Delta m^{2}} \Rightarrow \mathbf{MH}$$
Resonance energy (from $\hat{A} \to \cos 2\theta$):
$$E_{\text{res}} [\text{GeV}] \sim 13\,200\,\cos 2\theta \,\frac{\Delta m^{2} [\text{eV}^{2}]}{\rho [\text{g/cm}^{3}]}$$

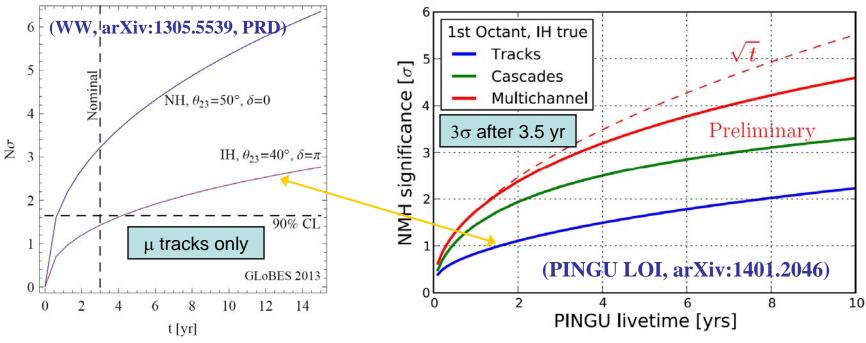
Mantle-core-mantle

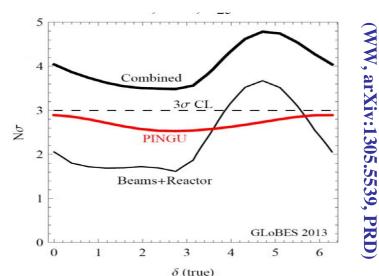

(Parametric enhancement: Akhmedov, 1998; Akhmedov, Lipari, Smirnov, 1998; Petcov, 1998)

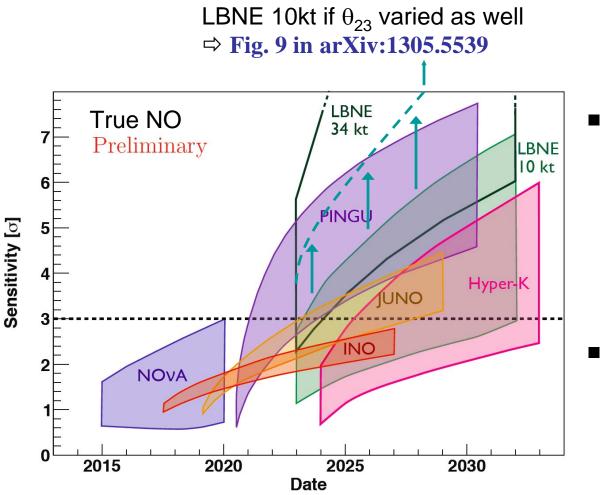
Probability for L=11810 km



Emerging technologies: PINGU


- Fill in IceCube/DeepCore array with additional strings
 - Lower threshold
 - Particle physics!?
- PINGU ("Precision IceCube Next Generation Upgrade"):
- 40 additional strings, 60 optical modules each
- Modest cost, US part ~ 55-80 M\$, foreign ~ 25 M\$ (including contingency)
- Completion 2019/2020?

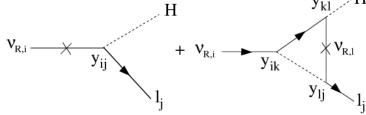

(PINGU LOI, arXiv:1401.2046)


UNIVERSITÄT WÜRZBURG MAXIMILIANS-WÜRZBURG MAXIMILIANS-... PINGU, using atmospheric neutrinos

- 3σ conceivable after three years of operation
- Complementary to beams+reactor

 Bands: risk wrt θ₂₃ (PINGU, INO), δ_{CP} (NOvA, LBNE), energy resolution (JUNO)

 LBNE and sensitivity also scales with θ₂₃!


(version from PINGU LOI, arXiv:1401.2046, based on Blennow, Coloma, Huber, Schwetz, arXiv:1311.1822)

Measurement of δ_{CP}

Why is δ_{CP} interesting?

CP violation sinδ Necessary condition for successful baryogenesis

(dynamical mechanism to create matter-antimatter asymmetry of the universe) \Rightarrow thermal leptogenesis by y_{kl} decay of heavy see-saw $v_{R,i} \xrightarrow{} y_{ij}$ partner?

