Model Building for Lepton Mixing and Neutrino Masses

C. Hagedorn

EC 'Universe', TUM, Germany

Frontiers in Particle Physics: From Dark Matter to the LHC and Beyond, 18.01. - 24.01.2014, Aspen, USA

Outline

- introduction: lepton mixing
- origin of mixing
- different approaches
 - finite, discrete, non-abelian symmetry G_f
 - G_f and CP
 - G_f and $m_{\text{lightest}} = 0$
 - $G_f = SU(3)_L \times SU(3)_E \times O(3)_N$
- comments on models
- conclusions & outlook

Parametrization of lepton mixing

Parametrization (PDG) $U_{PMNS} = \tilde{U} \operatorname{diag}(1, e^{i\alpha/2}, e^{i(\beta/2 + \delta)})$

with

$$\tilde{U} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

and $s_{ij} = \sin \theta_{ij}$, $c_{ij} = \cos \theta_{ij}$ Jarlskog invariant J_{CP}

 $J_{CP} = \operatorname{Im} \left[U_{PMNS,11} U_{PMNS,13}^* U_{PMNS,31}^* U_{PMNS,33} \right]$ $= \frac{1}{8} \sin 2\theta_{12} \sin 2\theta_{23} \sin 2\theta_{13} \cos \theta_{13} \sin \delta$

– p. 3/65

Experimental results on lepton mixing

Lepton mixing parameters as of end 2013 (Capozzi et al. ('13))

Experimental results on lepton mixing

Lepton mixing parameters as of end 2013 (Capozzi et al. ('13))

Experimental results on lepton mixing
Latest global fits NH [IH] (*capozzi et al.* (*13))
best fit and 1
$$\sigma$$
 error 3σ range
 $\sin^2 \theta_{13} = 0.0234[9]^{+0.0022[1]}_{-0.0018[21]}$ $0.0177[8] \le \sin^2 \theta_{13} \le 0.0297[300]$
 $\sin^2 \theta_{12} = 0.308^{+0.017}_{-0.017}$ $0.259 \le \sin^2 \theta_{12} \le 0.359$
 $\sin^2 \theta_{23} = \begin{cases} 0.425[37]^{+0.029[59]}_{-0.027[9]} & 0.357[63] \le \sin^2 \theta_{23} \le 0.641[59] \end{cases}$
 $\delta = 1.39[5] \pi^{+0.33[24] \pi}_{-0.27[39] \pi}$ $0 \le \delta \le 2 \pi$
 α , β unconstrained

Experimental results on lepton mixing

Latest global fits NH [IH] (Capozzi et al. ('13))

$$||U_{PMNS}|| \approx \begin{pmatrix} 0.82 & 0.55 & 0.15 \\ 0.40[39] & 0.65 & 0.64[5] \\ 0.40[2] & 0.52 & 0.75[4] \end{pmatrix}$$

and no information on Majorana phases

 \Downarrow Mismatch in lepton flavor space is large!

Origin of lepton mixing

- interpret this mismatch in lepton flavor space as mismatch of residual symmetries G_{ν} and G_{e}
- if we want to predict lepton mixing, we have to derive this mismatch
- let us assume that there is a symmetry, broken to G_{ν} and G_{e}
- this symmetry is in the following a

finite, discrete, non-abelian symmetry G_f (Blum et al. ('07), Lam ('07,'08), de Adelhart Toorop et al. ('11))

[Masses do not play a role in this approach.]

Idea:

Derivation of the lepton mixing from how G_f is broken Interpretation as mismatch of embedding of different subgroups G_{ν} and G_e into G_f

Idea:

Derivation of the lepton mixing from how G_f is broken Interpretation as mismatch of embedding of different subgroups G_{ν} and G_e into G_f

 G_f

 $G_{\nu} = Z_2 \times Z_2$ (Majorana) $G_{\nu} = Z_M$ with $M \ge 3$ (Dirac) charged leptons $G_e = Z_N$ with $N \ge 3$

$$G_
u = Z_2 imes Z_2$$
 (Majorana)
 $G_
u = Z_M$ with $M \ge 3$ (Dirac)

charged leptons $G_e = Z_N$ with $N \ge 3$

Further requirements

 G_f

- two/three non-trivial angles \Rightarrow irred. 3-dim. rep. of G_f
- fix angles through G_{ν} , $G_e \Rightarrow 3$ families transform diff. under G_{ν} , G_e

