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• Abundance of new stable states set by 
interaction rates

Why the (sub-)Weak 
Scale is Compelling
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Sub-Weakly Interacting 
Massive Particles
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FIG. 3: New result on spin-independent WIMP-nucleon scat-
tering from XENON100: The expected sensitivity of this run
is shown by the green/yellow band (1�/2�) and the result-
ing exclusion limit (90% CL) in blue. For comparison, other
experimental results are also shown [19–22], together with
the regions (1�/2�) preferred by supersymmetric (CMSSM)
models [18].

the benchmark region fluctuates to 2 events is 26.4% and
confirms this conclusion.

A 90% confidence level exclusion limit for spin-
independent WIMP-nucleon cross sections �� is calcu-
lated, assuming an isothermal WIMP halo with a lo-
cal density of ⇢� = 0.3GeV/c3, a local circular veloc-
ity of v0 = 220 km/s, and a Galactic escape velocity of
vesc = 544 km/s [17]. Systematic uncertainties in the en-
ergy scale as described by the Le↵ parametrization of [6]
and in the background expectation are profiled out and
represented in the limit. Poisson fluctuations in the num-
ber of PEs dominate the S1 energy resolution and are
also taken into account along with the single PE resolu-
tion. The expected sensitivity of this dataset in absence
of any signal is shown by the green/yellow (1�/2�) band
in Fig. 3. The new limit is represented by the thick blue
line. It excludes a large fraction of previously unexplored
parameter space, including regions preferred by scans of
the constrained supersymmetric parameter space [18].

The new XENON100 data provide the most strin-
gent limit for m� > 8GeV/c2 with a minimum of
� = 2.0 ⇥ 10�45 cm2 at m� = 55GeV/c2. The max-
imum gap analysis uses an acceptance-corrected expo-
sure of 2323.7 kg⇥days (weighted with the spectrum of a
100GeV/c2 WIMP) and yields a result which agrees with
the result of Fig. 3 within the known systematic di↵er-
ences. The new XENON100 result continues to challenge
the interpretation of the DAMA [19], CoGeNT [20], and
CRESST-II [21] results as being due to scalar WIMP-
nucleon interactions.
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Scattering through the Z boson: ruled out

Next important benchmark:
Scattering through the Higgs

�n ⇠ 10�39 cm2

�n � 10�45�46 cm2



Are there ways around 
for the Neutralino?

• Make the Neutralino a 
pure state -- coupling 
to Higgs vanishes

• However, Wino and 
Higgsino pure states 
can be probed by 
indirect detection

g̃ q

q̃

(a)

W̃ qL, !L, H̃u, H̃d

q̃L, !̃L, Hu, Hd
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(c)

Figure 6.3: Couplings of the gluino, wino, and bino to MSSM (scalar, fermion) pairs.

interactions of gauge-coupling strength, as we will explore in more detail in sections 9 and 10. The
couplings of the Standard Model gauge bosons (photon, W±, Z0 and gluons) to the MSSM particles are
determined completely by the gauge invariance of the kinetic terms in the Lagrangian. The gauginos
also couple to (squark, quark) and (slepton, lepton) and (Higgs, higgsino) pairs as illustrated in the
general case in Figure 3.3g,h and the first two terms in the second line in eq. (3.4.9). For instance, each
of the squark-quark-gluino couplings is given by

√
2g3(q̃ T aqg̃+ c.c.) where T a = λa/2 (a = 1 . . . 8) are

the matrix generators for SU(3)C . The Feynman diagram for this interaction is shown in Figure 6.3a.
In Figures 6.3b,c we show in a similar way the couplings of (squark, quark), (lepton, slepton) and
(Higgs, higgsino) pairs to the winos and bino, with strengths proportional to the electroweak gauge
couplings g and g′ respectively. For each of these diagrams, there is another with all arrows reversed.
Note that the winos only couple to the left-handed squarks and sleptons, and the (lepton, slepton)
and (Higgs, higgsino) pairs of course do not couple to the gluino. The bino coupling to each (scalar,
fermion) pair is also proportional to the weak hypercharge Y as given in Table 1.1. The interactions
shown in Figure 6.3 provide, for example, for decays q̃ → qg̃ and q̃ → W̃ q′ and q̃ → B̃q when the final
states are kinematically allowed to be on-shell. However, a complication is that the W̃ and B̃ states
are not mass eigenstates, because of splitting and mixing due to electroweak symmetry breaking, as
we will see in section 8.2.

