Model Building for Lepton Mixing and Neutrino Masses

C. Hagedorn

EC 'Universe', TUM, Germany

Frontiers in Particle Physics: From Dark Matter to the LHC and Beyond, 18.01. - 24.01.2014, Aspen, USA

Outline

- introduction: lepton mixing
- origin of mixing
- different approaches
- finite, discrete, non-abelian symmetry G_{f}
- G_{f} and CP
- G_{f} and $m_{\text {lightest }}=0$
- $G_{f}=S U(3)_{L} \times S U(3)_{E} \times O(3)_{N}$
- comments on models
- conclusions \& outlook

Parametrization of lepton mixing

Parametrization (PDG)

$$
U_{P M N S}=\tilde{U} \operatorname{diag}\left(1, e^{i \alpha / 2}, e^{i(\beta / 2+\delta)}\right)
$$

with

$$
\tilde{U}=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right)
$$

and $s_{i j}=\sin \theta_{i j}, c_{i j}=\cos \theta_{i j}$
Jarlskog invariant $J_{C P}$

$$
\begin{aligned}
J_{C P} & =\operatorname{Im}\left[U_{P M N S, 11} U_{P M N S, 13}^{*} U_{P M N S, 31}^{*} U_{P M N S, 33}\right] \\
& =\frac{1}{8} \sin 2 \theta_{12} \sin 2 \theta_{23} \sin 2 \theta_{13} \cos \theta_{13} \sin \delta
\end{aligned}
$$

Experimental results on lepton mixing

Lepton mixing parameters as of end 2013 (Capozzi et al. (1"13))

Experimental results on lepton mixing

Lepton mixing parameters as of end 2013 (Capozzi et al. ("13))

Experimental results on lepton mixing

Latest global fits $\mathrm{NH}[\mathrm{IH}] \quad$ (Capozzietal. ('13))

$$
\left.\left.\begin{array}{c}
\text { best fit and } 1 \sigma \text { error } \\
3 \sigma \text { range } \\
\sin ^{2} \theta_{13}=0.0234[9]_{-0.0018[21]}^{+0.0022[1]} \\
\sin ^{2} \theta_{12}=0.308_{-0.017}^{+0.017}
\end{array}\right) 0.0 .259 \leq \sin ^{2} \theta_{12} \leq 0.359\right][8] \leq \sin ^{2} \theta_{13} \leq 0.0297[300] ~\left\{\begin{array}{cl}
\sin ^{2} \theta_{23}=\left\{\begin{array}{cl}
0.425[37]_{-0.027[9]}^{+0.029[59]} & 0.357[63] \leq \sin ^{2} \theta_{23} \leq 0.641[59] \\
{\left[0.531 \leq \sin ^{2} \theta_{23} \leq 0.610\right]}
\end{array}\right. \\
\delta=1.39[5] \pi_{-0.27[39] \pi}^{+0.33[24]} & 0 \leq \delta \leq 2 \pi \\
\alpha, \beta & \text { unconstrained }
\end{array}\right.
$$

Experimental results on lepton mixing

Latest global fits $\mathrm{NH}[\mathrm{IH}] \quad$ (Capozzi et al. ('13))

$$
\left\|U_{P M N S}\right\| \approx\left(\begin{array}{ccc}
0.82 & 0.55 & 0.15 \\
0.40[39] & 0.65 & 0.64[5] \\
0.40[2] & 0.52 & 0.75[4]
\end{array}\right)
$$

and no information on Majorana phases
\Downarrow
Mismatch in lepton flavor space is large!

Origin of lepton mixing

- interpret this mismatch in lepton flavor space as mismatch of residual symmetries G_{ν} and G_{e}
- if we want to predict lepton mixing, we have to derive this mismatch
- let us assume that there is a symmetry, broken to G_{ν} and G_{e}
- this symmetry is in the following a
finite, discrete, non-abelian symmetry G_{f}
(Blum et al. ('07), Lam ('07,'08), de Adelhart Toorop et al. ('11))
[Masses do not play a role in this approach.]