• neutrino sector: $Z_2 \times Z_2$ or Z_M , $M \ge 3$, preserved and generated by

or
$$\Omega^{\dagger}_{\nu} Z_i \Omega_{\nu} = Z_i^{diag}$$
, $i = 1, 2$
 $\Omega^{\dagger}_{\nu} Z \Omega_{\nu} = Z^{diag}$ with Ω_{ν} unitary

• charged lepton sector: Z_N , $N \ge 3$, preserved and generated by

 $\Omega_e^{\dagger} Q_e \Omega_e = Q_e^{diag}$ with Ω_e unitary

• neutrino sector: $Z_2 \times Z_2$ or Z_M , $M \ge 3$, preserved

$$Z_{i}^{T} m_{\nu} Z_{i} = m_{\nu} , \quad i = 1, 2$$

or $Z^{\dagger} m_{\nu}^{\dagger} m_{\nu} Z = m_{\nu}^{\dagger} m_{\nu}$

• charged lepton sector: Z_N , $N \ge 3$, preserved

 $Q_e^{\dagger} m_e^{\dagger} m_e Q_e = m_e^{\dagger} m_e$

• neutrino sector: $Z_2 \times Z_2$ or Z_M , $M \ge 3$, preserved

 $\begin{array}{l} \rightarrow \text{ neutrino mass matrix } m_{\nu} \text{ fulfills} \\ \Omega_{\nu}^{T} m_{\nu} \Omega_{\nu} \quad \text{is diagonal} \\ \text{or} \quad \Omega_{\nu}^{\dagger} m_{\nu}^{\dagger} m_{\nu} \Omega_{\nu} \quad \text{is diagonal} \end{array}$

• charged lepton sector: Z_N , $N \ge 3$, preserved

 \rightarrow charged lepton mass matrix m_e fulfills

 $\Omega_e^{\dagger} m_e^{\dagger} m_e \Omega_e$ is diagonal

 $U_{PMNS} = \Omega_e^{\dagger} \Omega_{\nu}$

- 3 unphysical phases are removed by $\Omega_e \rightarrow \Omega_e K_e$
- neutrino masses are made real and positive through $\Omega_{
 u} o \Omega_{
 u} K_{
 u}$
- permutations of columns of Ω_e , Ω_{ν} are possible: $\Omega_{e,\nu} \to \Omega_{e,\nu} P_{e,\nu}$

\Downarrow

Predictions:Mixing angles up to exchange of rows/columns J_{CP} up to signMajorana phases undetermined

• tri-bimaximal (TB) mixing from S_4 (Lam ('07,'08))

$$||U_{PMNS}|| = \begin{pmatrix} \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0\\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

- tri-bimaximal (TB) mixing from S_4 (Lam ('07,'08))
- generators S, T and U of S_4

$$S^{2} = 1$$
, $T^{3} = 1$, $U^{2} = 1$,
 $(ST)^{3} = 1$, $(SU)^{2} = 1$, $(TU)^{2} = 1$, $(STU)^{4} = 1$

- tri-bimaximal (TB) mixing from S_4 (Lam ('07,'08))
- generators S, T and U of S_4

$$S^{2} = 1$$
, $T^{3} = 1$, $U^{2} = 1$,
 $(ST)^{3} = 1$, $(SU)^{2} = 1$, $(TU)^{2} = 1$, $(STU)^{4} = 1$

• subgroups
$$G_e = Z_3$$
 and $G_\nu = Z_2 \times Z_2$

- tri-bimaximal (TB) mixing from S_4 (Lam ('07,'08))
- subgroups $G_e = Z_3$ and $G_\nu = Z_2 \times Z_2$
- subgroup $G_{\nu} = Z_2 \times Z_2$ generated by $Z_1 = S$ and $Z_2 = U$, diagonalized by Ω_{ν}

$$Z_1 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} , \quad Z_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

