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WHY THE (SUB-)WEAK
SCALE IS COMPELLING

* Abundance of new stable states set by

Interaction rates

. 4 Freeze-out

Measured by WMAP + LSS




SUB-WEAKLY INTERACTING
MASSIVE PARTICLES

Scattering through the Z boson: ruled out
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Next important benchmark:
Oqpn N~

Scattering through the Higgs




ARE THERE WAYS AROUND
FOR THE NEUTRALINO?

® Make the NQUtralinO d :qL,ZL, e :cj,Z,Hu, H,

\/

X \/
pure state - coupling 5 ., . .55 5.4 i
to Higgs vanishes

e However, Wino and X Large!
Higgsino pure states

can be probed by
indirect detection (V) ~ (

Z




ARE THERE WAYS AROUND
FOR THE NEUTRALINO?
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to Higgs vanishes

e However, Wino and

Higgsino pure states

can be probed by
indirect detection

Cohen, Lisanti, Pierce, Slatyer



ARE THERE WAYS AROUND
FOR THE NEUTRALINO?

* Bino escapes

e Pay a fine-tuning price
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ARE THERE WAYS AROUND
FOR THE NEUTRALINO?

condition
Mi; 4+ psin28 =0

e Tune away the coupling My + psin2B =0

tan: i
M, = M,

to the Higgs

Cheung, Hall, Pinner, Ruderman

e Smaller cross-sections . Sleross—section for b/

correspond to more
tuning in the neutralino
components
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ARE THERE WAYS AROUND
FOR THE NEUTRALINO?

condition
Mi; 4+ psin28 =0

e Tune away the coupling v, + e i

to the Higgs e

Cheung, Hall, Pinner, Ruderman

e Smaller cross-sections

0 XENON IT reach (~2017)

correspond to more

tuning in the neutralino -

sk

components
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WHEN SHOULD WE START
LOOKING ELSEWHERE?

Cannot kill neutralino DM via direct
detection, but paradigm does become
increasingly tuned

Somewhat below Higgs pole --

Neutrino background?

Well-motivated candidates that are
much less costly to probe

Light WIMPs




TERRA INCOGNITA

CF1 Snowmass report, 1310.8327

SuperCDMS Soudan CDMS-lite
SuperCDMS Soudan Low Threshold

XENON 10 S2 (2013)
CDMS-Il Ge Low Threshold (2011)
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CURRENT SENSITIVITY
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ANOMALIES AND LUX
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UNCERTAINTIES

e Experiment: Result assumes a
particular choice of the energy
calibration

e Theory: Also assumes spin-

independent, momentum-independent
scattering

¢ How do the results fare under more
general assumptions?




ENERGY CALIBRATION
UNCERTAINTIES

Gresham, KZ 1311.2082
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ENERGY CALIBRATION
UNCERTAINTIES

Gresham, KZ 1311.2082
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OPERATOR UNCERTAINTIES

Gresham, KZ 1311.2082

Spi_n‘—Inglependent, Jnlfp=—0.7 (Xe—phobic)

e Xenophobic -- tune s

b |
\ 3
)

~

A |
N\

N Py
A N |

away coupling to S
xenon H

8 [lowever none of the w2 "

mpm [GﬁV/CZ]

signal regions match in

(m CoGeNT (90%.99%)  -- LUX
that Case CDMS Si (68%,90%)  -= LUX, alt Log
DAMA (90%,99%)  — CDMSlite

— CDMS Ge L-E

- XENONIO (52)
e LUX constraints still e
.-- XENON100

Strong -+ XENONI00. alt Ly




OPERATOR UNCERTAINTIES

Gresham, KZ 1311.2082

__Spin—Independent, f,/f,=-0.5 (~Xe—phobic)
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OPERATOR UNCERTAINTIES

Momentum
dependent

Shift allowed signal

regions to lower mass
relative to constraints

Does not escape LUX

Gresham, KZ 1311.2082
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OPERATOR UNCERTAINTIES

* Anapole and Dipole
operators do best job, :
but neither escapes
constraints
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CONTACT WITH NUCLEAR
PHYSICS

e Signals have cause DM theorists to look
beyond the simplest types of DM-
nucleus interactions

* From spin-dependent and spin-

independent to
* anapole DM

e electric and magnetic dipole DM

* momentum dependent DM



CONTACT WITH NUCLEAR
PHYSICS

£anapole )

e These interactions are it

theoretically well- s dpte _ S 10" e

motivated e

lectric dipole
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(fLix X NN + £/ ixx NY°N + f3' x7°xNv°N)

e But the proper modeling

of the nuclear response i

spin-dependent (longitudinal)

has not been taken into

spin-dependent (transverse)

account until recently : angular-momentum-dependent

angular-momentum-and-spin-dependent

Fitzpatrick, Haxton, Katz et al
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DOES IT MATTER?

Put into the context of sensible UV

completions

Model Relativistic Ops. Nonrel. Ops.
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Under what circumstances should one
be concerned?
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LIGHT DARK MATTER

Spin—Independent (¢"*/gret™)xLongitudinal-SD (f3"=£3")
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HEAVY DARK MATTER

e Potentially important for certain

elements; simulated signal

Anapole
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HEAVY DARK MATTER

* Mostly not
relevant for
current
constraints,

exeept COUPP

Would be
relevant for
Xenon, except
for low recoil
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SUMMARY

e The window for the standard WIMP is closing,
though it will be difficult to close completely

Well-motivated lower mass candidates,
though purported signals seem in substantial
tension with constraints

Signals have pushed us to look at non-
standard types of interactions, but must be

careful to appropriately attach nuclear physics




HIDDEN DARK WORLDS
Our thinking has shifted

From a single, stable weakly
interacting particle

(WIMP, axion)

Models: Supersymmetric light DM sectors,
Secluded WIMPs, WIMPless DM, Asymmetric DM

Production: freeze-in, freeze-out and decay,
symmetric abundance, non-thermal mechanicsms

...to a hidden world
Standard Model

ith multiple states,

new interactions