Non-trivial breaking of \boldsymbol{G}_{f}

Idea:

Derivation of the lepton mixing from how G_{f} is broken Interpretation as mismatch of embedding of different subgroups G_{ν} and G_{e} into G_{f}

Non-trivial breaking of \boldsymbol{G}_{f}

Idea:

Derivation of the lepton mixing from how G_{f} is broken Interpretation as mismatch of embedding of different subgroups G_{ν} and G_{e} into G_{f}

$$
G_{f}
$$

neutrinos

$$
\begin{aligned}
& G_{\nu}=Z_{2} \times Z_{2} \text { (Majorana) } \\
& G_{\nu}=Z_{M} \quad \text { with } \quad M \geq 3 \text { (Dirac) }
\end{aligned}
$$

charged leptons
$G_{e}=Z_{N}$ with $\quad N \geq 3$

Non-trivial breaking of $\boldsymbol{G}_{\boldsymbol{f}}$

$$
G_{f}
$$

neutrinos

$$
\begin{aligned}
& G_{\nu}=Z_{2} \times Z_{2} \text { (Majorana) } \\
& G_{\nu}=Z_{M} \quad \text { with } \quad M \geq 3 \text { (Dirac) }
\end{aligned}
$$

charged leptons

$$
G_{e}=Z_{N} \quad \text { with } \quad N \geq 3
$$

Further requirements

- two/three non-trivial angles \Rightarrow irred. 3-dim. rep. of G_{f}
- fix angles through $G_{\nu}, G_{e} \Rightarrow 3$ families transform diff. under G_{ν}, G_{e}

Non-trivial breaking of $\boldsymbol{G}_{\boldsymbol{f}}$

- neutrino sector: $Z_{2} \times Z_{2}$ or $Z_{M}, M \geq 3$, preserved and generated by

$$
\begin{array}{ll}
& \Omega_{\nu}^{\dagger} Z_{i} \Omega_{\nu}=Z_{i}^{\text {diag }}, \quad i=1,2 \\
\text { or } & \Omega_{\nu}^{\dagger} Z \Omega_{\nu}=Z^{\text {diag }} \text { with } \Omega_{\nu} \text { unitary }
\end{array}
$$

- charged lepton sector: $Z_{N}, N \geq 3$, preserved and generated by

$$
\Omega_{e}^{\dagger} Q_{e} \Omega_{e}=Q_{e}^{\text {diag }} \text { with } \Omega_{e} \text { unitary }
$$

Non-trivial breaking of $\boldsymbol{G}_{\boldsymbol{f}}$

- neutrino sector: $Z_{2} \times Z_{2}$ or $Z_{M}, M \geq 3$, preserved

$$
\begin{array}{ll}
& Z_{i}^{T} m_{\nu} Z_{i}=m_{\nu}, \quad i=1,2 \\
\text { or } \quad & Z^{\dagger} m_{\nu}^{\dagger} m_{\nu} Z=m_{\nu}^{\dagger} m_{\nu}
\end{array}
$$

- charged lepton sector: $Z_{N}, N \geq 3$, preserved

$$
Q_{e}^{\dagger} m_{e}^{\dagger} m_{e} Q_{e}=m_{e}^{\dagger} m_{e}
$$

Non-trivial breaking of \boldsymbol{G}_{f}

- neutrino sector: $Z_{2} \times Z_{2}$ or $Z_{M}, M \geq 3$, preserved
\rightarrow neutrino mass matrix m_{ν} fulfills
$\Omega_{\nu}^{T} m_{\nu} \Omega_{\nu}$ is diagonal
or $\quad \Omega_{\nu}^{\dagger} m_{\nu}^{\dagger} m_{\nu} \Omega_{\nu}$ is diagonal
- charged lepton sector: $Z_{N}, N \geq 3$, preserved
\rightarrow charged lepton mass matrix m_{e} fulfills

$$
\Omega_{e}^{\dagger} m_{e}^{\dagger} m_{e} \Omega_{e} \text { is diagonal }
$$

Non-trivial breaking of \boldsymbol{G}_{f}

$$
U_{P M N S}=\Omega_{e}^{\dagger} \Omega_{\nu}
$$

- 3 unphysical phases are removed by $\Omega_{e} \rightarrow \Omega_{e} K_{e}$
- neutrino masses are made real and positive through $\Omega_{\nu} \rightarrow \Omega_{\nu} K_{\nu}$
- permutations of columns of Ω_{e}, Ω_{ν} are possible: $\Omega_{e, \nu} \rightarrow \Omega_{e, \nu} P_{e, \nu}$

Predictions:

Mixing angles up to exchange of rows/columns
$J_{C P}$ up to sign
Majorana phases undetermined

Some examples

- tri-bimaximal (TB) mixing from $S_{4} \quad$ (Lam ('07;'08))

$$
\left\|U_{P M N S}\right\|=\left(\begin{array}{ccc}
\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

Some examples

- tri-bimaximal (TB) mixing from $S_{4} \quad$ (Lam ('07,'08))
- generators S, T and U of S_{4}

$$
\begin{aligned}
& S^{2}=1, \quad T^{3}=1, \quad U^{2}=1 \\
& (S T)^{3}=1, \quad(S U)^{2}=1, \quad(T U)^{2}=1, \quad(S T U)^{4}=1
\end{aligned}
$$