• Model building $\cos\delta$

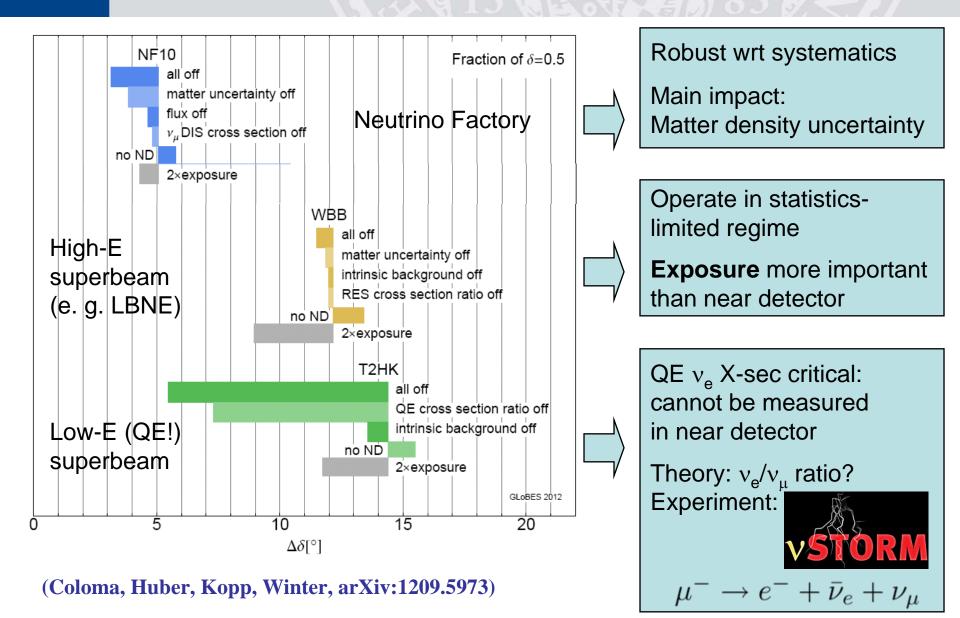
⇒ C. Hagedorn

$$U_{\rm PMNS} = U_{\ell}^{\dagger} U_{\nu}$$
Correction leading

Symmetry e.g. TBM, BM, ...? $\Rightarrow \theta_{13}=0$

e.g. TBM sum rule: $\theta_{12} = 35^{\circ} + \theta_{13} \cos \delta$ (Antusch, King, ...) \succ Discuss precision of δ_{CP} rather than CP violation 17

to non-zero θ_{13} ?


Precision of δ_{CP}

⇒ More details: talk by A. Sousa 1.0 CKM phase 0.8 (bands: systematics Fraction of δ 0.6 opt.-cons.) LENF 0.4 **BB350** LBNO /LBNE 0.2 T2HK GLoBES 2012 0.0 5 10 20 15 25 30 0 $\Delta \delta(^{\circ})$

(Coloma, Huber, Kopp, Winter, arXiv:1209.5973)

- Systematics important
 - Use explicit near-far detector simulations
 - Use same knowledge for cross sections for all experiments
 - Use same assumptions for systematics implementation!
- The NF can measure δ_{CP} with a precision comparable to the quark sector

UNIVERSITÄT Main challenges for δ_{CP}

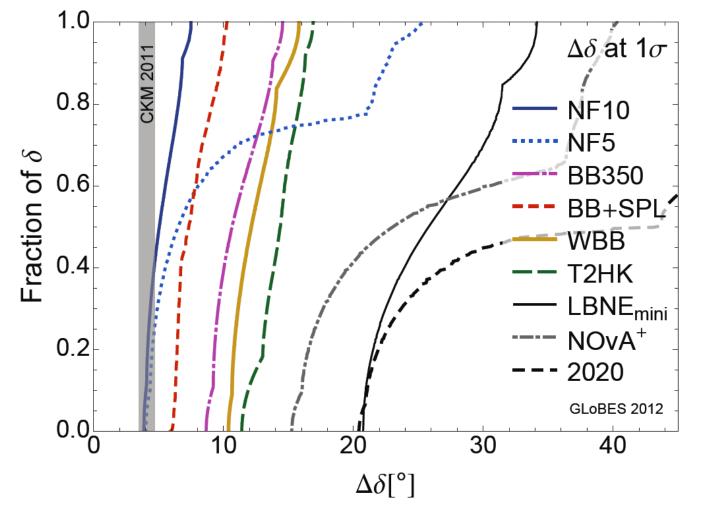
- Mass hierarchy: may be tested in beginning of 2020s by "emerging technologies", such as PINGU or JUNO
- CP violation: requires a new long-baseline experiment, such as LBNE, T2HK, NuFact
- Other issues: θ₂₃ maximal? Octant?
 Sun and Earth tomography? New physics?
- Light sterile neutrinos best candidate for physics BvSM? Test short-baseline anomalies, measure neutrino X-secs, ...