- tri-bimaximal (TB) mixing from S_4 (Lam ('07,'08))
- subgroups $G_e = Z_3$ and $G_\nu = Z_2 \times Z_2$
- subgroup $G_{\nu} = Z_2 \times Z_2$ generated by $Z_1 = S$ and $Z_2 = U$, diagonalized by Ω_{ν}

$$\Omega_{\nu} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right)$$

- tri-bimaximal (TB) mixing from S_4 (Lam ('07,'08))
- subgroups $G_e = Z_3$ and $G_\nu = Z_2 \times Z_2$
- subgroup $G_{\nu} = Z_2 \times Z_2$ generated by $Z_1 = S$ and $Z_2 = U$, diagonalized by Ω_{ν}
- subgroup $G_e = Z_3$ generated by $Q_e = T$, diagonalized by Ω_e

$$Q_e = \frac{1}{2} \begin{pmatrix} 1 & \sqrt{2} & 1 \\ \sqrt{2} & 0 & -\sqrt{2} \\ -1 & \sqrt{2} & -1 \end{pmatrix}$$

- tri-bimaximal (TB) mixing from S_4 (Lam ('07,'08))
- subgroups $G_e = Z_3$ and $G_\nu = Z_2 \times Z_2$
- subgroup $G_{\nu} = Z_2 \times Z_2$ generated by $Z_1 = S$ and $Z_2 = U$, diagonalized by Ω_{ν}
- subgroup $G_e = Z_3$ generated by $Q_e = T$, diagonalized by Ω_e

$$\Omega_e = \begin{pmatrix} \sqrt{2/3} & -1/\sqrt{6} & -1/\sqrt{6} \\ 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \\ 0 & i/\sqrt{2} & -i/\sqrt{2} \end{pmatrix}$$

- tri-bimaximal (TB) mixing from S_4 (Lam ('07,'08))
- subgroups $G_e = Z_3$ and $G_\nu = Z_2 \times Z_2$
- subgroup $G_{\nu} = Z_2 \times Z_2$ generated by $Z_1 = S$ and $Z_2 = U$, diagonalized by Ω_{ν}
- subgroup $G_e = Z_3$ generated by $Q_e = T$, diagonalized by Ω_e
- PMNS mixing matrix

$$U_{PMNS} = \Omega_e^{\dagger} \Omega_{\nu} = \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0\\ -1/\sqrt{6} & 1/\sqrt{3} & -i/\sqrt{2}\\ -1/\sqrt{6} & 1/\sqrt{3} & i/\sqrt{2} \end{pmatrix}$$

- series $\Delta(6n^2)$ of subgroups of SU(3) with faithful irred. 3-dim. reps.
- isomorphic to $(Z_n \times Z_n) \rtimes S_3$; described with four generators
- generic form of mixing patterns for Majorana neutrinos

$$U_{PMNS} = U_{TB}R_{13}(\theta)$$

and θ depends on n (King et al. ('13)), i.e. mixing angles are of the form

$$\sin^2 \theta_{12} = \frac{1}{2 + \cos 2\theta}$$
, $\sin^2 \theta_{23} = \frac{1}{2} \left(1 - \frac{\sqrt{3} \sin 2\theta}{2 + \cos 2\theta} \right)$ and $\sin^2 \theta_{13} = \frac{2}{3} \sin^2 \theta$

$$\delta=0\,,\,\pi$$

- series $\Delta(6n^2)$ of subgroups of SU(3) with faithful irred. 3-dim. reps.
- isomorphic to $(Z_n \times Z_n) \rtimes S_3$; described with four generators
- generic form of mixing patterns for Majorana neutrinos

 $U_{PMNS} = U_{TB}R_{13}(\theta)$

and θ depends on n (King et al. ('13))

• We conjectured (de Adelhart Toorop et al. ('11))

$$\theta = \frac{\pi}{n} \text{ for } G_e = Z_3 , \ G_\nu = Z_2 \times Z_2$$
$$\theta = \frac{\pi}{3n} \text{ for } G_e = Z_3 , \ G_\nu = Z_2 \times Z_2$$