Some examples

- tri-bimaximal (TB) mixing from $S_{4} \quad$ (Lam ('07;'08))
- generators S, T and U of S_{4}

$$
\begin{aligned}
& S^{2}=1, \quad T^{3}=1, \quad U^{2}=1 \\
& (S T)^{3}=1, \quad(S U)^{2}=1, \quad(T U)^{2}=1, \quad(S T U)^{4}=1
\end{aligned}
$$

- subgroups $G_{e}=Z_{3}$ and $G_{\nu}=Z_{2} \times Z_{2}$

Some examples

- tri-bimaximal (TB) mixing from $S_{4} \quad$ (Lam ('07;'08))
- subgroups $G_{e}=Z_{3}$ and $G_{\nu}=Z_{2} \times Z_{2}$
- subgroup $G_{\nu}=Z_{2} \times Z_{2}$ generated by $Z_{1}=S$ and $Z_{2}=U$, diagonalized by Ω_{ν}

$$
Z_{1}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right) \quad, \quad Z_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Some examples

- tri-bimaximal (TB) mixing from $S_{4} \quad$ (Lam ('07;'08))
- subgroups $G_{e}=Z_{3}$ and $G_{\nu}=Z_{2} \times Z_{2}$
- subgroup $G_{\nu}=Z_{2} \times Z_{2}$ generated by $Z_{1}=S$ and $Z_{2}=U$, diagonalized by Ω_{ν}

$$
\Omega_{\nu}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Some examples

- tri-bimaximal (TB) mixing from $S_{4} \quad$ (Lam ('07;'08))
- subgroups $G_{e}=Z_{3}$ and $G_{\nu}=Z_{2} \times Z_{2}$
- subgroup $G_{\nu}=Z_{2} \times Z_{2}$ generated by $Z_{1}=S$ and $Z_{2}=U$, diagonalized by Ω_{ν}
- subgroup $G_{e}=Z_{3}$ generated by $Q_{e}=T$, diagonalized by Ω_{e}

$$
Q_{e}=\frac{1}{2}\left(\begin{array}{ccc}
1 & \sqrt{2} & 1 \\
\sqrt{2} & 0 & -\sqrt{2} \\
-1 & \sqrt{2} & -1
\end{array}\right)
$$

Some examples

- tri-bimaximal (TB) mixing from $S_{4} \quad$ (Lam ('07;'08))
- subgroups $G_{e}=Z_{3}$ and $G_{\nu}=Z_{2} \times Z_{2}$
- subgroup $G_{\nu}=Z_{2} \times Z_{2}$ generated by $Z_{1}=S$ and $Z_{2}=U$, diagonalized by Ω_{ν}
- subgroup $G_{e}=Z_{3}$ generated by $Q_{e}=T$, diagonalized by Ω_{e}

$$
\Omega_{e}=\left(\begin{array}{ccc}
\sqrt{2 / 3} & -1 / \sqrt{6} & -1 / \sqrt{6} \\
1 / \sqrt{3} & 1 / \sqrt{3} & 1 / \sqrt{3} \\
0 & i / \sqrt{2} & -i / \sqrt{2}
\end{array}\right)
$$

Some examples

- tri-bimaximal (TB) mixing from $S_{4} \quad$ (Lam ('07;'08))
- subgroups $G_{e}=Z_{3}$ and $G_{\nu}=Z_{2} \times Z_{2}$
- subgroup $G_{\nu}=Z_{2} \times Z_{2}$ generated by $Z_{1}=S$ and $Z_{2}=U$, diagonalized by Ω_{ν}
- subgroup $G_{e}=Z_{3}$ generated by $Q_{e}=T$, diagonalized by Ω_{e}
- PMNS mixing matrix

$$
U_{P M N S}=\Omega_{e}^{\dagger} \Omega_{\nu}=\left(\begin{array}{ccc}
\sqrt{2 / 3} & 1 / \sqrt{3} & 0 \\
-1 / \sqrt{6} & 1 / \sqrt{3} & -i / \sqrt{2} \\
-1 / \sqrt{6} & 1 / \sqrt{3} & i / \sqrt{2}
\end{array}\right)
$$

Some examples

- series $\Delta\left(6 n^{2}\right)$ of subgroups of $S U(3)$ with faithful irred. 3-dim. reps.
- isomorphic to $\left(Z_{n} \times Z_{n}\right) \rtimes S_{3}$; described with four generators
- generic form of mixing patterns for Majorana neutrinos

$$
U_{P M N S}=U_{T B} R_{13}(\theta)
$$

and θ depends on n (King et al. ('13)), i.e. mixing angles are of the form

$$
\begin{gathered}
\sin ^{2} \theta_{12}=\frac{1}{2+\cos 2 \theta}, \sin ^{2} \theta_{23}=\frac{1}{2}\left(1-\frac{\sqrt{3} \sin 2 \theta}{2+\cos 2 \theta}\right) \text { and } \sin ^{2} \theta_{13}=\frac{2}{3} \sin ^{2} \theta \\
\delta=0, \pi
\end{gathered}
$$