There are also various scalar quartic interactions in the MSSM that are uniquely determined by
gauge invariance and supersymmetry, according to the last term in eq. (3.4.12), as illustrated in Fig-
ure 3.3i. Among them are (Higgs)4 terms proportional to g2 and g′2 in the scalar potential. These are
the direct generalization of the last term in the Standard Model Higgs potential, eq. (1.1), to the case
of the MSSM. We will have occasion to identify them explicitly when we discuss the minimization of
the MSSM Higgs potential in section 8.1.

The dimensionful couplings in the supersymmetric part of the MSSM Lagrangian are all dependent
on µ. Using the general result of eq. (3.2.19), µ provides for higgsino fermion mass terms

− Lhiggsino mass = µ(H̃+
u H̃−

d − H̃0
uH̃

0
d ) + c.c., (6.1.4)

as well as Higgs squared-mass terms in the scalar potential

− Lsupersymmetric Higgs mass = |µ|2(|H0
u|2 + |H+

u |2 + |H0
d |2 + |H−

d |2). (6.1.5)

Since eq. (6.1.5) is non-negative with a minimum at H0
u = H0

d = 0, we cannot understand electroweak
symmetry breaking without including a negative supersymmetry-breaking squared-mass soft term for
the Higgs scalars. An explicit treatment of the Higgs scalar potential will therefore have to wait
until we have introduced the soft terms for the MSSM. However, we can already see a puzzle: we
expect that µ should be roughly of order 102 or 103 GeV, in order to allow a Higgs VEV of order
174 GeV without too much miraculous cancellation between |µ|2 and the negative soft squared-mass
terms that we have not written down yet. But why should |µ|2 be so small compared to, say, M2

P,
and in particular why should it be roughly of the same order as m2

soft? The scalar potential of the
MSSM seems to depend on two types of dimensionful parameters that are conceptually quite distinct,

52

h ,H
χ

χ

W

W

W
Z

χ

χ W
χ

χ

χ

W

W

+
n

χ

χ

χ

n
h ,H

χ

χ

Z

Z
Z

Z

Figure 38: Tree level diagrams for neutralino annihilation into gauge boson pairs.
From Ref. [319].

U =

(
cosφ− − sinφ−
sinφ− cosφ+

)
(181)

and

V =

(
cosφ+ − sinφ+

sinφ+ cosφ−

)
, (182)

where

tan 2φ− = 2
√

2mW
(µ sinβ + M2 cosβ)

(M2
2 − µ2 + 2m2

W cos 2β)
(183)

and

tan 2φ+ = 2
√

2mW
(µ cosβ + M2 sinβ)

(M2
2 − µ2 − 2m2

W cosβ)
. (184)

The amplitude for annihilations to Z0-pairs is similar:

A(χχ→ Z0Z0)v→0 = 4
√

2 βZ
g2

cos2 θW

4∑

n=1

(
O′′L

1,n

)2 1

Pn
. (185)

Here, βZ =
√

1 − m2
Z/m2

χ, and Pn = 1 + (mχn/mχ)2 − (mZ/mχ)2. The sum is

over neutralino states. The coupling O′′L
1,n is given by 1

2 (−N3,1N∗
3,n +N4,1N∗

4,n).
The low velocity annihilation cross section for this mode is then given by

σv(χχ → GG)v→0 =
1

SG

βG

128πm2
χ

|A(χχ → GG)|2, (186)

where G indicates which gauge boson is being considered. SG is a statistical
factor equal to one for W+W− and two for Z0Z0.

It is useful to note that pure-gaugino neutralinos have a no S-wave annihi-
lation amplitude to gauge bosons. Pure-higgsinos or mixed higgsino-gauginos,
however, can annihilate efficiently via these channels, even at low velocities.
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Are there ways around 
for the Neutralino?

• Make the Neutralino a 
pure state -- coupling 
to Higgs vanishes

• However, Wino and 
Higgsino pure states 
can be probed by 
indirect detection
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FIG. 2. Upper limits on γ-ray flux from monochromatic line
signatures, derived from the CGH region (red arrows with
full data points) and from extragalactic observations (black
arrows with open data points). For both data sets, the solid
black lines show the mean expected limits derived from a large
number of statistically randomized simulations of fake back-
ground spectra, and the gray bands denote the corresponding
68% CL regions for these limits. Black crosses denote the flux
levels needed for a statistically significant line detection in the
CGH dataset.
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FIG. 3. Flux upper limits on spectral features arising from
the emission of a hard photon in the DM annihilation pro-
cess. Limits are exemplary shown for features of comparable
shape to those arising in the models BM2 and BM4 given in
[14]. The monochromatic line limits, assuming mχ = Eγ , are
shown for comparison.

