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Parametrization of lepton mixing

Parametrization (PDG)

UPMNS = Ũ diag(1, eiα/2, ei(β/2+δ))

with

Ũ =









c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13









and sij = sin θij , cij = cos θij

Jarlskog invariant JCP

JCP = Im
[

UPMNS,11U
∗
PMNS,13U

∗
PMNS,31UPMNS,33

]

=
1

8
sin 2θ12 sin 2θ23 sin 2θ13 cos θ13 sin δ

– p. 3/65



Experimental results on lepton mixing

Lepton mixing parameters as of end 2013 (Capozzi et al. (’13))
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Experimental results on lepton mixing

Lepton mixing parameters as of end 2013 (Capozzi et al. (’13))
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Experimental results on lepton mixing

Latest global fits NH [IH] (Capozzi et al. (’13))

best fit and 1σ error 3σ range

sin2 θ13 = 0.0234[9]
+0.0022[1]
−0.0018[21] 0.0177[8] ≤ sin2 θ13 ≤ 0.0297[300]

sin2 θ12 = 0.308+0.017
−0.017 0.259 ≤ sin2 θ12 ≤ 0.359

sin2 θ23 =







0.425[37]
+0.029[59]
−0.027[9]

[0.531 ≤ sin2 θ23 ≤ 0.610]
0.357[63] ≤ sin2 θ23 ≤ 0.641[59]

δ = 1.39[5]π
+0.33[24]π
−0.27[39]π 0 ≤ δ ≤ 2π

α , β unconstrained
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Experimental results on lepton mixing

Latest global fits NH [IH] (Capozzi et al. (’13))

||UPMNS|| ≈









0.82 0.55 0.15

0.40[39] 0.65 0.64[5]

0.40[2] 0.52 0.75[4]









and no information on Majorana phases

⇓
Mismatch in lepton flavor space is large!
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Origin of lepton mixing

• interpret this mismatch in lepton flavor space as
mismatch of residual symmetries Gν and Ge

• if we want to predict lepton mixing, we have to derive this
mismatch

• let us assume that there is a symmetry, broken to Gν and Ge

• this symmetry is in the following a

finite, discrete, non-abelian symmetry Gf

(Blum et al. (’07), Lam (’07,’08), de Adelhart Toorop et al. (’11))

[Masses do not play a role in this approach.]
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Non-trivial breaking of Gf

Idea:

Derivation of the lepton mixing from how Gf is broken
Interpretation as mismatch of embedding of different sub-
groups Gν and Ge into Gf

Gf

ւ ց
neutrinos

Gν

charged leptons

Ge
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Non-trivial breaking of Gf

Idea:

Derivation of the lepton mixing from how Gf is broken
Interpretation as mismatch of embedding of different sub-
groups Gν and Ge into Gf

Gf

ւ ց
neutrinos

Gν = Z2 × Z2 (Majorana)

Gν = ZM with M ≥ 3 (Dirac)

charged leptons

Ge = ZN with N ≥ 3
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Non-trivial breaking of Gf

Gf

ւ ց
neutrinos

Gν = Z2 × Z2 (Majorana)

Gν = ZM with M ≥ 3 (Dirac)

charged leptons

Ge = ZN with N ≥ 3

Further requirements

• two/three non-trivial angles ⇒ irred. 3-dim. rep. of Gf

• fix angles through Gν , Ge ⇒ 3 families transform diff. under Gν , Ge
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Non-trivial breaking of Gf

• neutrino sector: Z2 × Z2 or ZM , M ≥ 3, preserved and generated by

Ω†
ν Zi Ων = Zdiag

i , i = 1, 2

or Ω†
ν Z Ων = Zdiag with Ων unitary

• charged lepton sector: ZN , N ≥ 3, preserved and generated by

Ω†
e Qe Ωe = Qdiag

e with Ωe unitary
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Non-trivial breaking of Gf

• neutrino sector: Z2 × Z2 or ZM , M ≥ 3, preserved

ZT
i mν Zi = mν , i = 1, 2

or Z† m†
νmν Z = m†

νmν

• charged lepton sector: ZN , N ≥ 3, preserved

Q†
e m

†
eme Qe = m†

eme
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Non-trivial breaking of Gf

