Matching NNLO Calculations and Parton Showers.

Simone Alioli
 LBNL \& UC Berkeley

20 January 2014

Frontiers in Particle Physics: From Dark Matter to the LHC and Beyond
arXiv:1311.0286
SA, C. Bauer, C. Berggren, F. Tackmann, J. Walsh, S. Zuberi

Why higher-order calculations?

- NLO is the first order in which rates and associated theoretical uncertainties are reliably predicted.
- NNLO gives non-negligible contributions in several cases (eg. $g g \rightarrow H \approx 30 \%$).
- Theoretical uncertainties further reduced by including NNLO corrections. For few \% precision, NNLO is required.

- Shapes are generically better described increasing the parton multiplicity: new channels at NLO, and NNLO, larger K-factors and noticeable shape distorsions.
- Recent progresses in subtraction methods allowed to address several important processes at NNLO: $Z, W, H, \gamma \gamma, Z \gamma, H H, t \bar{t}, H j, j j \ldots$
[Czackon et al., 1303.6254]
[Boughezal et al., 1302.6216]

[Grazzini et al., 1309.7000]
[Currie et al., 1310.3993]

Problems with higher-order perturbative calculations

- Fixed-order results are only at the parton level. No immediate way to estimate detector effects. Singular regions are poorly described.
- Resummation improve sing. region but requires to define the observable in advance, no fully-exclusive events.
- Beyond LO, perturbative calculations are plagued by IR divergencies, that only disappear after properly combining real emission contributions with virtual corrections.
- At fully exclusive level, this requires the introduction of subtraction counterterms to regulate the divergencies in 4D

$$
\begin{aligned}
& \sigma^{\mathrm{NLO}}(X)=\int \mathrm{d} \Phi_{N}\left(B_{N}\left(\Phi_{N}\right)+V_{N}^{C}\left(\Phi_{N}\right)\right) M_{X}\left(\Phi_{N}\right) \\
& \quad+\int \mathrm{d} \Phi_{N+1}\left\{B_{N+1}\left(\Phi_{N+1}\right) M_{X}\left(\Phi_{N+1}\right)-\sum_{m} C_{N+1}^{m}\left(\Phi_{N+1}\right) M_{X}\left[\hat{\Phi}_{N}^{m}\left(\Phi_{N+1}\right)\right]\right\}
\end{aligned}
$$

- B_{N+1} and C_{N+1}^{m} are correlated unphysical "events", separately IR-divergent:
- large positive and negative weights
- correlations must be propagated to shower/detector
- no reasonable way of unweighting

IR-safe definitions of events beyond LO

- Goal is to generate "physical events", i.e. to each event can be assigned a IR-finite cross section $\mathrm{d} \sigma^{\mathrm{Mc}}$.
- Introduction of a resolution parameter $\mathcal{T}_{N}, \mathcal{T}_{N} \rightarrow 0$ in the IR region.

Emissions below $\mathcal{T}_{N}^{\text {cut }}$ are unresolved (i.e. integrated over).

- M-parton events are really N-jet events (no jet-algo), fully differential in Φ_{N}
- Price to pay: power corrections in $\mathcal{T}_{N}^{\text {cut }}$ due to projection, vanish for IR-safe observables as $\mathcal{T}_{N}^{\text {cut }} \rightarrow 0$
- Iterating the procedure, the phase space is sliced into jet-bins

IR-safe definitions of events beyond LO

- Goal is to generate "physical events", i.e. to each event can be assigned a IR-finite cross section $\mathrm{d} \sigma^{\mathrm{MC}}$.
- Introduction of a resolution parameter $\mathcal{T}_{N}, \mathcal{T}_{N} \rightarrow 0$ in the IR region.

Emissions below $\mathcal{T}_{N}^{\text {cut }}$ are unresolved (i.e. integrated over).

- M-parton events are really N-jet events (no jet-algo), fully differential in Φ_{N}
- Price to pay: power corrections in $\mathcal{T}_{N}^{\text {cut }}$ due to projection, vanish for IR-safe observables as $\mathcal{T}_{N}^{\text {cut }} \rightarrow 0$
- Iterating the procedure, the phase space is sliced into jet-bins

Inclusive Φ_{N}

$$
\frac{\mathrm{d} \sigma_{\geq N}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N}}
$$

IR-safe definitions of events beyond LO

- Goal is to generate "physical events", i.e. to each event can be assigned a IR-finite cross section $\mathrm{d} \sigma^{\mathrm{MC}}$.
- Introduction of a resolution parameter $\mathcal{T}_{N}, \mathcal{T}_{N} \rightarrow 0$ in the IR region.

Emissions below $\mathcal{T}_{N}^{\text {cut }}$ are unresolved (i.e. integrated over).

- M-parton events are really N-jet events (no jet-algo), fully differential in Φ_{N}
- Price to pay: power corrections in $\mathcal{T}_{N}^{\text {cut }}$ due to projection, vanish for IR-safe observables as $\mathcal{T}_{N}^{\text {cut }} \rightarrow 0$
- Iterating the procedure, the phase space is sliced into jet-bins

Inclusive Φ_{N+1}

$$
\frac{\mathrm{d} \sigma_{\geq N+1}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\mathrm{cut}}\right)
$$

IR-safe definitions of events beyond LO

- Goal is to generate "physical events", i.e. to each event can be assigned a IR-finite cross section $\mathrm{d} \sigma^{\mathrm{MC}}$.
- Introduction of a resolution parameter $\mathcal{T}_{N}, \mathcal{T}_{N} \rightarrow 0$ in the IR region.

Emissions below $\mathcal{T}_{N}^{\text {cut }}$ are unresolved (i.e. integrated over).

- M-parton events are really N-jet events (no jet-algo), fully differential in Φ_{N}
- Price to pay: power corrections in $\mathcal{T}_{N}^{\text {cut }}$ due to projection, vanish for IR-safe observables as $\mathcal{T}_{N}^{\text {cut }} \rightarrow 0$
- Iterating the procedure, the phase space is sliced into jet-bins

Exclusive Φ_{N}

$\frac{\mathrm{d} \sigma_{N}^{\text {MC }}}{\mathrm{d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)$

Exclusive Φ_{N+1}
$\frac{\mathrm{d} \sigma_{N+1}^{\mathrm{MC}}}{\mathrm{d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }} ; \mathcal{T}_{N+1}^{\text {cut }}\right)$

Inclusive Φ_{N+2}

$$
\frac{\mathrm{d} \sigma_{\geq N+2}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+2}} \quad\left(\begin{array}{l}
\mathcal{T}_{N}>\mathcal{T}_{N}^{\mathrm{cut}} \\
\left.\mathcal{T}_{N+1}>\mathcal{T}_{N+1}^{\mathrm{cut}}\right)
\end{array}\right.
$$

IR-safe definitions of events beyond LO

- Goal is to generate "physical events", i.e. to each event can be assigned a IR-finite cross section $\mathrm{d} \sigma^{\mathrm{Mc}}$.
- Introduction of a resolution parameter $\mathcal{T}_{N}, \mathcal{T}_{N} \rightarrow 0$ in the IR region. Emissions below $\mathcal{T}_{N}^{\text {cut }}$ are unresolved (i.e. integrated over).
- M-parton events are really N-jet events (no jet-algo), fully differential in Φ_{N}
- Price to pay: power corrections in $\mathcal{T}_{N}^{\text {cut }}$ due to projection, vanish for IR-safe observables as $\mathcal{T}_{N}^{\text {cut }} \rightarrow 0$
- Iterating the procedure, the phase space is sliced into jet-bins

Which $\mathrm{d} \sigma_{N}^{\mathrm{Mc}} / \mathrm{d} \Phi_{N}\left(\mathcal{T}_{N}^{\text {cut }}\right)$ and $\mathrm{d} \sigma_{\geq N+1}^{\mathrm{Mc}} / \mathrm{d} \Phi_{N+1}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}\right)$ to use ?