Some examples

- series $\Delta\left(6 n^{2}\right)$ of subgroups of $S U(3)$ with faithful irred. 3-dim. reps.
- isomorphic to $\left(Z_{n} \times Z_{n}\right) \rtimes S_{3}$; described with four generators
- generic form of mixing patterns for Majorana neutrinos

$$
U_{P M N S}=U_{T B} R_{13}(\theta)
$$

and θ depends on n (King et al. ('13))

- we conjectured (de Adelhart Toorop et al. ('11))

$$
\begin{aligned}
& \theta=\frac{\pi}{n} \text { for } G_{e}=Z_{3}, G_{\nu}=Z_{2} \times Z_{2} \\
& \theta=\frac{\pi}{3 n} \text { for } G_{e}=Z_{3}, G_{\nu}=Z_{2} \times Z_{2}
\end{aligned}
$$

Some examples

- series $\Delta\left(6 n^{2}\right)$ of subgroups of $S U(3)$ with faithful irred. 3-dim. reps.
- isomorphic to $\left(Z_{n} \times Z_{n}\right) \rtimes S_{3}$; described with four generators
- generic form of mixing patterns for Majorana neutrinos

$$
U_{P M N S}=U_{T B} R_{13}(\theta)
$$

and θ depends on n (King et al. ('13))

- we conjectured (de Adelhart Toorop et al. ('11)) [for Dirac neutrinos]

$$
\begin{aligned}
& \theta=\frac{\pi}{2 n} \text { for } G_{e}=Z_{3}, G_{\nu}=Z_{2 n} \\
& \theta=\frac{\pi}{6 n} \text { for } G_{e}=Z_{3}, G_{\nu}=Z_{2 n}
\end{aligned}
$$

Variants of non-trivial breaking of $\boldsymbol{G}_{\boldsymbol{f}}$

Reduce residual symmetry in charged lepton or neutrino sector (Ge et al. ('11), Hernandez/Smirnov ('12,'13), Lavoura/Ludl ('14))

$$
G_{f}
$$

neutrinos

$$
G_{\nu}=Z_{2}
$$

$$
G_{e}=Z_{N} \quad \text { with } \quad N \geq 3
$$

$$
\Downarrow
$$

- G_{ν} cannot distinguish all three generations anymore
- only one column of PMNS mixing matrix is fixed; rest depends on free parameter

Origin of lepton mixing

- interpret this mismatch in lepton flavor space as mismatch of residual symmetries G_{ν} and G_{e}
- if we want to predict lepton mixing, we have to derive this mismatch
- let us assume that there is a symmetry, broken to G_{ν} and G_{e}
- this symmetry is in the following a combination of a
finite, discrete, non-abelian symmetry G_{f} and CP
(Feruglio et al. ('12,'13), Holthausen et al. ('12), Grimus/Rebelo ('95))
[Masses do not play a role in this approach.]

Non-trivial breaking of \boldsymbol{G}_{f} and $\boldsymbol{C P}$

Idea:
Relate lepton mixing to how G_{f} and $C P$ are broken Interpretation as mismatch of embedding of different subgroups G_{ν} and G_{e} into G_{f} and $C P$

neutrinos
G_{ν}
charged leptons
G_{e}

Non-trivial breaking of \boldsymbol{G}_{f} and $\boldsymbol{C P}$

Idea:
Relate lepton mixing to how G_{f} and $C P$ are broken Interpretation as mismatch of embedding of different subgroups G_{ν} and G_{e} into G_{f} and $C P$

$$
G_{f} \& \mathrm{CP}
$$

neutrinos
assume 3 generations
of Majorana neutrinos
charged leptons
distinguish 3 generations

Non-trivial breaking of \boldsymbol{G}_{f} and $\boldsymbol{C P}$

Idea:
Relate lepton mixing to how G_{f} and $C P$ are broken Interpretation as mismatch of embedding of different subgroups G_{ν} and G_{e} into G_{f} and $C P$

$$
G_{f} \& \mathrm{CP}
$$

neutrinos

$$
G_{\nu}=Z_{2} \times \mathrm{CP}
$$

charged leptons

$$
G_{e}=Z_{N} \quad \text { with } \quad N \geq 3
$$

An example: $\mu \tau$ reflection symmetry (Harrison/Scott ('02;'04), Grimus/Lavoura ('O3))