- series $\Delta(6n^2)$ of subgroups of SU(3) with faithful irred. 3-dim. reps.
- isomorphic to $(Z_n \times Z_n) \rtimes S_3$; described with four generators
- generic form of mixing patterns for Majorana neutrinos

$$U_{PMNS} = U_{TB}R_{13}(\theta)$$

and θ depends on n (King et al. ('13))

we conjectured (de Adelhart Toorop et al. ('11)) [for Dirac neutrinos]

$$\theta = \frac{\pi}{2n} \quad \text{for} \quad G_e = Z_3 \quad , \ G_\nu = Z_{2n}$$
$$\theta = \frac{\pi}{6n} \quad \text{for} \quad G_e = Z_3 \quad , \ G_\nu = Z_{2n}$$

Variants of non-trivial breaking of G_f

Reduce residual symmetry in charged lepton or neutrino sector (Ge et al. ('11), Hernandez/Smirnov ('12,'13), Lavoura/Ludl ('14))

• G_{ν} cannot distinguish all three generations anymore

 only one column of PMNS mixing matrix is fixed; rest depends on free parameter

Origin of lepton mixing

- interpret this mismatch in lepton flavor space as mismatch of residual symmetries G_{ν} and G_{e}
- if we want to predict lepton mixing, we have to derive this mismatch
- let us assume that there is a symmetry, broken to G_{ν} and G_{e}
- this symmetry is in the following a combination of a

finite, discrete, non-abelian symmetry G_f and CP (Feruglio et al. ('12,'13), Holthausen et al. ('12), Grimus/Rebelo ('95))

[Masses do not play a role in this approach.]

Idea:

Relate lepton mixing to how G_f and CP are broken Interpretation as mismatch of embedding of different subgroups G_{ν} and G_e into G_f and CP

Idea:

Relate lepton mixing to how G_f and CP are broken Interpretation as mismatch of embedding of different subgroups G_{ν} and G_e into G_f and CP

Idea:

Relate lepton mixing to how G_f and CP are broken Interpretation as mismatch of embedding of different subgroups G_{ν} and G_e into G_f and CP

An example: $\mu\tau$ reflection symmetry (Harrison/Scott ('02,'04), Grimus/Lavoura ('03))

- p. 31/65

Further requirements

- two/three non-trivial mixing angles \Rightarrow irred 3-dim rep of G_f
- "maximize" predictability of approach

Consistency conditions have to be fulfilled:

• definition of generalized CP transformation (see e.g. Branco et al. ('11))

$$\phi_i \xrightarrow{\mathsf{CP}} X_{ij} \phi_j^\star \quad \text{with} \quad XX^\dagger = XX^\star = \mathbb{1}$$

"closure" relations

 $(X^*AX)^* = A'$ with in general $A \neq A'$ and $A, A' \in G_f$

• realize direct product of $Z_2 \subset G_f$ and CP; Z generates Z_2

$$XZ^{\star} - ZX = 0$$

• neutrino sector: $Z_2 \times CP$ preserved and generated by

$$X = \Omega_{\nu} \Omega_{\nu}^{T}$$
 and $Z = \Omega_{\nu} Z^{diag} \Omega_{\nu}^{\dagger}$
 $Z^{diag} = \operatorname{diag} (-1, 1, -1)$ and Ω_{ν} unitary

• charged lepton sector: Z_N , $N \ge 3$, preserved and generated by

 $\Omega_e^{\dagger} Q_e \, \Omega_e = Q_e^{diag}$ with Ω_e unitary

• neutrino sector: $Z_2 \times CP$ preserved

$$Z^T m_{\nu} Z = m_{\nu}$$
 and $X m_{\nu} X = m_{\nu}^{\star}$

• charged lepton sector: Z_N , $N \ge 3$, preserved

$$Q_e^{\dagger} m_e^{\dagger} m_e Q_e = m_e^{\dagger} m_e$$

• neutrino sector: $Z_2 \times CP$ preserved

ightarrow neutrino mass matrix $m_{
u}$ fulfills

 $Z^{diag}[\Omega_{\nu}^{T}m_{\nu}\Omega_{\nu}]Z^{diag} = [\Omega_{\nu}^{T}m_{\nu}\Omega_{\nu}] \text{ and } [\Omega_{\nu}^{T}m_{\nu}\Omega_{\nu}] = [\Omega_{\nu}^{T}m_{\nu}\Omega_{\nu}]^{\star}$