- Jet-resolution parameter \mathcal{T}, e.g. p_{T}^{N+1} for $N+1$ jets, or p_{T}^{H} in $g g \rightarrow H$.

- At LL one counts $\alpha_{s} \ln ^{2}\left(\mathcal{T}_{N} / Q\right) \sim 1$ and $\alpha_{s} \ln ^{2}\left(\mathcal{T}_{N}^{\text {cut }} / Q\right) \sim 1$ with Q hard
- Combining FO+LL achieves LL accuracy where F0 is invalid and maintain FO where LL is unimportant

Which $\mathrm{d} \sigma_{N}^{\mathrm{Mc}} / \mathrm{d} \Phi_{N}\left(\mathcal{T}_{N}^{\mathrm{cut}}\right)$ and $\mathrm{d} \sigma_{\geq N+1}^{\mathrm{Mc}} / \mathrm{d} \Phi_{N+1}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}\right)$ to use ?

- For both cumulant and spectrum perturbative accuracy driven by \mathcal{T}.

Cumulant: $\mathrm{d} \sigma_{N}^{\mathrm{Mc}} / \mathrm{d} \Phi_{N}\left(\mathcal{T}_{N}^{\text {cut }}\right)$

Spectrum: $\frac{\mathrm{d} \sigma_{\sum_{N+1}}^{\mathrm{MC}}}{\mathrm{d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}\right)$

- Further condition: consistency between $\mathrm{d} \sigma^{\mathrm{mc}}$'s is required to push $\mathcal{T}_{N}^{\text {cut }}$ dependence to high-enough order

$$
\frac{\mathrm{d}}{\mathrm{~d} \mathcal{T}_{N}^{\text {cut }}}\left[\frac{\mathrm{d} \sigma_{N}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)\right]_{\mathcal{T}_{N}^{\text {cut }}=\mathcal{T}_{N}}=\int \frac{\mathrm{d} \Phi_{N+1}}{\mathrm{~d} \Phi_{N}} \delta\left[\mathcal{T}_{N}-\mathcal{T}_{N}\left(\Phi_{N+1}\right)\right] \frac{\mathrm{d} \sigma_{\geq N+1}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}\right)
$$

i.e. spectrum is total derivative of the cumulant

POWHEG and MC@NLO : the NLO+LL case

- Standard NLO+PS tools used by experimental collaborations
- Same basic formula correct to $(\mathrm{NLO}+\mathrm{LL})_{N}$ and $(\mathrm{LO}+\mathrm{LL})_{N+1}$:

$$
\frac{\mathrm{d} \sigma_{N}^{\mathrm{Mc}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\mathrm{cut}}\right)=\underbrace{\frac{\mathrm{d} \sigma_{\geq N}^{S}}{\mathrm{~d} \Phi_{N}} \Delta_{N}\left(\Phi_{N} ; \mathcal{T}_{N}^{\mathrm{cut}}\right)}_{\text {resummed }}+\underbrace{\frac{\mathrm{d} \sigma_{N}^{B-S}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\mathrm{cut}}\right)}_{\text {FO matching }},
$$

$$
\begin{aligned}
\frac{\mathrm{d} \sigma_{\geq N+1}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\mathrm{cut}}\right)= & \sum_{m}\left\{\left.\frac{\mathrm{~d} \sigma_{\geq N}^{S}}{\mathrm{~d} \Phi_{N}}\right|_{\hat{\Phi}_{N}} \frac{S_{N+1}\left(\Phi_{N+1}\right)}{B_{N}\left(\hat{\Phi}_{N}\right)} \Delta_{N}\left(\hat{\Phi}_{N} ; \mathcal{T}_{N}\right) \theta\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\mathrm{cut}}\right)\right\}_{m} \\
& +\frac{\mathrm{d} \sigma_{\geq N+1}^{B-S}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}\right)
\end{aligned}
$$

- Difference in choice of splitting functions S_{N+1} entering the Sudakov:

MC@NLO

$S_{N+1} \approx G \times \mathbf{P S}_{n+1}+(1-G) \times C_{n+1}$

- If $\mathbf{P S}_{n+1}$ doesn't have full IR sing. of B_{N+1}, leftover $\mathcal{T}_{N}^{\text {cut }}$ dependence
- Spectrum is not quite total derivative of the cumulant.
- Numerical effects neglible.

POWHEG

$S_{N+1} \approx B_{N+1} \times F$

- Resummation can be turned off $F \rightarrow 0$ in hard regions.
- Spectrum is total derivative of the cumulant by construction.

Combining fully exclusive NNLO with LL resummation.

- Recipe and ingredients given in [1311.0286]: $\quad \frac{\mathrm{d} \sigma{\underset{M}{N+1}}_{\mathrm{MC}}^{\mathrm{d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}\right)}{}$

$$
\frac{\mathrm{d} \sigma_{N}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right), \overbrace{\frac{\mathrm{d} \sigma_{N+1}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }} ; \mathcal{T}_{N+1}^{\text {cut }}\right), \quad{ }_{\frac{\mathrm{d} \sigma_{\geq N+2}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+2}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}, \mathcal{T}_{N+1}>\mathcal{T}_{N+1}^{\text {cut }}\right)}}
$$

- Exclusive N-jet cross section

$$
\frac{\mathrm{d} \sigma_{N}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)=\underbrace{\frac{\mathrm{d} \sigma_{\geq N}^{C}}{\mathrm{~d} \Phi_{N}} \Delta_{N}\left(\Phi_{N} ; \mathcal{T}_{N}^{\text {cut }}\right)}_{\text {resummed }}+\underbrace{\frac{\mathrm{d} \sigma_{N}^{C-S}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)}_{\text {FO singular matching }}+\underbrace{\frac{\mathrm{d} \sigma_{N}^{B-C}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)}_{\begin{array}{c}
\text { FO nonsingular } \\
\text { matching }
\end{array}}
$$

Combining fully exclusive NNLO with LL resummation.

- Recipe and ingredients given in [1311.0286]: $\quad \frac{\mathrm{d} \sigma{\underset{M}{N+1}}_{\mathrm{MC}}^{\mathrm{d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}\right)}{}$

$$
\frac{\mathrm{d} \sigma_{N}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\mathrm{cut}}\right), \overbrace{\frac{\mathrm{d} \sigma_{N+1}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\mathrm{cut}} ; \mathcal{T}_{N+1}^{\mathrm{cut}}\right), \quad \frac{\mathrm{d} \sigma_{\geq N+2}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+2}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\mathrm{cut}}, \mathcal{T}_{N+1}>\mathcal{T}_{N+1}^{\mathrm{cut}}\right)}
$$

- Exclusive N-jet cross section

$$
\frac{\mathrm{d} \sigma_{N}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)=\underbrace{\frac{\mathrm{d} \sigma_{\geq N}^{C}}{\frac{\mathrm{~d} \Phi_{N}}{}} \Delta_{N}\left(\Phi_{N} ; \mathcal{T}_{N}^{\text {cut }}\right)}_{\text {resummed }}+\underbrace{\frac{\mathrm{d} \sigma_{N}^{C-S}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)}_{\text {FO singular matching }}+\underbrace{\frac{\mathrm{d} \sigma_{N}^{B-C}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)}_{\begin{array}{c}
\text { FO nonsingular } \\
\text { matching }
\end{array}}
$$

- Singular part of NNLO cross-section, contains all $\log \left(\mathcal{T}_{N}^{\text {cut }}\right)$

Combining fully exclusive NNLO with LL resummation.