Non-trivial breaking of \boldsymbol{G}_{f} and $\boldsymbol{C P}$

Further requirements

- two/three non-trivial mixing angles \Rightarrow irred 3-dim rep of G_{f}
- "maximize" predictability of approach

Non-trivial breaking of \boldsymbol{G}_{f} and $\boldsymbol{C P}$

Consistency conditions have to be fulfilled:

- definition of generalized CP transformation (see e.g. Branco et al. ('111)

$$
\phi_{i} \xrightarrow{\mathrm{CP}} X_{i j} \phi_{j}^{\star} \text { with } X X^{\dagger}=X X^{\star}=\mathbb{1}
$$

- "closure" relations

$$
\left(X^{\star} A X\right)^{\star}=A^{\prime} \quad \text { with in general } \quad A \neq A^{\prime} \quad \text { and } \quad A, A^{\prime} \in G_{f}
$$

- realize direct product of $Z_{2} \subset G_{f}$ and $C P ; Z$ generates Z_{2}

$$
X Z^{\star}-Z X=0
$$

Non-trivial breaking of \boldsymbol{G}_{f} and $\boldsymbol{C P}$

- neutrino sector: $Z_{2} \times \mathrm{CP}$ preserved and generated by

$$
\begin{aligned}
& X=\Omega_{\nu} \Omega_{\nu}^{T} \text { and } Z=\Omega_{\nu} Z^{\text {diag }} \Omega_{\nu}^{\dagger} \\
& Z^{\text {diag }}=\operatorname{diag}(-1,1,-1) \text { and } \Omega_{\nu} \text { unitary }
\end{aligned}
$$

- charged lepton sector: $Z_{N}, N \geq 3$, preserved and generated by

$$
\Omega_{e}^{\dagger} Q_{e} \Omega_{e}=Q_{e}^{\text {diag }} \text { with } \Omega_{e} \text { unitary }
$$

Non-trivial breaking of \boldsymbol{G}_{f} and $\boldsymbol{C P}$

- neutrino sector: $Z_{2} \times \mathrm{CP}$ preserved

$$
Z^{T} m_{\nu} Z=m_{\nu} \quad \text { and } \quad X m_{\nu} X=m_{\nu}^{\star}
$$

- charged lepton sector: $Z_{N}, N \geq 3$, preserved

$$
Q_{e}^{\dagger} m_{e}^{\dagger} m_{e} Q_{e}=m_{e}^{\dagger} m_{e}
$$

Non-trivial breaking of \boldsymbol{G}_{f} and $\boldsymbol{C P}$

- neutrino sector: $Z_{2} \times \mathrm{CP}$ preserved
\rightarrow neutrino mass matrix m_{ν} fulfills

$$
Z^{\text {diag }}\left[\Omega_{\nu}^{T} m_{\nu} \Omega_{\nu}\right] Z^{\text {diag }}=\left[\Omega_{\nu}^{T} m_{\nu} \Omega_{\nu}\right] \quad \text { and }\left[\Omega_{\nu}^{T} m_{\nu} \Omega_{\nu}\right]=\left[\Omega_{\nu}^{T} m_{\nu} \Omega_{\nu}\right]^{\star}
$$

- charged lepton sector: $Z_{N}, N \geq 3$, preserved
\rightarrow charged lepton mass matrix m_{e} fulfills

$$
\Omega_{e}^{\dagger} m_{e}^{\dagger} m_{e} \Omega_{e} \text { is diagonal }
$$

Non-trivial breaking of \boldsymbol{G}_{f} and $\boldsymbol{C P}$

- neutrino sector: $Z_{2} \times \mathrm{CP}$ preserved
\rightarrow neutrino mass matrix m_{ν} is diagonalized by

$$
\Omega_{\nu}(X, Z) R(\theta) K_{\nu}
$$

- charged lepton sector: $Z_{N}, N \geq 3$, preserved
\rightarrow charged lepton mass matrix m_{e} fulfills

$$
\Omega_{e}^{\dagger} m_{e}^{\dagger} m_{e} \Omega_{e} \text { is diagonal }
$$

Non-trivial breaking of \boldsymbol{G}_{f} and $\boldsymbol{C P}$

$$
U_{P M N S}=\Omega_{e}^{\dagger} \Omega_{\nu} R(\theta) K_{\nu}
$$

- 3 unphysical phases are removed by $\Omega_{e} \rightarrow \Omega_{e} K_{e}$
- $U_{P M N S}$ contains one parameter θ
- permutations of rows and columns of $U_{P M N S}$ possible

Predictions:

Mixing angles and CP phases are predicted in terms of one parameter θ only, up to permutations of rows/columns