• neutrino sector: Z2 × Z2 or ZM , M ≥ 3, preserved

→ neutrino mass matrix mν fulfills

ΩT
ν mν Ων is diagonal

or Ω†
ν m

†
νmν Ων is diagonal

• charged lepton sector: ZN , N ≥ 3, preserved

→ charged lepton mass matrix me fulfills

Ω†
e m

†
eme Ωe is diagonal
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Non-trivial breaking of Gf

UPMNS = Ω†
eΩν

• 3 unphysical phases are removed by Ωe → ΩeKe

• neutrino masses are made real and positive through Ων → ΩνKν

• permutations of columns of Ωe, Ων are possible: Ωe,ν → Ωe,νPe,ν

⇓

Predictions:
Mixing angles up to exchange of rows/columns

JCP up to sign
Majorana phases undetermined
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Some examples

• tri-bimaximal (TB) mixing from S4 (Lam (’07,’08))

||UPMNS || =









2√
6

1√
3

0

1√
6

1√
3

1√
2

1√
6

1√
3

1√
2








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Some examples

• tri-bimaximal (TB) mixing from S4 (Lam (’07,’08))

• generators S, T and U of S4

S2 = 1 , T 3 = 1 , U2 = 1 ,

(ST )3 = 1 , (SU)2 = 1 , (TU)2 = 1 , (STU)4 = 1

– p. 17/65



Some examples

• tri-bimaximal (TB) mixing from S4 (Lam (’07,’08))

• generators S, T and U of S4

S2 = 1 , T 3 = 1 , U2 = 1 ,

(ST )3 = 1 , (SU)2 = 1 , (TU)2 = 1 , (STU)4 = 1

• subgroups Ge = Z3 and Gν = Z2 × Z2
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Some examples

• tri-bimaximal (TB) mixing from S4 (Lam (’07,’08))

• subgroups Ge = Z3 and Gν = Z2 × Z2

• subgroup Gν = Z2 × Z2 generated by Z1 = S and Z2 = U ,
diagonalized by Ων

Z1 =









−1 0 0

0 1 0

0 0 −1









, Z2 =









1 0 0

0 1 0

0 0 −1








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Some examples

• tri-bimaximal (TB) mixing from S4 (Lam (’07,’08))

• subgroups Ge = Z3 and Gν = Z2 × Z2

• subgroup Gν = Z2 × Z2 generated by Z1 = S and Z2 = U ,
diagonalized by Ων

Ων =









1 0 0

0 1 0

0 0 1








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Some examples

• tri-bimaximal (TB) mixing from S4 (Lam (’07,’08))

• subgroups Ge = Z3 and Gν = Z2 × Z2

• subgroup Gν = Z2 × Z2 generated by Z1 = S and Z2 = U ,
diagonalized by Ων

• subgroup Ge = Z3 generated by Qe = T , diagonalized by Ωe

Qe =
1

2









1
√
2 1

√
2 0 −

√
2

−1
√
2 −1








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Some examples

• tri-bimaximal (TB) mixing from S4 (Lam (’07,’08))

• subgroups Ge = Z3 and Gν = Z2 × Z2

• subgroup Gν = Z2 × Z2 generated by Z1 = S and Z2 = U ,
diagonalized by Ων

• subgroup Ge = Z3 generated by Qe = T , diagonalized by Ωe

Ωe =









√

2/3 −1/
√
6 −1/

√
6

1/
√
3 1/

√
3 1/

√
3

0 i/
√
2 −i/

√
2








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Some examples

• tri-bimaximal (TB) mixing from S4 (Lam (’07,’08))

• subgroups Ge = Z3 and Gν = Z2 × Z2

• subgroup Gν = Z2 × Z2 generated by Z1 = S and Z2 = U ,
diagonalized by Ων

• subgroup Ge = Z3 generated by Qe = T , diagonalized by Ωe

• PMNS mixing matrix

UPMNS = Ω†
eΩν =









√

2/3 1/
√
3 0

−1/
√
6 1/

√
3 −i/

√
2

−1/
√
6 1/

√
3 i/

√
2








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Some examples

• series ∆(6n2) of subgroups of SU(3) with faithful irred. 3-dim. reps.