- Recipe and ingredients given in [1311.0286]: $\quad \frac{\mathrm{d}_{\mathrm{m}}^{\mathrm{MC}} \mathrm{M}_{N+1}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}\right)$

$$
\frac{\mathrm{d} \sigma_{N}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\mathrm{cut}}\right), \overbrace{\frac{\mathrm{d} \sigma_{N+1}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\mathrm{cut}} ; \mathcal{T}_{N+1}^{\mathrm{cut}}\right), \quad \frac{\mathrm{d} \sigma_{\geq N+2}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+2}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\mathrm{cut}}, \mathcal{T}_{N+1}>\mathcal{T}_{N+1}^{\mathrm{cut}}\right)}
$$

- Exclusive N-jet cross section

$$
\frac{\mathrm{d} \sigma_{N}^{\mathrm{Mc}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\mathrm{cut}}\right)=\underbrace{\frac{\mathrm{d} \sigma_{\geq N}^{C}}{\mathrm{~d} \Phi_{N}} \Delta_{N}\left(\Phi_{N} ; \mathcal{T}_{N}^{\mathrm{cut}}\right)}_{\text {resummed }}+\underbrace{\frac{\mathrm{d} \sigma_{N}^{C-S}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)}_{\text {FO singular matching }}+\underbrace{\frac{\mathrm{d} \sigma_{N}^{B-C}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\mathrm{cut}}\right)}_{\begin{array}{c}
\text { FO nonsingular } \\
\text { matching }
\end{array}}
$$

- Singular part of NNLO cross-section, contains all $\log \left(\mathcal{T}_{N}^{\text {cut }}\right)$
- Sudakov factor, provides (at least) LL resummation of $\mathcal{T}_{N}^{\text {cut }}$

$$
\Delta_{N}\left(\Phi_{N} ; \mathcal{T}_{N}^{\mathrm{cut}}\right)=\exp \left\{-\int \frac{\mathrm{d} \Phi_{N+1}}{\mathrm{~d} \Phi_{N}} \frac{S_{N+1}\left(\Phi_{N+1}\right)}{B_{N}\left(\hat{\Phi}_{N}\right)} \theta\left[\mathcal{T}_{N}\left(\Phi_{N+1}\right)>\mathcal{T}_{N}^{\mathrm{cut}}\right]\right\}
$$

Combining fully exclusive NNLO with LL resummation.

- Recipe and ingredients given in [1311.0286]: $\quad \frac{\mathrm{d} \sigma{ }_{\mathrm{MC}}^{N+1}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}\right)$

$$
\frac{\mathrm{d} \sigma_{N}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\mathrm{cut}}\right), \overbrace{\frac{\mathrm{d} \sigma_{N+1}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\mathrm{cut}} ; \mathcal{T}_{N+1}^{\mathrm{cut}}\right), \quad}^{\frac{\mathrm{d} \sigma_{\geq N+2}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+2}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\mathrm{cut}}, \mathcal{T}_{N+1}>\mathcal{T}_{N+1}^{\mathrm{cut}}\right)}
$$

- Exclusive N-jet cross section

$$
\frac{\mathrm{d} \sigma_{N}^{\mathrm{Mc}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\mathrm{cut}}\right)=\underbrace{\frac{\mathrm{d} \sigma_{\geq N}^{C}}{\mathrm{~d} \Phi_{N}} \Delta_{N}\left(\Phi_{N} ; \mathcal{T}_{N}^{\mathrm{cut}}\right)}_{\text {resummed }}+\underbrace{\frac{\mathrm{d} \sigma_{N}^{C-S}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)}_{\text {FO singular matching }}+\underbrace{\frac{\mathrm{d} \sigma_{N}^{B-C}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\mathrm{cut}}\right)}_{\begin{array}{c}
\text { FO nonsingular } \\
\text { matching }
\end{array}}
$$

- Singular part of NNLO cross-section, contains all $\log \left(\mathcal{T}_{N}^{\text {cut }}\right)$
- Sudakov factor, provides LL resummation of $\mathcal{T}_{N}^{\text {cut }}$
- Corrects singular $\mathcal{T}_{N}^{\text {cut }}$ dependence from Sudakov expansion.

Combining fully exclusive NNLO with LL resummation.

- Recipe and ingredients given in [1311.0286]: $\quad \frac{\mathrm{d} \overbrace{N+1}^{\mathrm{MC}}}{\mathrm{d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}\right)$

$$
\frac{\mathrm{d} \sigma_{N}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\mathrm{cut}}\right), \overbrace{\frac{\mathrm{d} \sigma_{N+1}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\mathrm{cut}} ; \mathcal{T}_{N+1}^{\mathrm{cut}}\right), \quad \frac{\mathrm{d} \sigma_{\geq N+2}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+2}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\mathrm{cut}}, \mathcal{T}_{N+1}>\mathcal{T}_{N+1}^{\mathrm{cut}}\right)}
$$

- Exclusive N-jet cross section

$$
\frac{\mathrm{d} \sigma_{N}^{\mathrm{Mc}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\mathrm{cut}}\right)=\underbrace{\frac{\mathrm{d} \sigma_{\geq N}^{C}}{\mathrm{~d} \Phi_{N}} \Delta_{N}\left(\Phi_{N} ; \mathcal{T}_{N}^{\mathrm{cut}}\right)}_{\text {resummed }}+\underbrace{\frac{\mathrm{d} \sigma_{N}^{C-S}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\mathrm{cut}}\right)}_{\text {FO singular matching }}+\underbrace{\frac{\mathrm{d} \sigma_{N}^{B-C}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\mathrm{cut}}\right)}_{\begin{array}{c}
\text { FO nonsingular } \\
\text { matching }
\end{array}}
$$

- Singular part of NNLO cross-section, contains all $\log \left(\mathcal{T}_{N}^{\text {cut }}\right)$
- Sudakov factor, provides LL resummation of $\mathcal{T}_{N}^{\text {cut }}$
- Corrects singular $\mathcal{T}_{N}^{\text {cut }}$ dependence from Sudakov expansion.
- Corrects the finite terms to the exact inclusive cross section.

Combining fully exclusive NNLO with LL resummation.

$$
\frac{\mathrm{d} \sigma_{N}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right), \overbrace{\frac{\mathrm{d} \sigma_{N+1}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }} ; \mathcal{T}_{N+1}^{\text {cut }}\right), \quad{ }_{\frac{\mathrm{d} \sigma_{\geq N+2}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+2}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}, \mathcal{T}_{N+1}>\mathcal{T}_{N+1}^{\text {cut }}\right)}}
$$

- Exclusive N-jet cross section (NNLO+LL)

$$
\frac{\mathrm{d} \sigma_{N}^{\text {Mc }}}{\mathrm{d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)=\underbrace{\frac{\mathrm{d} \sigma_{\geq N}^{C}}{\mathrm{~d} \Phi_{N}} \Delta_{N}\left(\Phi_{N} ; \mathcal{T}_{N}^{\text {cut }}\right)}_{\text {resummed }}+\underbrace{\frac{\mathrm{d} \sigma_{N}^{C-S}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)}_{\text {FO singular matching }}+\underbrace{\frac{\mathrm{d} \sigma_{N}^{B-C}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)}_{\begin{array}{c}
\text { FO nonsingular } \\
\text { matching }
\end{array}}
$$

Combining fully exclusive NNLO with LL resummation.