Some example: \boldsymbol{S}_{4} and $\boldsymbol{C P}$

Maximal θ_{23} and δ from $G_{e}=Z_{3}, Z=S$ and certain X
(Harrison/Scott ('02,'04), Grimus/Lavoura ('03), Feruglio et al. ('12,'13))

$$
\begin{gathered}
U_{P M N S}=\frac{1}{\sqrt{6}}\left(\begin{array}{ccc}
2 \cos \theta & \sqrt{2} & 2 \sin \theta \\
-\cos \theta+i \sqrt{3} \sin \theta & \sqrt{2} & -\sin \theta-i \sqrt{3} \cos \theta \\
-\cos \theta-i \sqrt{3} \sin \theta & \sqrt{2} & -\sin \theta+i \sqrt{3} \cos \theta
\end{array}\right) K_{\nu} \\
\sin ^{2} \theta_{13}=\frac{2}{3} \sin ^{2} \theta, \quad \sin ^{2} \theta_{12}=\frac{1}{2+\cos 2 \theta}, \quad \sin ^{2} \theta_{23}=\frac{1}{2} \\
\text { and } \\
|\sin \delta|=1, \quad\left|J_{C P}\right|=\frac{|\sin 2 \theta|}{6 \sqrt{3}}, \quad \sin \alpha=0, \quad \sin \beta=0
\end{gathered}
$$

Some example: \boldsymbol{S}_{4} and $\boldsymbol{C P}$

Maximal θ_{23} and δ from $G_{e}=Z_{3}, Z=S$ and certain X

Some example: \boldsymbol{S}_{4} and $\boldsymbol{C P}$

Maximal θ_{23} and δ from $G_{e}=Z_{3}, Z=S$ and certain X

Some example: \boldsymbol{S}_{4} and $\boldsymbol{C P}$

Maximal θ_{23} and δ from $G_{e}=Z_{3}, Z=S$ and certain X

Some example: \boldsymbol{S}_{4} and $\boldsymbol{C P}$

Maximal θ_{23} and δ from $G_{e}=Z_{3}, Z=S$ and certain X

$$
\begin{aligned}
& \theta_{\mathrm{bf}} \approx 0.185, \quad \chi_{\min }^{2} \approx 18.4 \text { for } \theta_{23}<\pi / 4 \\
& \sin ^{2} \theta_{13}\left(\theta_{\mathrm{bf}}\right) \approx 0.023, \quad \sin ^{2} \theta_{12}\left(\theta_{\mathrm{bf}}\right) \approx 0.341, \\
& \left|J_{C P}\left(\theta_{\mathrm{bf}}\right)\right| \approx 0.0348
\end{aligned}
$$

Origin of lepton mixing

- interpret this mismatch in lepton flavor space as mismatch of residual symmetries G_{ν} and G_{e}
- if we want to predict lepton mixing, we have to derive this mismatch
- let us assume that there is a symmetry, broken to G_{ν} and G_{e}
- this symmetry is in the following a
finite, discrete, non-abelian symmetry $G_{f} \subset U(3)$
leading to $m_{\text {lightest }}=0$
(Joshipura/Patel ('13))

Non-trivial breaking of \boldsymbol{G}_{f} and $\boldsymbol{m}_{\text {lightest }}=\mathbf{0}$

$$
G_{f}
$$

Majorana neutrinos
$G_{\nu}=Z_{2} \times Z_{M}$ with $M \geq 3$
$G_{\nu}=Z_{M}$ with $M \geq 3$ even
charged leptons

$$
G_{e}=Z_{N} \quad \text { with } \quad N \geq 3
$$

Further requirements

- G_{ν} and G_{e} distinguish three generations
- $Z_{M} \subset G_{\nu}, M \geq 3$ forbids one of the three neutrino masses crucial: ordering of neutrino masses is not arbitrary anymore!

Some example

- inverted ordering and bi-maximal mixing from $G_{f}=S_{4}(2)$
- G_{f} is isomorphic to $A_{4} \rtimes Z_{4}$
- group "similar" to S_{4} also described with three generators
- take $G_{e}=Z_{4}$ and $G_{\nu}=Z_{4}$

$$
Q_{e}=\left(\begin{array}{ccc}
-i & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right) \quad, \quad \tilde{Z}=\left(\begin{array}{ccc}
0 & i & 0 \\
-i & 0 & 0 \\
0 & 0 & -i
\end{array}\right)
$$

Some example

- inverted ordering and bi-maximal mixing from $G_{f}=S_{4}(2)$
- G_{f} is isomorphic to $A_{4} \rtimes Z_{4}$
- group "similar" to S_{4} also described with three generators
- take $G_{e}=Z_{4}$ and $G_{\nu}=Z_{4}$
- Ω_{e} is

$$
\Omega_{e}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
\sqrt{2} & 0 & 0 \\
0 & -i & i \\
0 & 1 & 1
\end{array}\right)
$$