• charged lepton sector: Z_N , $N \ge 3$, preserved

 \rightarrow charged lepton mass matrix m_e fulfills

 $\Omega_e^{\dagger} m_e^{\dagger} m_e \Omega_e$ is diagonal

Non-trivial breaking of G_f and CP

• neutrino sector: $Z_2 \times CP$ preserved

ightarrow neutrino mass matrix $m_{
u}$ is diagonalized by

 $\Omega_{\nu}(X,Z)R(\theta)K_{\nu}$

• charged lepton sector: Z_N , $N \ge 3$, preserved

 \rightarrow charged lepton mass matrix m_e fulfills

 $\Omega_e^{\dagger} m_e^{\dagger} m_e \Omega_e$ is diagonal

Non-trivial breaking of G_f and CP

 $U_{PMNS} = \Omega_e^{\dagger} \Omega_{\nu} R(\theta) K_{\nu}$

- 3 unphysical phases are removed by $\Omega_e \rightarrow \Omega_e K_e$
- U_{PMNS} contains one parameter θ
- permutations of rows and columns of U_{PMNS} possible

Predictions:

 \downarrow

Mixing angles and CP phases are predicted in terms of one parameter θ only, up to permutations of rows/columns

Maximal θ_{23} and δ from $G_e = Z_3$, Z = S and certain X(Harrison/Scott ('02,'04), Grimus/Lavoura ('03), Feruglio et al. ('12,'13))

$$U_{PMNS} = \frac{1}{\sqrt{6}} \begin{pmatrix} 2\cos\theta & \sqrt{2} & 2\sin\theta \\ -\cos\theta + i\sqrt{3}\sin\theta & \sqrt{2} & -\sin\theta - i\sqrt{3}\cos\theta \\ -\cos\theta - i\sqrt{3}\sin\theta & \sqrt{2} & -\sin\theta + i\sqrt{3}\cos\theta \end{pmatrix} K_{\nu}$$

$$\sin^{2} \theta_{13} = \frac{2}{3} \sin^{2} \theta , \quad \sin^{2} \theta_{12} = \frac{1}{2 + \cos 2\theta} , \quad \sin^{2} \theta_{23} = \frac{1}{2}$$

and
 $|\sin \delta| = 1 , \quad |J_{CP}| = \frac{|\sin 2\theta|}{6\sqrt{3}} , \quad \sin \alpha = 0 , \quad \sin \beta = 0$

Maximal θ_{23} and δ from $G_e = Z_3$, Z = S and certain X

Maximal θ_{23} and δ from $G_e = Z_3$, Z = S and certain X

Maximal θ_{23} and δ from $G_e = Z_3$, Z = S and certain X

Maximal θ_{23} and δ from $G_e = Z_3$, Z = S and certain X

$$heta_{ extsf{bf}} pprox 0.185 \ , \ \ \chi^2_{ extsf{min}} pprox 18.4 \ \ extsf{for} \ \ heta_{23} < \pi/4$$

$$\begin{split} \sin^2\theta_{13}(\theta_{\mathsf{bf}}) &\approx 0.023 \ , \quad \sin^2\theta_{12}(\theta_{\mathsf{bf}}) \approx 0.341 \ , \\ |J_{CP}(\theta_{\mathsf{bf}})| &\approx 0.0348 \end{split}$$

Origin of lepton mixing

- interpret this mismatch in lepton flavor space as mismatch of residual symmetries G_{ν} and G_{e}
- if we want to predict lepton mixing, we have to derive this mismatch
- let us assume that there is a symmetry, broken to G_{ν} and G_{e}
- this symmetry is in the following a

finite, discrete, non-abelian symmetry $G_f \subset U(3)$ leading to $m_{\text{lightest}} = 0$ (Joshipura/Patel ('13))

Non-trivial breaking of G_f and $m_{\text{lightest}} = 0$

 $G_{\nu} = Z_2 \times Z_M$ with $M \ge 3$ $G_{\nu} = Z_M$ with $M \ge 3$ even charged leptons $G_e = Z_N$ with $N \ge 3$

Further requirements

 G_f

- G_{ν} and G_{e} distinguish three generations
- $Z_M \subset G_{\nu}$, $M \ge 3$ forbids one of the three neutrino masses crucial: ordering of neutrino masses is not arbitrary anymore!