- Recipe and ingredients given in [1311.0286]: $\quad \frac{\mathrm{d} \overbrace{N+1}^{\mathrm{MC}}}{\mathrm{d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}\right)$

$$
\frac{\mathrm{d} \sigma_{N}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right), \overbrace{\frac{\mathrm{d} \sigma_{N+1}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }} ; \mathcal{T}_{N+1}^{\text {cut }}\right), \quad{ }_{\frac{\mathrm{d} \sigma_{\geq N+2}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+2}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}, \mathcal{T}_{N+1}>\mathcal{T}_{N+1}^{\text {cut }}\right)}}
$$

- Exclusive N-jet cross section (NNLO+LL)

$$
\frac{\mathrm{d} \sigma_{N}^{\mathrm{Mc}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)=\underbrace{\frac{\mathrm{d} \sigma_{\geq N}^{C}}{\mathrm{~d} \Phi_{N}} \Delta_{N}\left(\Phi_{N} ; \mathcal{T}_{N}^{\text {cut }}\right)}_{\text {resummed }}+\underbrace{\frac{\mathrm{d} \sigma_{N}^{C-S}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)}_{\text {FO singular matching }}+\underbrace{\frac{\mathrm{d} \sigma_{N}^{B-C}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)}_{\begin{array}{c}
\text { FO nonsingular } \\
\text { matching }
\end{array}}
$$

- Inclusive $N+1$-jet cross section (NLO+LL)

$$
\begin{aligned}
\frac{\mathrm{d} \sigma_{\geq N+1}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\mathrm{cut}}\right)= & \left.\frac{\mathrm{d} \sigma_{\geq N}^{C}}{\mathrm{~d} \Phi_{N}}\right|_{\Phi_{N}=\hat{\Phi}_{N}} \frac{S_{N+1}\left(\Phi_{N+1}\right)}{B_{N}\left(\hat{\Phi}_{N}\right)} \Delta_{N}\left(\hat{\Phi}_{N} ; \mathcal{T}_{N}\right) \theta\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}\right) \\
& +\frac{\mathrm{d} \sigma_{\geq N+1}^{C-S}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}\right)+\frac{\mathrm{d} \sigma_{\geq N+1}^{B-C}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}\right)
\end{aligned}
$$

Combining fully exclusive NNLO with LL resummation.

- Recipe and ingredients given in [1311.0286]: $\quad \frac{\operatorname{do}^{\mu N_{N+1}}}{\mathrm{~T}_{N+1}\left(\mathcal{T}_{N+1}>\tau_{N}^{\text {aut }}\right)}$

$$
\frac{\mathrm{d} \sigma_{N}^{\mathrm{Mc}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\mathrm{cut}}\right), \overbrace{\frac{\mathrm{d} \sigma_{N+1}^{\mathrm{Mc}}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\mathrm{cut}} ; \mathcal{T}_{N+1}^{\mathrm{cut}}\right), \quad \frac{\mathrm{d} \sigma_{\geq N+2}^{\mathrm{Mc}}}{\mathrm{~d} \Phi_{N+2}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}, \mathcal{T}_{N+1}>\mathcal{T}_{N+1}^{\text {cut }}\right)}
$$

- Exclusive N-jet cross section (NNLO+LL)

$$
\frac{\mathrm{d} \sigma_{N}^{\mathrm{Mc}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)=\underbrace{\frac{\mathrm{d} \sigma_{\geq N}^{C}}{\mathrm{~d} \Phi_{N}} \Delta_{N}\left(\Phi_{N} ; \mathcal{T}_{N}^{\text {cut }}\right)}_{\text {resummed }}+\underbrace{\frac{\mathrm{d} \sigma_{N}^{C-S}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)}_{\text {FO singular matching }}+\underbrace{\frac{\mathrm{d} \sigma_{N}^{B-C}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)}_{\begin{array}{c}
\text { FO nonsingular } \\
\text { matching }
\end{array}}
$$

- Inclusive $N+1$-jet cross section (NLO+LL)

$$
\begin{aligned}
\frac{\mathrm{d} \sigma_{\geq N+1}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\mathrm{cut}}\right)= & \left.\frac{\mathrm{d} \sigma_{\geq N}^{C}}{\mathrm{~d} \Phi_{N}}\right|_{\Phi_{N}=\hat{\Phi}_{N}} \frac{S_{N+1}\left(\Phi_{N+1}\right)}{B_{N}\left(\hat{\Phi}_{N}\right)} \Delta_{N}\left(\hat{\Phi}_{N} ; \mathcal{T}_{N}\right) \theta\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}\right) \\
& +\frac{\mathrm{d} \sigma_{\geq N+1}^{C-S}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}\right)+\frac{\mathrm{d} \sigma_{\geq N+1}^{B-C}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}\right)
\end{aligned}
$$

- Inclusive N-jet cross-section correct by construction, since they are related by exact derivative.

Combining fully exclusive NNLO with LL resummation.

- Split up inclusive $N+1$-jet cross section using resolution scale $\mathcal{T}_{N+1}^{\text {cut }}$
- Exclusive $N+1$-jet cross section (NLO+LL)
resummed

$$
\left.\left.\begin{array}{rl}
\frac{\mathrm{d} \sigma_{N+1}^{\mathrm{Mc}}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}\right. & \left.>\mathcal{T}_{N}^{\text {cut }} ; \mathcal{T}_{N+1}^{\text {cut }}\right)=\overbrace{\frac{\mathrm{d} \sigma_{\geq N+1}^{\prime C}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}\right) \Delta_{N+1}\left(\Phi_{N+1} ; \mathcal{T}_{N+1}^{\text {cut }}\right)} \\
+ & (\underbrace{\frac{\mathrm{d} \sigma_{N+1}^{C-S}}{\mathrm{~d} \Phi_{N+1}}}_{\text {FO singular }}+\underbrace{\frac{\mathrm{d} \sigma_{N+1}^{B-C}}{\mathrm{~d} \Phi_{N+1}}}_{\text {matching }})\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {matching }}\right.
\end{array}\right) ; \mathcal{T}_{N+1}^{\text {cut }}\right) .
$$

- Inclusive $N+2$-jet cross section (LO+LL)

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma_{\geq N+2}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+2}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\mathrm{cut}}, \mathcal{T}_{N+1}>\mathcal{T}_{N+1}^{\mathrm{cut}}\right)=\left.\frac{\mathrm{d} \sigma_{\geq N+1}^{\prime C}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\mathrm{cut}}\right)\right|_{\Phi_{N+1}=\hat{\Phi}_{N+1}} \\
& \quad \times \frac{S_{N+2}\left(\Phi_{N+2}\right)}{B_{N+1}\left(\hat{\Phi}_{N+1}\right)} \Delta_{N+1}\left(\hat{\Phi}_{N+1} ; \mathcal{T}_{N+1}\right) \theta\left(\mathcal{T}_{N+1}>\mathcal{T}_{N+1}^{\mathrm{cut}}\right) \\
& \quad+\left(\frac{\mathrm{d} \sigma_{\geq N+2}^{C-S}}{\mathrm{~d} \Phi_{N+2}}+\frac{\mathrm{d} \sigma_{\geq N+2}^{B-C}}{\mathrm{~d} \Phi_{N+2}}\right)\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\mathrm{cut}}, \mathcal{T}_{N+1}>\mathcal{T}_{N+1}^{\mathrm{cut}}\right)
\end{aligned}
$$

Adding the parton shower.

- Use the NNLO+LL fully-exclusive results $\mathrm{d} \sigma_{N}^{\mathrm{Mc}}, \mathrm{d} \sigma_{N+1}^{\mathrm{Mc}}, \mathrm{d} \sigma_{>N+2}^{\mathrm{Mc}}$ as event weights and their kinematics as starting point for showering.

- Calculate cross section and assign to partonic event
- Let parton shower fill jets with radiation space for jet event

Adding the parton shower.

- Three conditions have to be satisfied for the shower matching:

Adding the parton shower.

- Three conditions have to be satisfied for the shower matching:

1) Any exclusive observable must be (at least) LL in resummation regions; maintain logarithmic accuracy of \mathcal{T}_{N} and \mathcal{T}_{N+1} from MC cross sections.

Adding the parton shower.