• isomorphic to (Zn × Zn)⋊ S3; described with four generators

• generic form of mixing patterns for Majorana neutrinos

UPMNS = UTBR13(θ)

and θ depends on n (King et al. (’13)), i.e. mixing angles are of the form

sin
2 θ12 =

1

2 + cos 2θ
, sin

2 θ23 =
1

2

(

1−

√

3 sin 2θ

2 + cos 2θ

)

and sin
2 θ13 =

2

3
sin

2 θ

δ = 0 , π
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Some examples

• series ∆(6n2) of subgroups of SU(3) with faithful irred. 3-dim. reps.

• isomorphic to (Zn × Zn)⋊ S3; described with four generators

• generic form of mixing patterns for Majorana neutrinos

UPMNS = UTBR13(θ)

and θ depends on n (King et al. (’13))

• we conjectured (de Adelhart Toorop et al. (’11))

θ =
π

n
for Ge = Z3 , Gν = Z2 × Z2

θ =
π

3n
for Ge = Z3 , Gν = Z2 × Z2
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Some examples

• series ∆(6n2) of subgroups of SU(3) with faithful irred. 3-dim. reps.

• isomorphic to (Zn × Zn)⋊ S3; described with four generators

• generic form of mixing patterns for Majorana neutrinos

UPMNS = UTBR13(θ)

and θ depends on n (King et al. (’13))

• we conjectured (de Adelhart Toorop et al. (’11)) [for Dirac neutrinos]

θ =
π

2n
for Ge = Z3 , Gν = Z2n

θ =
π

6n
for Ge = Z3 , Gν = Z2n
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Variants of non-trivial breaking of Gf

Reduce residual symmetry in charged lepton or neutrino sector
(Ge et al. (’11), Hernandez/Smirnov (’12,’13), Lavoura/Ludl (’14))

Gf

ւ ց
neutrinos

Gν = Z2

charged leptons

Ge = ZN with N ≥ 3

⇓

• Gν cannot distinguish all three generations anymore

• only one column of PMNS mixing matrix is fixed;
rest depends on free parameter
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Origin of lepton mixing

• interpret this mismatch in lepton flavor space as
mismatch of residual symmetries Gν and Ge

• if we want to predict lepton mixing, we have to derive this
mismatch

• let us assume that there is a symmetry, broken to Gν and Ge

• this symmetry is in the following a combination of a

finite, discrete, non-abelian symmetry Gf and CP
(Feruglio et al. (’12,’13), Holthausen et al. (’12), Grimus/Rebelo (’95))

[Masses do not play a role in this approach.]
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Non-trivial breaking of Gf and CP

Idea:

Relate lepton mixing to how Gf and CP are broken
Interpretation as mismatch of embedding of different sub-
groups Gν and Ge into Gf and CP

Gf & CP

ւ ց
neutrinos

Gν

charged leptons

Ge
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Non-trivial breaking of Gf and CP

Idea:

Relate lepton mixing to how Gf and CP are broken
Interpretation as mismatch of embedding of different sub-
groups Gν and Ge into Gf and CP

Gf & CP

ւ ց
neutrinos

assume 3 generations

of Majorana neutrinos

charged leptons

distinguish 3 generations
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Non-trivial breaking of Gf and CP

Idea:

Relate lepton mixing to how Gf and CP are broken
Interpretation as mismatch of embedding of different sub-
groups Gν and Ge into Gf and CP

Gf & CP

ւ ց
neutrinos

Gν = Z2 × CP

charged leptons

Ge = ZN with N ≥ 3

An example: µτ reflection symmetry (Harrison/Scott (’02,’04), Grimus/Lavoura (’03))
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Non-trivial breaking of Gf and CP

Gf & CP

ւ ց
neutrinos

Gν = Z2 × CP

charged leptons

Ge = ZN with N ≥ 3

Further requirements

• two/three non-trivial mixing angles ⇒ irred 3-dim rep of Gf

• "maximize" predictability of approach

– p. 32/65



Non-trivial breaking of Gf and CP

Consistency conditions have to be fulfilled:

• definition of generalized CP transformation (see e.g. Branco et al. (’11))

φi
CP−→ Xijφ

⋆
j with XX† = XX⋆ = 1

• "closure" relations

(X⋆AX)⋆ = A′ with in general A 6= A′ and A, A′ ∈ Gf

• realize direct product of Z2 ⊂ Gf and CP ; Z generates Z2

XZ⋆ − ZX = 0
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Non-trivial breaking of Gf and CP

• neutrino sector: Z2 × CP preserved and generated by

X = ΩνΩ
T
ν and Z = ΩνZ

diagΩ†
ν

Zdiag = diag (−1, 1,−1) and Ων unitary

• charged lepton sector: ZN , N ≥ 3, preserved and generated by

Ω†
e Qe Ωe = Qdiag

e with Ωe unitary
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Non-trivial breaking of Gf and CP

• neutrino sector: Z2 × CP preserved

ZTmνZ = mν and XmνX = m⋆
ν

• charged lepton sector: ZN , N ≥ 3, preserved

Q†
e m

†
eme Qe = m†

eme
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Non-trivial breaking of Gf and CP

• neutrino sector: Z2 × CP preserved

→ neutrino mass matrix mν fulfills

Zdiag[ΩT
ν mνΩν ]Z

diag = [ΩT
ν mνΩν ] and [ΩT

ν mνΩν ] = [ΩT
ν mνΩν ]

⋆

• charged lepton sector: ZN , N ≥ 3, preserved

→ charged lepton mass matrix me fulfills

Ω†
e m

†
eme Ωe is diagonal

– p. 36/65



Non-trivial breaking of Gf and CP

• neutrino sector: Z2 × CP preserved

→ neutrino mass matrix mν is diagonalized by

Ων(X,Z)R(θ)Kν

• charged lepton sector: ZN , N ≥ 3, preserved

→ charged lepton mass matrix me fulfills

Ω†
e m

†
eme Ωe is diagonal
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Non-trivial breaking of Gf and CP

UPMNS = Ω†
eΩνR(θ)Kν

• 3 unphysical phases are removed by Ωe → ΩeKe

• UPMNS contains one parameter θ

• permutations of rows and columns of UPMNS possible

⇓

Predictions:
Mixing angles and CP phases are predicted

in terms of one parameter θ only,
up to permutations of rows/columns
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Some example: S4 and CP

Maximal θ23 and δ from Ge = Z3, Z = S and certain X

(Harrison/Scott (’02,’04), Grimus/Lavoura (’03), Feruglio et al. (’12,’13))

UPMNS =
1√
6









2 cos θ
√
2 2 sin θ

− cos θ + i
√
3 sin θ

√
2 − sin θ − i

√
3 cos θ

− cos θ − i
√
3 sin θ

√
2 − sin θ + i

√
3 cos θ









Kν

sin2 θ13 =
2

3
sin2 θ , sin2 θ12 =

1

2 + cos 2θ
, sin2 θ23 =

1

2

and

| sin δ| = 1 , |JCP | =
| sin 2θ|
6
√
3

, sinα = 0 , sinβ = 0
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Some example: S4 and CP

Maximal θ23 and δ from Ge = Z3, Z = S and certain X

!!""

##

!

!

!
sin

2
Θ12

sin Θ13

3Σ

3Σ

Θ # 0 Θbf

Θ # Π "4

Θ # Π "6

Θ # Π "3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
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Some example: S4 and CP

Maximal θ23 and δ from Ge = Z3, Z = S and certain X

!!

""

##

!!

!

JCP

sin
2
Θ12

3Σ

Θ # 0

Θbf

Θ # Π "4
Θ # Π "3

Θ # Π "6

Θ # Π "2

__

0.0 0.2 0.4 0.6 0.8 1.0
%0.10

%0.05

0.00

0.05

0.10
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Some example: S4 and CP

Maximal θ23 and δ from Ge = Z3, Z = S and certain X

!!

""

##

!!

""

!!