- inverted ordering and bi-maximal mixing from $G_f = S_4(2)$
- G_f is isomorphic to $A_4 \rtimes Z_4$
- group "similar" to S_4 also described with three generators
- take $G_e = Z_4$ and $G_\nu = Z_4$

$$Q_e = \begin{pmatrix} -i & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} , \quad \tilde{Z} = \begin{pmatrix} 0 & i & 0 \\ -i & 0 & 0 \\ 0 & 0 & -i \end{pmatrix}$$

- inverted ordering and bi-maximal mixing from $G_f = S_4(2)$
- G_f is isomorphic to $A_4 \rtimes Z_4$
- group "similar" to S_4 also described with three generators
- take $G_e = Z_4$ and $G_\nu = Z_4$
- Ω_e is

$$\Omega_e = \frac{1}{\sqrt{2}} \left(\begin{array}{ccc} \sqrt{2} & 0 & 0 \\ 0 & -i & i \\ 0 & 1 & 1 \end{array} \right)$$

- inverted ordering and bi-maximal mixing from $G_f = S_4(2)$
- G_f is isomorphic to $A_4 \rtimes Z_4$
- group "similar" to S_4 also described with three generators
- take $G_e = Z_4$ and $G_\nu = Z_4$
- \tilde{Z} has eigenvalues -1, +1, -i and Ω_{ν} is

$$\Omega_{\nu} = \frac{1}{\sqrt{2}} \begin{pmatrix} -i & i & \mathbf{0} \\ 1 & 1 & \mathbf{0} \\ 0 & 0 & \sqrt{2} \end{pmatrix}$$

- inverted ordering and bi-maximal mixing from $G_f = S_4(2)$
- G_f is isomorphic to $A_4 \rtimes Z_4$
- group "similar" to S_4 also described with three generators
- take $G_e = Z_4$ and $G_\nu = Z_4$
- PMNS mixing matrix

$$U_{PMNS} = \Omega_e^{\dagger} \Omega_{\nu} = \frac{1}{2} \begin{pmatrix} -\sqrt{2}i & \sqrt{2}i & 0\\ i & i & \sqrt{2}\\ -i & -i & \sqrt{2} \end{pmatrix}$$

Origin of lepton mixing

- interpret this mismatch in lepton flavor space as mismatch of residual symmetries G_{ν} and G_{e}
- if we want to predict lepton mixing, we have to derive this mismatch
- let us assume that there is a symmetry, broken to G_{ν} and G_{e}
- this symmetry is in the following the

continuous symmetry $G_f = SU(3)_L \times SU(3)_E \times O(3)_N$

(Cirigliano et al. ('05), Alonso et al.('12), Alonso et al. ('13))

Lagrangian relevant for lepton masses, assuming type I seesaw mechanism

$$\bar{l} Y_E H E_R + \bar{l} Y_\nu \tilde{H} N_R + \frac{1}{2} N_R^t M N_R$$

•
$$Y_E \sim (3, \overline{3}, 1)$$
, $Y_\nu \sim (3, 1, 3)$ under G_f

• $M \propto \mathbb{1}$ leaves $O(3)_N$ invariant

Lagrangian relevant for lepton masses, assuming type I seesaw mechanism

$$\bar{l} Y_E H E_R + \bar{l} Y_\nu \tilde{H} N_R + \frac{1}{2} N_R^t M N_R$$

study of potential shows ("natural solutions")

 $\langle Y_E \rangle \propto {\rm diag}\left(1,1,1
ight)$

or

 $\langle Y_E \rangle \propto \operatorname{diag}\left(0,0,1\right)$

Lagrangian relevant for lepton masses, assuming type I seesaw mechanism

$$\bar{l} Y_E H E_R + \bar{l} Y_\nu \tilde{H} N_R + \frac{1}{2} N_R^t M N_R$$

study of potential shows ("natural solutions")

$$SU(3)_L \times SU(3)_E \xrightarrow{\langle Y_E \rangle} SU(3)_{L+E}$$

or

$$SU(3)_L \times SU(3)_E \xrightarrow{\langle Y_E \rangle} SU(2)_L \times SU(2)_E \times U(1)_{L+E}$$