- Three conditions have to be satisfied for the shower matching:

1) Any exclusive observable must be (at least) LL in resummation regions; maintain logarithmic accuracy of \mathcal{T}_{N} and \mathcal{T}_{N+1} from MC cross sections.
2) NNLO accuracy for N-jet obs. , NLO for $N+1$-jet and LO for $N+2$-jet, in respective resolved regions. No FO requirements for unresolved regions, only filled by shower.

Adding the parton shower.

- Three conditions have to be satisfied for the shower matching:

1) Any exclusive observable must be (at least) LL in resummation regions; maintain logarithmic accuracy of \mathcal{T}_{N} and \mathcal{T}_{N+1} from MC cross sections.
2) NNLO accuracy for N-jet obs. , NLO for $N+1$-jet and LO for $N+2$-jet, in respective resolved regions. No FO requirements for unresolved regions, only filled by shower.
3) Any leftover dependence on $\mathcal{T}_{N}^{\text {cut }}$ and $\mathcal{T}_{N+1}^{\text {cut }}$ only enters at higher orders.

Adding the parton shower.

- Three conditions have to be satisfied for the shower matching:

1) Any exclusive observable must be (at least) LL in resummation regions; maintain logarithmic accuracy of \mathcal{T}_{N} and \mathcal{T}_{N+1} from MC cross sections.
2) NNLO accuracy for N-jet obs. , NLO for $N+1$-jet and LO for $N+2$-jet, in respective resolved regions. No FO requirements for unresolved regions, only filled by shower.
3) Any leftover dependence on $\mathcal{T}_{N}^{\text {cut }}$ and $\mathcal{T}_{N+1}^{\text {cut }}$ only enters at higher orders.

- Conditions above also ensure double-counting is avoided.

Adding the parton shower.

- Three conditions have to be satisfied for the shower matching:

1) Any exclusive observable must be (at least) LL in resummation regions; maintain logarithmic accuracy of \mathcal{T}_{N} and \mathcal{T}_{N+1} from MC cross sections.
2) NNLO accuracy for N-jet obs. , NLO for $N+1$-jet and LO for $N+2$-jet, in respective resolved regions. No FO requirements for unresolved regions, only filled by shower.
3) Any leftover dependence on $\mathcal{T}_{N}^{\text {cut }}$ and $\mathcal{T}_{N+1}^{\text {cut }}$ only enters at higher orders.

- Conditions above also ensure double-counting is avoided.
- Caveat: when showering the NNLO N-jet bin care must be taken.
- Single parton variables not IR-safe at NNLO
- Conditions above could be applied after showering as a global veto

Comparison with existing approaches: GENEVA

- GENEVA combines higher logarithimc accuracy with parton shower
[SA, C. Bauer, F. Tackmann, J. Walsh et al. 1211.7049]
- Inclusive cross section NNLL' + NLO
- Perturbative $\mathcal{O}\left(\alpha_{\mathrm{s}}\right)$ everywhere
- Logarithms of merging scale ($\mathcal{T}_{N}^{\text {cut }}$) cancel at NNLL' by construction: merging of 2 NLOs is a by-product
- Fully validated for $e+e$ - interactions
- Ongoing work to attain similar precision for hadronic collisions (Drell-Yan). Theoretically solved, required several code improvements along the way.

Comparison with existing approaches: GENEVA

- GENEVA combines higher logarithimc accuracy with parton shower
[SA, C. Bauer, F. Tackmann, J. Walsh et al. 1211.7049]

- Inclusive cross section NNLL' + NLO
- Perturbative $\mathcal{O}\left(\alpha_{\mathrm{s}}\right)$ everywhere
- Logarithms of merging scale ($\mathcal{T}_{N}^{\text {cut }}$) cancel at NNLL' by construction: merging of 2 NLOs is a by-product
- Fully validated for $e+e$ - interactions
- Ongoing work to attain similar precision for hadronic collisions (Drell-Yan). Theoretically solved, required several code improvements along the way.

Comparison with existing approaches: GENEVA

- GENEVA combines higher logarithimc accuracy with parton shower

- Inclusive cross section NNLL' + NLO
- Perturbative $\mathcal{O}\left(\alpha_{\mathrm{s}}\right)$ everywhere
- Logarithms of merging scale ($\mathcal{T}_{N}^{\text {cut }}$) cancel at NNLL' by construction: merging of 2 NLOs is a by-product
- Fully validated for $e+e$ - interactions
- Ongoing work to attain similar precision for hadronic collisions (Drell-Yan). Theoretically solved, required several code improvements along the way.

Comparison with existing approaches: GENEVA

- GENEVA combines higher logarithimc accuracy with parton shower
[SA, C. Bauer, F. Tackmann, J. Walsh et al. 1211.7049]

- Inclusive cross section NNLL' + NLO
- Perturbative $\mathcal{O}\left(\alpha_{\mathrm{s}}\right)$ everywhere
- Logarithms of merging scale ($\mathcal{T}_{N}^{\text {cut }}$) cancel at NNLL' by construction: merging of 2 NLOs is a by-product
- Fully validated for $e+e-$ interactions
- Ongoing work to attain similar precision for hadronic collisions (Drell-Yan).
Theoretically solved, required several code improvements along the way.
- If NNLL' is available, NNLO singular contributions are already included

- Bottom-line: NNLO+LL log accuracy can be easily extended.

Comparison with existing approaches: MiNLO NNLO+PS.

- MiNLO is CKKW-inspired recipe to set a priori the scales of a NLO calculation involving multiple scales.

Comparison with existing approaches: MiNLO NNLO+PS.

- MiNLO is CKKW-inspired recipe to set a priori the scales of a NLO calculation involving multiple scales.
- Like CKKW, it also includes LL Sudakovs factors, that regulate IR divergencies (e.g. $\mathrm{H}+1$ jets finite $p_{\mathrm{T}}^{j} \rightarrow 0$)

Comparison with existing approaches: MiNLO NNLO+PS.

- MiNLO is CKKW-inspired recipe to set a priori the scales of a NLO calculation involving multiple scales.
- Like CKKW, it also includes LL Sudakovs factors, that regulate IR divergencies (e.g. $\mathrm{H}+1$ jets finite $p_{\mathrm{T}}^{j} \rightarrow 0$)
- NLO accuracy for inclusive sample not achieved in MiNLO (LL Sudakov)

Comparison with existing approaches: MiNLO NNLO+PS.

- MiNLO is CKKW-inspired recipe to set a priori the scales of a NLO calculation involving multiple scales.
[Hamilton et al. 1206.3572]
- Like CKKW, it also includes LL Sudakovs factors, that regulate IR divergencies (e.g. $\mathrm{H}+1$ jets finite $p_{\mathrm{T}}^{j} \rightarrow 0$)
- NLO accuracy for inclusive sample not achieved in MiNLO (LL Sudakov)
- Including NLL terms (B_{2}) in MiNLO Sudakovs, NLO accuracy for inclusive sample can be restored .

Comparison with existing approaches: MiNLO NNLO+PS.

- MiNLO is CKKW-inspired recipe to set a priori the scales of a NLO calculation involving multiple scales.
[Hamilton et al. 1206.3572]
- Like CKKW, it also includes LL Sudakovs factors, that regulate IR divergencies (e.g. $\mathrm{H}+1$ jets finite $p_{\mathrm{T}}^{j} \rightarrow 0$)
- NLO accuracy for inclusive sample not achieved in MiNLO (LL Sudakov)
- Including NLL terms (B_{2}) in MiNLO Sudakovs, NLO accuracy for inclusive sample can be restored .
[Hamilton et al. 1212.4504]
- Achieves NLO merging without merging scale ($H+0$ jets is never present)

Comparison with existing approaches: MiNLO NNLO+PS.