Some example

- inverted ordering and bi-maximal mixing from $G_{f}=S_{4}(2)$
- G_{f} is isomorphic to $A_{4} \rtimes Z_{4}$
- group "similar" to S_{4} also described with three generators
- take $G_{e}=Z_{4}$ and $G_{\nu}=Z_{4}$
- \tilde{Z} has eigenvalues $-1,+1,-i$ and Ω_{ν} is

$$
\Omega_{\nu}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
-i & i & 0 \\
1 & 1 & 0 \\
0 & 0 & \sqrt{2}
\end{array}\right)
$$

Some example

- inverted ordering and bi-maximal mixing from $G_{f}=S_{4}(2)$
- G_{f} is isomorphic to $A_{4} \rtimes Z_{4}$
- group "similar" to S_{4} also described with three generators
- take $G_{e}=Z_{4}$ and $G_{\nu}=Z_{4}$
- PMNS mixing matrix

$$
U_{P M N S}=\Omega_{e}^{\dagger} \Omega_{\nu}=\frac{1}{2}\left(\begin{array}{ccc}
-\sqrt{2} i & \sqrt{2} i & 0 \\
i & i & \sqrt{2} \\
-i & -i & \sqrt{2}
\end{array}\right)
$$

Origin of lepton mixing

- interpret this mismatch in lepton flavor space as mismatch of residual symmetries G_{ν} and G_{e}
- if we want to predict lepton mixing, we have to derive this mismatch
- let us assume that there is a symmetry, broken to G_{ν} and G_{e}
- this symmetry is in the following the
continuous symmetry $G_{f}=S U(3)_{L} \times S U(3)_{E} \times O(3)_{N}$ (Cirigliano et al. ('05), Alonso et al.('12), Alonso et al. ('13))

Non-trivial breaking of continuous \boldsymbol{G}_{f}

- Lagrangian relevant for lepton masses, assuming type I seesaw mechanism

$$
\bar{l} Y_{E} H E_{R}+\bar{l} Y_{\nu} \tilde{H} N_{R}+\frac{1}{2} N_{R}^{t} M N_{R}
$$

- $Y_{E} \sim(3, \overline{3}, 1), Y_{\nu} \sim(3,1,3)$ under G_{f}
- $M \propto \mathbb{1}$ leaves $O(3)_{N}$ invariant

Non-trivial breaking of continuous \boldsymbol{G}_{f}

- Lagrangian relevant for lepton masses, assuming type I seesaw mechanism

$$
\bar{l} Y_{E} H E_{R}+\bar{l} Y_{\nu} \tilde{H} N_{R}+\frac{1}{2} N_{R}^{t} M N_{R}
$$

- study of potential shows ("natural solutions")

$$
\left\langle Y_{E}\right\rangle \propto \operatorname{diag}(1,1,1)
$$

or

$$
\left\langle Y_{E}\right\rangle \propto \operatorname{diag}(0,0,1)
$$

Non-trivial breaking of continuous \boldsymbol{G}_{f}

- Lagrangian relevant for lepton masses, assuming type I seesaw mechanism

$$
\bar{l} Y_{E} H E_{R}+\bar{l} Y_{\nu} \tilde{H} N_{R}+\frac{1}{2} N_{R}^{t} M N_{R}
$$

- study of potential shows ("natural solutions")

$$
S U(3)_{L} \times S U(3)_{E} \quad \xrightarrow{\left\langle Y_{E}\right\rangle} \quad S U(3)_{L+E}
$$

or

$$
\begin{array}{ll}
S U(3)_{L} \times S U(3)_{E} \quad \xrightarrow{\left\langle Y_{E}\right\rangle} \quad & S U(2)_{L} \times S U(2)_{E} \times U(1)_{L+E} \\
\text { "chiral" solution }
\end{array}
$$

Non-trivial breaking of continuous \boldsymbol{G}_{f}

- Lagrangian relevant for lepton masses, assuming type I seesaw mechanism

$$
\bar{l} Y_{E} H E_{R}+\bar{l} Y_{\nu} \tilde{H} N_{R}+\frac{1}{2} N_{R}^{t} M N_{R}
$$

- study of potential shows ("natural solutions")

$$
S U(3)_{L} \times O(3)_{N} \quad \xrightarrow{\left\langle Y_{\nu}\right\rangle} \quad O(3)_{L+N}
$$

and

$$
\left\langle Y_{\nu}\right\rangle \propto \frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
\sqrt{2} & 0 & 0 \\
0 & 1 & -i \\
0 & 1 & i
\end{array}\right)
$$