Backup

Options

	Setup	E_{ν}^{peak}	L	OA	Detector	kt	MW	Decays/yr	$(t_{\nu}, t_{\bar{\nu}})$		
Benchmark	BB350	1.2	650	_	WC	500	_	$1.1(2.8)\!\times\!10^{18}$	(5,5)	-	
	NF10	5.0	2000	_	MIND	100	_	$7{ imes}10^{20}$	(10, 10)	0,10)	
	WBB	4.5	2300	_	LAr	100	0.8	—	(5,5)	(5,5)	
	T2HK	0.6	295	2.5°	WC	560	1.66	—	(1.5, 3.5)	_	
Alternative	BB100	0.3	130	_	WC	500	_	$1.1(2.8)\!\times\!10^{18}$	(5,5)		
	+ SPL	0.9		_			4	—	(2,8)		
	NF5	2.5	1290	_	MIND	100	—	$7{ imes}10^{20}$	(10, 10)	_	
	$LBNE_{mini}$	4.0	1290	_	LAr	10	0.7	—	(5,5)	_	
	$NO\nu A^+$	2.0	810	0.8°	LAr	30	0.7	—	(5,5)	_	
2020	T2K	0.6	295	2.5°	WC	22.5	0.75	_	(5,5) +	Daya	
	ΝΟνΑ	2.0	810	0.8°	TASD	15	0.7	_	(4,4)	Bay	

(Coloma, Huber, Kopp, Winter, arXiv:1209.5973)

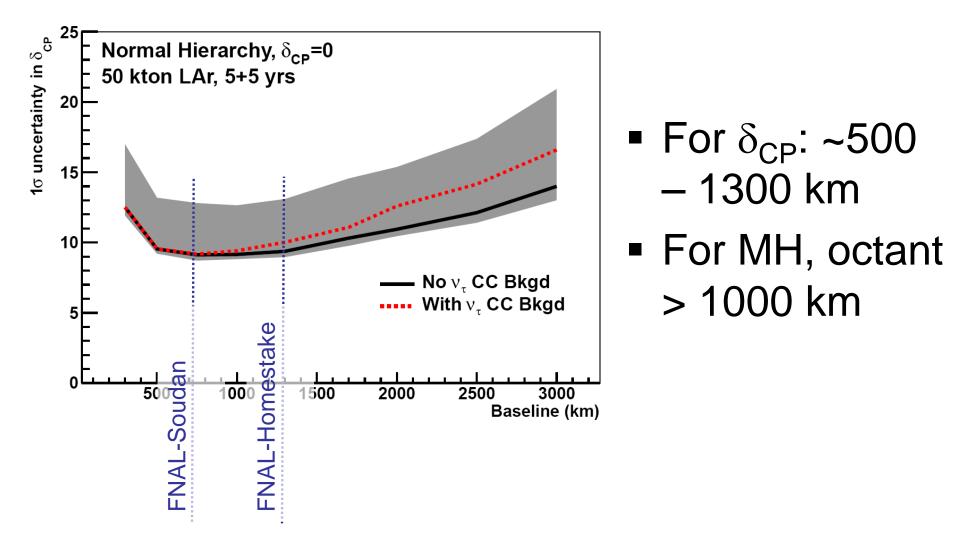

Systematics

		SB			BB			NF	
Systematics	Opt.	Def.	Cons.	Opt.	Def.	Cons.	Opt.	Def.	Cons.
Fiducial volume ND	0.2%	0.5%	1%	0.2%	0.5%	1%	0.2%	0.5%	1%
Fiducial volume FD	1%	2.5%	5%	1%	2.5%	5%	1%	2.5%	5%
(incl. near-far extrap. $)$									
Flux error signal ν	5%	7.5%	10%	1%	2%	2.5%	0.1%	0.5%	1%
Flux error background ν	10%	15%	20%	correlated		correlated			
Flux error signal $\bar{\nu}$	10%	15%	20%	1%	2%	2.5%	0.1%	0.5%	1%
Flux error background $\bar{\nu}$	20%	30%	40%	correlated			correlated		
Background uncertainty	5%	7.5%	10%	5%	7.5%	10%	10%	15%	20%
Cross secs \times eff. QE^{\dagger}	10%	15%	20%	10%	15%	20%	10%	15%	20%
Cross secs \times eff. RES [†]	10%	15%	20%	10%	15%	20%	10%	15%	20%
Cross secs \times eff. DIS [†]	5%	7.5%	10%	5%	7.5%	10%	5%	7.5%	10%
Effec. ratio $\nu_e/\nu_\mu \ QE^{\star}$	3.5%	11%		3.5%	11%	—	_		_
Effec. ratio ν_e/ν_μ RES [*]	2.7%	5.4%		2.7%	5.4%	—	_	—	—
Effec. ratio ν_e/ν_μ DIS [*]	2.5%	5.1%	_	2.5%	5.1%	_	_		—
Matter density	1%	2%	5%	1%	2%	5%	1%	2%	5%

(Coloma, Huber, Kopp, Winter, arXiv:1209.5973)

Interesting alternatives

Comparison at default systematics:



NF5 exhibits strong dependence on δ_{CP} (some dependence on binning!)

BB100+SPL is the only setup comparable with NuFact

(Coloma, Huber, Kopp, Winter, arXiv:1209.5973)

LBNE: Optimal baseline?

(LBNE, arXiv:1311.0212; see also: arXiv:hep-ph/0607177; arXiv:hep-ph/0703029)