- MiNLO is CKKW-inspired recipe to set a priori the scales of a NLO calculation involving multiple scales.
- Like CKKW, it also includes LL Sudakovs factors, that regulate IR divergencies (e.g. $\mathrm{H}+1$ jets finite $p_{\mathrm{T}}^{j} \rightarrow 0$)
- NLO accuracy for inclusive sample not achieved in MiNLO (LL Sudakov)
- Including NLL terms (B_{2}) in MiNLO Sudakovs, NLO accuracy for inclusive sample can be restored.
[Hamilton et al. 1212.4504]
- Achieves NLO merging without merging scale ($H+0$ jets is never present)
- For simple processes (e.g. $g g \rightarrow H$), using HNNLO [Catani etal. 0801.3232] for event-by-event reweighting results in a NNLO+PS [Hamilton,Nason,Re,Zanderighi 1309.0017]

$$
\mathcal{W}(y)=\frac{\left(\frac{d \sigma}{d y}\right)_{\mathrm{HNNLO}}}{\left(\frac{d \sigma}{d y}\right)_{\mathrm{HJ}-\mathrm{MiNLO}}}=\frac{c_{2} \alpha_{\mathrm{S}}^{2}+c_{3} \alpha_{\mathrm{S}}^{3}+c_{4} \alpha_{\mathrm{S}}^{4}}{c_{2} \alpha_{\mathrm{S}}^{2}+c_{3} \alpha_{\mathrm{S}}^{3}+c_{4}^{\prime} \alpha_{\mathrm{S}}^{4}+\ldots}=1+\frac{c_{4}-c_{4}^{\prime}}{c_{2}} \alpha_{\mathrm{S}}^{2}+\ldots
$$

- Integrates back to the total NNLO cross-section
- NLO accuracy of $H j$ not spoiled
- Need to reweight after generation

Comparison with existing approaches: MiNLO NNLO+PS.

- Hj-MiNLO NNLO+PS results

[Hamilton,Nason,Re,Zanderighi 1309.0017]

Comparison with existing approaches: MiNLO NNLO+PS.

- Hj-MiNLO NNLO+PS results

[Hamilton,Nason,Re,Zanderighi 1309.0017]

Comparison with existing approaches: MiNLO NNLO+PS.

- $H j$-MiNLO NNLO+PS results

[Hamilton,Nason,Re,Zanderighi 1309.0017]

- MiNLO NNLO+PS formula re-derived as a special case of our framework
- Specific choice of splitting functions brings two advantanges:

No need to know NLL resummation to reach NNLO
No need to reweight after generation

Conclusions and outlook

- Provided theoretical framework for NNLO+LL+PS:
- IR-safe, jet-like definitions of events are the basis for event generation with higher accuracy.
- Provided formulas for jet cross section at the necessary accuracy in both fixed order ($\mathrm{NNLO}_{N}, \mathrm{NLO}_{N+1}, \mathrm{LO}_{N+2}$) and resummation regions (LL).
- When resummation accuracy does not match fixed-order, enforced correlation between jet bins (spectrum is derivative of cumulant).
- Resummation accuracy can be improved if desired.
- POWHEG, MC@NLO, GENEVA and MiNLO-NNLOPS are special limits

Outlook:

- Implementation feasibility supported by comparison with existing NNLO+PS approach.
- Several possibilities for implementation laid out in [1311.0286] , investigating which one is more efficient or better for incorporating existing NNLO calculations with little effort.
- Framework not limited to NNLO, can be extended to higher-order, when available. Details to be worked out.
Thank you for your attention!

BACKUP

Perturbative accuracy

	$\mathcal{T}_{N}^{\text {eff }} \sim Q$ (fixed order)	$\mathcal{T}_{N}^{\text {eff }} \ll Q$ (resummation)
	N-jet observables	
LO_{N}	$1+\mathcal{O}\left(\alpha_{\mathrm{s}}\right)$	$\mathcal{O}(1)$
NLO_{N}	$1+\alpha_{\mathrm{s}}+\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\right)$	$\mathcal{O}(1)$
NNLO_{N}	$1+\alpha_{\mathrm{s}}+\alpha_{\mathrm{s}}^{2}+\mathcal{O}\left(\alpha_{\mathrm{s}}^{3}\right)$	$\mathcal{O}(1)$
$\mathrm{LO}_{N}+\mathrm{LL}$	$1+\mathcal{O}\left(\alpha_{\mathrm{s}}\right)$	$1+\mathcal{O}\left(\alpha_{\mathrm{s}}^{1 / 2}\right)$
$\mathrm{LO}_{N, N+1}+\mathrm{LL}$	$1+\mathcal{O}\left(\alpha_{\mathrm{s}}\right)+\mathcal{O}_{\text {cut }}\left(\alpha_{\mathrm{s}}^{\geq 1}\right)$	$1+\mathcal{O}\left(\alpha_{\mathrm{s}}^{1 / 2}\right)$
$\mathrm{NLO}_{N}+\mathrm{LL}$	$1+\alpha_{\mathrm{s}}+\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\right)+\mathcal{O}_{\text {cut }}\left(\alpha_{\mathrm{s}}^{\geq 2}\right)$	$1+\mathcal{O}\left(\alpha_{\mathrm{s}}^{1 / 2}\right)$
$\mathrm{NLO}_{N, N+1}+\mathrm{LL}$	$1+\alpha_{\mathrm{s}}+\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\right)+\mathcal{O}_{\text {cut }}\left(\alpha_{\mathrm{s}}^{\geq 2}\right)$	$1+\mathcal{O}\left(\alpha_{\mathrm{s}}^{1 / 2}\right)$
$\mathrm{NNLO}_{N}+\mathrm{LL}$	$1+\alpha_{\mathrm{s}}+\alpha_{\mathrm{s}}^{2}+\mathcal{O}\left(\alpha_{\mathrm{s}}^{3}\right)+\mathcal{O}_{\text {cut }}\left(\alpha_{\mathrm{s}}^{\geq 3}\right)$	$1+\mathcal{O}\left(\alpha_{\mathrm{s}}^{1 / 2}\right)$
	$(N+1)-$ jet observables	
LO_{N}	\times	\times
NLO_{N}	$1+\mathcal{O}\left(\alpha_{\mathrm{s}}\right)$	$\mathcal{O}(1)$
NNLO_{N}	$1+\alpha_{\mathrm{s}}+\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\right)$	$\mathcal{O}(1)$
$\mathrm{LO}_{N}+\mathrm{LL}$	$\mathcal{O}(1)$	$1+\mathcal{O}\left(\alpha_{\mathrm{s}}^{1 / 2}\right)$
$\mathrm{LO}_{N, N+1}+\mathrm{LL}$	$1+\mathcal{O}\left(\alpha_{\mathrm{s}}\right)+\mathcal{O}_{\text {cut }}\left(\alpha_{\mathrm{s}}^{\geq 1}\right)$	$1+\mathcal{O}\left(\alpha_{\mathrm{s}}^{1 / 2}\right)$
$\mathrm{NLO}_{N}+\mathrm{LL}$	$1+\mathcal{O}\left(\alpha_{\mathrm{s}}\right)+\mathcal{O}_{\text {cut }}\left(\alpha_{\mathrm{s}}^{\geq 1}\right)$	$1+\mathcal{O}\left(\alpha_{\mathrm{s}}^{1 / 2}\right)$
$\mathrm{NLO}_{N, N+1}+\mathrm{LL}$	$1+\alpha_{\mathrm{s}}+\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\right)+\mathcal{O}_{\text {cut }}\left(\alpha_{\mathrm{s}}^{\geq 2}\right)$	$1+\mathcal{O}\left(\alpha_{\mathrm{s}}^{1 / 2}\right)$
$\mathrm{NNLO}_{N+\mathrm{LL}}$	$1+\alpha_{\mathrm{s}}+\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\right)+\mathcal{O}_{\text {cut }}\left(\alpha_{\mathrm{s}}^{\geq 2}\right)$	$1+\mathcal{O}\left(\alpha_{\mathrm{s}}^{1 / 2}\right)$

Merging NLO Shower Monte Carlo samples

- When merging NLO_{N} and NLO_{N+1} samples separated by a $\mathcal{T}_{\text {cut }}$ cut, the unphysical dependence manifests itself in $\sigma^{\text {tot }}$ as $\log \left(\mathcal{T}_{\text {cut }} / Q\right)$.