Non-trivial breaking of continuous \boldsymbol{G}_{f}

- Lagrangian relevant for lepton masses, assuming type I seesaw mechanism

$$
\bar{l} Y_{E} H E_{R}+\bar{l} Y_{\nu} \tilde{H} N_{R}+\frac{1}{2} N_{R}^{t} M N_{R}
$$

- study of potential shows ("natural solutions")

$$
S U(3)_{L} \times O(3)_{N} \quad \xrightarrow{\left\langle Y_{\nu}\right\rangle} \quad O(3)_{L+N}
$$

and

$$
m_{\nu} \propto\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

Non-trivial breaking of continuous \boldsymbol{G}_{f}

- Lagrangian relevant for lepton masses, assuming type I seesaw mechanism

$$
\bar{l} Y_{E} H E_{R}+\bar{l} Y_{\nu} \tilde{H} N_{R}+\frac{1}{2} N_{R}^{t} M N_{R}
$$

- study of potential shows ("natural solutions")

$$
\begin{array}{lll}
S U(3)_{L} \times S U(3)_{E} & \xrightarrow{\left\langle Y_{E}\right\rangle} \quad S U(2)_{L} \times S U(2)_{E} \times U(1)_{L+E} \\
S U(3)_{L} \times O(3)_{N} & \xrightarrow{\left\langle Y_{\nu}\right\rangle} & O(3)_{L+N}
\end{array}
$$

- residual symmetry is non-trivial

$$
S U(3)_{L} \times S U(3)_{E} \times O(3)_{N} \xrightarrow{\left\langle Y_{E}\right\rangle,\left\langle Y_{\nu}\right\rangle} \quad S U(2)_{E} \times U(1)_{L+N}
$$

Non-trivial breaking of continuous \boldsymbol{G}_{f}

- results
- heavy tau lepton
- three degenerate light neutrinos \rightarrow large $0 \nu \beta \beta$ signal
- maximal mixing $\theta_{23}=\pi / 4, \theta_{13}=0, \theta_{12}$ free
- maximal Majorana phase

Non-trivial breaking of continuous \boldsymbol{G}_{f}

- results
- heavy tau lepton
- three degenerate light neutrinos \rightarrow large $0 \nu \beta \beta$ signal
- maximal mixing $\theta_{23}=\pi / 4, \theta_{13}=0, \theta_{12}$ free
- maximal Majorana phase
- challenge: break the residual symmetry in controlled way in order to generate electron and muon mass, $\Delta m_{\mathrm{atm}}^{2}, \Delta m_{\mathrm{sol}}^{2}, \theta_{13}$ small
- heuristic: perturbations (Alonso et al. ('13))
- probably additional spurions necessary
(see quark sector (Espinosa et al. ('12), Fong/Nardi ('13)))

Comments on models

In explicit models several challenges have to be tackled

- separation of symmetry breaking sectors and higher-order corrections from violation of this separation

Comments on models

In explicit models several challenges have to be tackled

- separation of symmetry breaking sectors and higher-order corrections from violation of this separation
- construction of potential ("natural solutions"), stability under higher-order corrections (if G_{f} is spontaneously broken)

Comments on models

In explicit models several challenges have to be tackled

- separation of symmetry breaking sectors and higher-order corrections from violation of this separation
- construction of potential ("natural solutions"), stability under higher-order corrections (if G_{f} is spontaneously broken)
- non-canonical kinetic terms

Comments on models

In explicit models several challenges have to be tackled

- separation of symmetry breaking sectors and higher-order corrections from violation of this separation
- construction of potential ("natural solutions"), stability under higher-order corrections (if G_{f} is spontaneously broken)
- non-canonical kinetic terms
- corrections from RG running

Comments on models

In explicit models several challenges have to be tackled

- separation of symmetry breaking sectors and higher-order corrections from violation of this separation
- construction of potential ("natural solutions"), stability under higher-order corrections (if G_{f} is spontaneously broken)
- non-canonical kinetic terms
- corrections from RG running
- after all, additional predictions can be possible in concrete models

Conclusions

- until now no "standard" theory for fermion masses and mixing, especially in the lepton sector
- flavor symmetries might be the key
- finite, discrete, non-abelian G_{f}
- G_{f} and CP
- $G_{f} \subset U(3)$ and $m_{\text {lightest }}=0$
- $G_{f}=S U(3)_{L} \times S U(3)_{E} \times O(3)_{N}$

Outlook

- complete study of finite, discrete $S U(3)$ and $U(3)$ subgroups
- more examples and models with G_{f} and CP
- more on Dirac neutrinos?
- quarks and leptons described with same G_{f} ?
- sterile neutrinos?

Thank you for your attention.