"chiral" solution

Lagrangian relevant for lepton masses, assuming type I seesaw mechanism

$$\bar{l} Y_E H E_R + \bar{l} Y_\nu \tilde{H} N_R + \frac{1}{2} N_R^t M N_R$$

study of potential shows ("natural solutions")

$$SU(3)_L \times O(3)_N \xrightarrow{\langle Y_\nu \rangle} O(3)_{L+N}$$

and $\langle Y_{\nu} \rangle \propto \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} & 0 & 0 \\ 0 & 1 & -i \\ 0 & 1 & i \end{pmatrix}$

Lagrangian relevant for lepton masses, assuming type I seesaw mechanism

$$\bar{l} Y_E H E_R + \bar{l} Y_\nu \tilde{H} N_R + \frac{1}{2} N_R^t M N_R$$

study of potential shows ("natural solutions")

$$SU(3)_L \times O(3)_N \xrightarrow{\langle Y_\nu \rangle} O(3)_{L+N}$$

and $m_{\nu} \propto \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right)$

Lagrangian relevant for lepton masses, assuming type I seesaw mechanism

$$\bar{l} Y_E H E_R + \bar{l} Y_\nu \tilde{H} N_R + \frac{1}{2} N_R^t M N_R$$

study of potential shows ("natural solutions")

 $SU(3)_L \times SU(3)_E \xrightarrow{\langle Y_E \rangle} SU(2)_L \times SU(2)_E \times U(1)_{L+E}$ $SU(3)_L \times O(3)_N \xrightarrow{\langle Y_\nu \rangle} O(3)_{L+N}$

residual symmetry is non-trivial

 $SU(3)_L \times SU(3)_E \times O(3)_N \xrightarrow{\langle Y_E \rangle, \langle Y_\nu \rangle} SU(2)_E \times U(1)_{L+N}$

- results
 - heavy tau lepton
 - three degenerate light neutrinos \rightarrow large $0\nu\beta\beta$ signal
 - maximal mixing $\theta_{23} = \pi/4$, $\theta_{13} = 0$, θ_{12} free
 - maximal Majorana phase

- results
 - heavy tau lepton
 - three degenerate light neutrinos \rightarrow large $0\nu\beta\beta$ signal
 - maximal mixing $\theta_{23} = \pi/4$, $\theta_{13} = 0$, θ_{12} free
 - maximal Majorana phase
- challenge: break the residual symmetry in controlled way in order to generate electron and muon mass, $\Delta m^2_{\rm atm}$, $\Delta m^2_{\rm sol}$, θ_{13} small
- heuristic: perturbations (Alonso et al. ('13))
- probably additional spurions necessary (see quark sector (Espinosa et al. ('12), Fong/Nardi ('13)))

In explicit models several challenges have to be tackled

 separation of symmetry breaking sectors and higher-order corrections from violation of this separation

- separation of symmetry breaking sectors and higher-order corrections from violation of this separation
- construction of potential ("natural solutions"), stability under higher-order corrections (if G_f is spontaneously broken)

- separation of symmetry breaking sectors and higher-order corrections from violation of this separation
- construction of potential ("natural solutions"), stability under higher-order corrections (if G_f is spontaneously broken)
- non-canonical kinetic terms

- separation of symmetry breaking sectors and higher-order corrections from violation of this separation
- construction of potential ("natural solutions"), stability under higher-order corrections (if G_f is spontaneously broken)
- non-canonical kinetic terms
- corrections from RG running

- separation of symmetry breaking sectors and higher-order corrections from violation of this separation
- construction of potential ("natural solutions"), stability under higher-order corrections (if G_f is spontaneously broken)
- non-canonical kinetic terms
- corrections from RG running
- after all, additional predictions can be possible in concrete models

Conclusions

- until now no "standard" theory for fermion masses and mixing, especially in the lepton sector
- flavor symmetries might be the key
 - finite, discrete, non-abelian G_f
 - G_f and CP
 - $G_f \subset U(3)$ and $m_{\text{lightest}} = 0$
 - $G_f = SU(3)_L \times SU(3)_E \times O(3)_N$

Outlook

- complete study of finite, discrete SU(3) and U(3) subgroups
- more examples and models with G_f and CP
- more on Dirac neutrinos?
- quarks and leptons described with same G_f ?
- sterile neutrinos?

Thank you for your attention.