!

sin Θ13

JCP
3Σ

Θ # 0

Θbf

Θ # Π "4Θ # Π "6

Θ # Π "3

Θ # Π "2

__

0.0 0.2 0.4 0.6 0.8 1.0
%0.10

%0.05

0.00

0.05

0.10
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Some example: S4 and CP

Maximal θ23 and δ from Ge = Z3, Z = S and certain X

θbf ≈ 0.185 , χ2
min ≈ 18.4 for θ23 < π/4

sin2 θ13(θbf) ≈ 0.023 , sin2 θ12(θbf) ≈ 0.341 ,

|JCP (θbf)| ≈ 0.0348

– p. 43/65



Origin of lepton mixing

• interpret this mismatch in lepton flavor space as
mismatch of residual symmetries Gν and Ge

• if we want to predict lepton mixing, we have to derive this
mismatch

• let us assume that there is a symmetry, broken to Gν and Ge

• this symmetry is in the following a

finite, discrete, non-abelian symmetry Gf ⊂ U(3)

leading to mlightest = 0

(Joshipura/Patel (’13))
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Non-trivial breaking of Gf and mlightest = 0

Gf

ւ ց
Majorana neutrinos

Gν = Z2 × ZM with M ≥ 3

Gν = ZM with M ≥ 3 even

charged leptons

Ge = ZN with N ≥ 3

Further requirements

• Gν and Ge distinguish three generations

• ZM ⊂ Gν , M ≥ 3 forbids one of the three neutrino masses
crucial: ordering of neutrino masses is not arbitrary anymore!
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Some example

• inverted ordering and bi-maximal mixing from Gf = S4(2)

• Gf is isomorphic to A4 ⋊ Z4

• group "similar" to S4 also described with three generators

• take Ge = Z4 and Gν = Z4

Qe =









−i 0 0

0 0 −i

0 i 0









, Z̃ =









0 i 0

−i 0 0

0 0 −i








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Some example

• inverted ordering and bi-maximal mixing from Gf = S4(2)

• Gf is isomorphic to A4 ⋊ Z4

• group "similar" to S4 also described with three generators

• take Ge = Z4 and Gν = Z4

• Ωe is

Ωe =
1√
2









√
2 0 0

0 −i i

0 1 1








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Some example

• inverted ordering and bi-maximal mixing from Gf = S4(2)

• Gf is isomorphic to A4 ⋊ Z4

• group "similar" to S4 also described with three generators

• take Ge = Z4 and Gν = Z4

• Z̃ has eigenvalues -1, +1, −i and Ων is

Ων =
1√
2









−i i 0

1 1 0

0 0
√
2








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Some example

• inverted ordering and bi-maximal mixing from Gf = S4(2)

• Gf is isomorphic to A4 ⋊ Z4

• group "similar" to S4 also described with three generators

• take Ge = Z4 and Gν = Z4

• PMNS mixing matrix

UPMNS = Ω†
eΩν =

1

2









−
√
2 i

√
2 i 0

i i
√
2

−i −i
√
2








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Origin of lepton mixing

• interpret this mismatch in lepton flavor space as
mismatch of residual symmetries Gν and Ge

• if we want to predict lepton mixing, we have to derive this
mismatch

• let us assume that there is a symmetry, broken to Gν and Ge

• this symmetry is in the following the

continuous symmetry Gf = SU(3)L × SU(3)E ×O(3)N

(Cirigliano et al. (’05), Alonso et al.(’12), Alonso et al. (’13))
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Non-trivial breaking of continuous Gf

• Lagrangian relevant for lepton masses, assuming type I seesaw
mechanism

l̄ YE H ER + l̄ Yν H̃ NR +
1

2
N t

RMNR

• YE ∼ (3, 3̄, 1), Yν ∼ (3, 1, 3) under Gf

• M ∝ 1 leaves O(3)N invariant
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Non-trivial breaking of continuous Gf

• Lagrangian relevant for lepton masses, assuming type I seesaw
mechanism

l̄ YE H ER + l̄ Yν H̃ NR +
1

2
N t

RMNR

• study of potential shows ("natural solutions")

〈YE〉 ∝ diag (1, 1, 1)

or
〈YE〉 ∝ diag (0, 0, 1)