Merging NLO Shower Monte Carlo samples

- When merging NLO_{N} and NLO_{N+1} samples separated by a $\mathcal{T}_{\text {cut }}$ cut, the unphysical dependence manifests itself in $\sigma^{\text {tot }}$ as $\log \left(\mathcal{T}_{\text {cut }} / Q\right)$.
- Resumming this dependence with parton showers (N)LL is not enough! Left-over dependence is $\mathcal{O}\left(\alpha_{\mathrm{s}}^{2} L^{2}\right) \sim \mathcal{O}\left(\alpha_{\mathrm{s}}\right)$ in the resummation region.

Merging NLO Shower Monte Carlo samples

- When merging NLO_{N} and NLO_{N+1} samples separated by a $\mathcal{T}_{\text {cut }}$ cut, the unphysical dependence manifests itself in $\sigma^{\text {tot }}$ as $\log \left(\mathcal{T}_{\text {cut }} / Q\right)$.
- Resumming this dependence with parton showers (N)LL is not enough! Left-over dependence is $\mathcal{O}\left(\alpha_{\mathrm{s}}^{2} L^{2}\right) \sim \mathcal{O}\left(\alpha_{\mathrm{s}}\right)$ in the resummation region.
- Merging scale cannot be pushed too low into the resummation region, otherwise the NLO accuracy is spoiled.

Merging NLO Shower Monte Carlo samples

- When merging NLO_{N} and NLO_{N+1} samples separated by a $\mathcal{T}_{\text {cut }}$ cut, the unphysical dependence manifests itself in $\sigma^{\text {tot }}$ as $\log \left(\mathcal{T}_{\text {cut }} / Q\right)$.
- Resumming this dependence with parton showers (N)LL is not enough! Left-over dependence is $\mathcal{O}\left(\alpha_{\mathrm{s}}^{2} L^{2}\right) \sim \mathcal{O}\left(\alpha_{\mathrm{s}}\right)$ in the resummation region.
- Merging scale cannot be pushed too low into the resummation region, otherwise the NLO accuracy is spoiled.
- A high scale means that one is forced to describe relatively hard jets only at the lower accuracy (LO or PS).

Merging NLO Shower Monte Carlo samples

- When merging NLO_{N} and NLO_{N+1} samples separated by a $\mathcal{T}_{\text {cut }}$ cut, the unphysical dependence manifests itself in $\sigma^{\text {tot }}$ as $\log \left(\mathcal{T}_{\text {cut }} / Q\right)$.
- Resumming this dependence with parton showers (N)LL is not enough! Left-over dependence is $\mathcal{O}\left(\alpha_{\mathrm{s}}^{2} L^{2}\right) \sim \mathcal{O}\left(\alpha_{\mathrm{s}}\right)$ in the resummation region.
- Merging scale cannot be pushed too low into the resummation region, otherwise the NLO accuracy is spoiled.
- A high scale means that one is forced to describe relatively hard jets only at the lower accuracy (LO or PS).

SHERPA
Inclusive Jet Multiplicity

MC@NLO/FxFx

MiNLO

- Introduce an unphysical infrared regulator $\mathcal{T}^{\text {cut }}$ and separate inclusive and exclusive regions: $\mathcal{T}^{\text {cut }}$ dependence drops out to the order we are working.

$$
\sigma_{\geq N}=\int \mathrm{d} \Phi_{N} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}^{\mathrm{cut}}\right)+\int \mathrm{d} \Phi_{N+1} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Phi_{N+1}}(\mathcal{T}) \theta\left(\mathcal{T}>\mathcal{T}^{\mathrm{cut}}\right)
$$

- Introduce an unphysical infrared regulator $\mathcal{T}^{\text {cut }}$ and separate inclusive and exclusive regions: $\mathcal{T}^{\text {cut }}$ dependence drops out to the order we are working.

$$
\sigma_{\geq N}=\int \mathrm{d} \Phi_{N} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}^{\mathrm{cut}}\right)+\int \mathrm{d} \Phi_{N+1} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Phi_{N+1}}(\mathcal{T}) \theta\left(\mathcal{T}>\mathcal{T}^{\mathrm{cut}}\right)
$$

- Cumulant: \mathcal{T} integral over exclusive N-jets bin up to $\mathcal{T}^{\text {cut }}$

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}^{\text {cut }}\right)=\frac{\mathrm{d} \sigma^{\text {resum }}}{\mathrm{d} \Phi_{N}}\left(\mathcal{T}^{\text {cut }}\right)+\left[\frac{\mathrm{d} \sigma^{\mathrm{FO}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}^{\text {cut }}\right)-\left.\frac{\mathrm{d} \sigma^{\text {resum }}}{\mathrm{d} \Phi_{N}}\left(\mathcal{T}^{\text {cut }}\right)\right|_{\mathrm{FO}}\right]
$$

- Introduce an unphysical infrared regulator $\mathcal{T}^{\text {cut }}$ and separate inclusive and exclusive regions: $\mathcal{T}^{\text {cut }}$ dependence drops out to the order we are working.

$$
\sigma_{\geq N}=\int \mathrm{d} \Phi_{N} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}^{\mathrm{cut}}\right)+\int \mathrm{d} \Phi_{N+1} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Phi_{N+1}}(\mathcal{T}) \theta\left(\mathcal{T}>\mathcal{T}^{\mathrm{cut}}\right)
$$

- Cumulant: \mathcal{T} integral over exclusive N-jets bin up to $\mathcal{T}^{\text {cut }}$

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}^{\text {cut }}\right)=\frac{\mathrm{d} \sigma^{\text {resum }}}{\mathrm{d} \Phi_{N}}\left(\mathcal{T}^{\text {cut }}\right)+\left[\frac{\mathrm{d} \sigma^{\mathrm{FO}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}^{\text {cut }}\right)-\left.\frac{\mathrm{d} \sigma^{\text {resum }}}{\mathrm{d} \Phi_{N}}\left(\mathcal{T}^{\text {cut }}\right)\right|_{\mathrm{FO}}\right]
$$

- Spectrum: \mathcal{T} distribution of inclusive $N+1$-jets sample above $\mathcal{T}^{\text {cut }}$

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Phi_{N+1}}(\mathcal{T})=\frac{\mathrm{d} \sigma^{\mathrm{FO}}}{\mathrm{~d} \Phi_{N+1}}(\mathcal{T})\left[\frac{\mathrm{d} \sigma^{\text {resum }}}{\mathrm{d} \Phi_{N} \mathrm{~d} \mathcal{T}} /\left.\frac{\mathrm{d} \sigma^{\text {resum }}}{\mathrm{d} \Phi_{N} \mathrm{~d} \mathcal{T}}\right|_{\mathrm{FO}}\right]
$$

- Introduce an unphysical infrared regulator $\mathcal{T}^{\text {cut }}$ and separate inclusive and exclusive regions: $\mathcal{T}^{\text {cut }}$ dependence drops out to the order we are working.

$$
\sigma_{\geq N}=\int \mathrm{d} \Phi_{N} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}^{\mathrm{cut}}\right)+\int \mathrm{d} \Phi_{N+1} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Phi_{N+1}}(\mathcal{T}) \theta\left(\mathcal{T}>\mathcal{T}^{\mathrm{cut}}\right)
$$

- Cumulant: \mathcal{T} integral over exclusive N-jets bin up to $\mathcal{T}^{\text {cut }}$

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}^{\text {cut }}\right)=\frac{\mathrm{d} \sigma^{\text {resum }}}{\mathrm{d} \Phi_{N}}\left(\mathcal{T}^{\text {cut }}\right)+\left[\frac{\mathrm{d} \sigma^{\mathrm{FO}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}^{\text {cut }}\right)-\left.\frac{\mathrm{d} \sigma^{\text {resum }}}{\mathrm{d} \Phi_{N}}\left(\mathcal{T}^{\text {cut }}\right)\right|_{\mathrm{FO}}\right]
$$

- Spectrum: \mathcal{T} distribution of inclusive $N+1$-jets sample above $\mathcal{T}^{\text {cut }}$

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Phi_{N+1}}(\mathcal{T})=\frac{\mathrm{d} \sigma^{\mathrm{FO}}}{\mathrm{~d} \Phi_{N+1}}(\mathcal{T})\left[\frac{\mathrm{d} \sigma^{\text {resum }}}{\mathrm{d} \Phi_{N} \mathrm{~d} \mathcal{T}} /\left.\frac{\mathrm{d} \sigma^{\text {resum }}}{\mathrm{d} \Phi_{N} \mathrm{~d} \mathcal{T}}\right|_{\mathrm{FO}}\right]
$$

- Correctly reproduces the expected limits for $\mathcal{T} \rightarrow 0$ and $\mathcal{T} \sim Q$.
- Introduce an unphysical infrared regulator $\mathcal{T}^{\text {cut }}$ and separate inclusive and exclusive regions: $\mathcal{T}^{\text {cut }}$ dependence drops out to the order we are working.

$$
\sigma_{\geq N}=\int \mathrm{d} \Phi_{N} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}^{\mathrm{cut}}\right)+\int \mathrm{d} \Phi_{N+1} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Phi_{N+1}}(\mathcal{T}) \theta\left(\mathcal{T}>\mathcal{T}^{\mathrm{cut}}\right)
$$

- Cumulant: \mathcal{T} integral over exclusive N-jets bin up to $\mathcal{T}^{\text {cut }}$

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}^{\text {cut }}\right)=\frac{\mathrm{d} \sigma^{\text {resum }}}{\mathrm{d} \Phi_{N}}\left(\mathcal{T}^{\text {cut }}\right)+\left[\frac{\mathrm{d} \sigma^{\mathrm{FO}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}^{\text {cut }}\right)-\left.\frac{\mathrm{d} \sigma^{\text {resum }}}{\mathrm{d} \Phi_{N}}\left(\mathcal{T}^{\text {cut }}\right)\right|_{\mathrm{FO}}\right]
$$

- Spectrum: \mathcal{T} distribution of inclusive $N+1$-jets sample above $\mathcal{T}^{\text {cut }}$

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Phi_{N+1}}(\mathcal{T})=\frac{\mathrm{d} \sigma^{\mathrm{FO}}}{\mathrm{~d} \Phi_{N+1}}(\mathcal{T})\left[\frac{\mathrm{d} \sigma^{\text {resum }}}{\mathrm{d} \Phi_{N} \mathrm{~d} \mathcal{T}} /\left.\frac{\mathrm{d} \sigma^{\text {resum }}}{\mathrm{d} \Phi_{N} \mathrm{~d} \mathcal{T}}\right|_{\mathrm{FO}}\right]
$$

- Correctly reproduces the expected limits for $\mathcal{T} \rightarrow 0$ and $\mathcal{T} \sim Q$.
- MonteCarlo's perspective: increases SMC resummation while including multiple NLO.
- Resummation's perspective: takes the resummation of \mathcal{T} and produces fully differential results.

N-Jettiness as jet-resolution variable

- Use N-jettiness as resolution parameter. Global physical observable with straightforward definitions for hadronic colliders, in terms of beams $q_{a, b}$ and jet-directions q_{j}

$$
\mathcal{T}_{N}=\frac{2}{Q} \sum_{k} \min \left\{q_{1} \cdot p_{k}, \ldots, q_{N} \cdot p_{k}\right\} \Rightarrow \mathcal{T}_{N}=\frac{2}{Q} \sum_{k} \min \left\{q_{a} \cdot p_{k}, q_{b} \cdot p_{k}, q_{1} \cdot p_{k}, \ldots, q_{N} \cdot p_{k}\right\}
$$

- N-jettiness has good factorization properties, IR safe and resummable at all orders. Resummation known at NNLL for any N [Stewart etal. 1004.2489, 1102.4344]
- $\mathcal{T}_{N} \rightarrow 0$ for N pencil-like jets, $\mathcal{T}_{N} \gg 0$ spherical limit.
- $\mathcal{T}_{N}<\mathcal{T}_{N}^{\text {cut }}$ acts as jet-veto, e.g. CJV $\mathcal{T}_{0}=\frac{2}{Q} \sum_{k} \min \left\{q_{a} \cdot p_{k}, q_{b} \cdot p_{k}\right\}<\mathcal{T}_{0}^{\text {cut }}$

Predictive power for other observables

- After showering we are formally limited by shower resummation for generic observables $\mathcal{O} \neq \mathcal{T}$. Naively, (N)LL is expected.
- What is the perturbative accuracy we obtain for other \mathcal{O} ?
- C-parameter - perturbative structure very similar to \mathcal{T}_{2}

Predictive power for other observables

- After showering we are formally limited by shower resummation for generic observables $\mathcal{O} \neq \mathcal{T}$. Naively, (N)LL is expected.
- What is the perturbative accuracy we obtain for other \mathcal{O} ?
- C-parameter - perturbative structure very similar to \mathcal{T}_{2}

Predictive power for other observables

- After showering we are formally limited by shower resummation for generic observables $\mathcal{O} \neq \mathcal{T}$. Naively, (N)LL is expected.
- What is the perturbative accuracy we obtain for other \mathcal{O} ?
- C-parameter - perturbative structure very similar to \mathcal{T}_{2}

Predictive power for other observables

- After showering we are formally limited by shower resummation for generic observables $\mathcal{O} \neq \mathcal{T}$. Naively, (N)LL is expected.
- What is the perturbative accuracy we obtain for other \mathcal{O} ?
- C-parameter - perturbative structure very similar to \mathcal{T}_{2}

- Good agreement in central values and scale uncertainties envelopes at NNLL, also for observables with a very different resummation structure.
- NNLL resummation allows to push $\mathcal{T}_{2}^{\text {cut }}$ to very small values, effectively replacing the shower evolution.

Predictive power for other observables

- After showering we are formally limited by shower resummation for generic observables $\mathcal{O} \neq \mathcal{T}$. Naively, (N)LL is expected.
- What is the perturbative accuracy we obtain for other \mathcal{O} ?
- Heavy jet mass - perturbative structure partially related to \mathcal{T}_{2}

- Good agreement in central values and scale uncertainties envelopes at NNLL, also for observables with a very different resummation structure.
- NNLL resummation allows to push $\mathcal{T}_{2}^{\text {cut }}$ to very small values, effectively replacing the shower evolution.

Predictive power for other observables

- After showering we are formally limited by shower resummation for generic observables $\mathcal{O} \neq \mathcal{T}$. Naively, (N)LL is expected.
- What is the perturbative accuracy we obtain for other \mathcal{O} ?
- Jet Broadening - perturbative structure completely different from \mathcal{T}_{2}

- Good agreement in central values and scale uncertainties envelopes at NNLL, also for observables with a very different resummation structure.
- NNLL resummation allows to push $\mathcal{T}_{2}^{\text {cut }}$ to very small values, effectively replacing the shower evolution.