– p. 52/65



Non-trivial breaking of continuous Gf

• Lagrangian relevant for lepton masses, assuming type I seesaw
mechanism

l̄ YE H ER + l̄ Yν H̃ NR +
1

2
N t

RMNR

• study of potential shows ("natural solutions")

SU(3)L × SU(3)E
〈YE〉−→ SU(3)L+E

or

SU(3)L × SU(3)E
〈YE〉−→ SU(2)L × SU(2)E × U(1)L+E

"chiral" solution
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Non-trivial breaking of continuous Gf

• Lagrangian relevant for lepton masses, assuming type I seesaw
mechanism

l̄ YE H ER + l̄ Yν H̃ NR +
1

2
N t

RMNR

• study of potential shows ("natural solutions")

SU(3)L ×O(3)N
〈Yν〉−→ O(3)L+N

and

〈Yν〉 ∝
1√
2









√
2 0 0

0 1 −i

0 1 i








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Non-trivial breaking of continuous Gf

• Lagrangian relevant for lepton masses, assuming type I seesaw
mechanism

l̄ YE H ER + l̄ Yν H̃ NR +
1

2
N t

RMNR

• study of potential shows ("natural solutions")

SU(3)L ×O(3)N
〈Yν〉−→ O(3)L+N

and

mν ∝









1 0 0

0 0 1

0 1 0








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Non-trivial breaking of continuous Gf

• Lagrangian relevant for lepton masses, assuming type I seesaw
mechanism

l̄ YE H ER + l̄ Yν H̃ NR +
1

2
N t

RMNR

• study of potential shows ("natural solutions")

SU(3)L × SU(3)E
〈YE〉−→ SU(2)L × SU(2)E × U(1)L+E

SU(3)L ×O(3)N
〈Yν〉−→ O(3)L+N

• residual symmetry is non-trivial

SU(3)L × SU(3)E ×O(3)N
〈YE〉,〈Yν〉−→ SU(2)E × U(1)L+N
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Non-trivial breaking of continuous Gf

• results
• heavy tau lepton
• three degenerate light neutrinos → large 0νββ signal
• maximal mixing θ23 = π/4, θ13 = 0, θ12 free
• maximal Majorana phase

– p. 57/65



Non-trivial breaking of continuous Gf

• results
• heavy tau lepton
• three degenerate light neutrinos → large 0νββ signal
• maximal mixing θ23 = π/4, θ13 = 0, θ12 free
• maximal Majorana phase

• challenge: break the residual symmetry in controlled way in
order to generate electron and muon mass, ∆m2

atm, ∆m2
sol, θ13

small

• heuristic: perturbations (Alonso et al. (’13))

• probably additional spurions necessary
(see quark sector (Espinosa et al. (’12), Fong/Nardi (’13)))
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Comments on models

In explicit models several challenges have to be tackled

• separation of symmetry breaking sectors and higher-order cor-
rections from violation of this separation
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• non-canonical kinetic terms

– p. 61/65



Comments on models

In explicit models several challenges have to be tackled

• separation of symmetry breaking sectors and higher-order
corrections from violation of this separation

• construction of potential ("natural solutions"), stability under
higher-order corrections (if Gf is spontaneously broken)

• non-canonical kinetic terms

• corrections from RG running

– p. 62/65



Comments on models

In explicit models several challenges have to be tackled

• separation of symmetry breaking sectors and higher-order
corrections from violation of this separation

• construction of potential ("natural solutions"), stability under
higher-order corrections (if Gf is spontaneously broken)

• non-canonical kinetic terms

• corrections from RG running

• after all, additional predictions can be possible in concrete mod-
els
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Conclusions

• until now no "standard" theory for fermion masses and
mixing, especially in the lepton sector

• flavor symmetries might be the key
• finite, discrete, non-abelian Gf

• Gf and CP
• Gf ⊂ U(3) and mlightest = 0

• Gf = SU(3)L × SU(3)E ×O(3)N
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Outlook

• complete study of finite, discrete SU(3) and U(3) subgroups

• more examples and models with Gf and CP

• more on Dirac neutrinos?

• quarks and leptons described with same Gf?

• sterile neutrinos?

Thank you for your attention.
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