20%, depending on the energy and the statistics in the
individual spectrum bins. The maximum shift is ob-
served in the extragalactic limit curve and amounts to
40%. In total, the systematic error on the flux upper
limits is estimated to be about 50%. All flux upper
limits were cross-checked using an alternative analysis
framework [24], with an independent calibration of cam-
era pixel amplitudes, and a different event reconstruction
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FIG. 4. Limits on the velocity-weighted cross section for DM
annihilation into two photons calculated from the CGH flux
limits (red arrows with full data points). The Einasto density
profile with parameters described in [20] was used. Limits ob-
tained by Fermi-LAT, assuming the Einasto profile as well, are
shown for comparison (black arrows with open data points)
[15].

and event selection method, leading to results well con-
sistent within the quoted systematic error.
For the Einasto parametrization of the DM density

distribution in the Galactic halo [20], limits on the
velocity-weighted DM annihilation cross section into γ
rays, 〈σv〉χχ→γγ , are calculated from the CGH flux limits
using the astrophysical factors given in [8]. The result is
shown in Fig. 4 and compared to recent results obtained
at GeV energies with the Fermi-LAT instrument.

SUMMARY AND CONCLUSIONS

For the first time, a search for spectral γ-ray signatures
at very-high energies was performed based on H.E.S.S.
observations of the central Milky Way halo region and ex-
tragalactic sky. Both regions of interest exhibit a reduced
dependency of the putative DM annihilation flux on the
actual DM density profile. Upper limits on monochro-
matic γ-ray line signatures were determined for the first
time for energies between ∼ 500GeV and ∼ 25TeV, cov-
ering an important region of the mass range of particle
DM. Additionally, limits were obtained on spectral sig-
natures arising from internal bremsstrahlung processes,
as predicted by the models BM2 and BM4 of [14]. It
should be stressed that the latter results are valid for
all spectral signatures of comparable shape. Besides, all
limits also apply for potential signatures in the spectrum
of cosmic-ray electrons and positrons.
Flux limits on monochromatic line emission from the

central Milky Way halo were used to calculate upper lim-
its on 〈σv〉χχ→γγ . Limits are obtained in a neutralino
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2 = 0.12 ± 0.006. In the black shaded region, a
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which the LHC and direct detection experiments are not sensitive. In particular, if the wino

makes up a non-trivial fraction of the DM, it can lead to observable rates for experiments that

search for photons from DM annihilation. Even in this case, the perturbative annihilation

cross section for winos is not always large enough to be observable. However, as the wino

mass becomes large with respect to the W±-boson mass, non-perturbative SE e↵ects due

to the presence of a relatively long-range potential become important, especially at low

velocities. The impact of the SE on wino annihilation has been studied in detail [1–8] and

must be properly accounted for when computing the wino relic density, as well as its present-

day annihilation cross section. Appendix A reviews the procedure we follow to compute these

non-perturbative e↵ects, and we refer the reader there for an overview of the computation,

as well as a description of the procedure used to minimize numerical convergence problems.

A number of ground- [33–37] and space-based [38–40] experiments place significant

constraints on wino annihilation. The strongest and most robust bounds come from Fermi

[40], for 100 GeV . M
2

. 900 GeV, and H.E.S.S. [33], for 600 GeV . M
2

. 25 TeV.

Cohen, Lisanti, Pierce, Slatyer



Are there ways around 
for the Neutralino?

• Bino escapes
• Pay a fine-tuning price

determine the phase of µ. Taking |µ|2, b, m2
Hu

and m2
Hd

as input parameters, and m2
Z and tan β as

output parameters obtained by solving these two equations, one obtains:

sin(2β) =
2b

m2
Hu

+m2
Hd

+ 2|µ|2
, (8.1.10)

m2
Z =

|m2
Hd

−m2
Hu

|
√
1− sin2(2β)

−m2
Hu

−m2
Hd

− 2|µ|2. (8.1.11)

(Note that sin(2β) is always positive. If m2
Hu

< m2
Hd

, as is usually assumed, then cos(2β) is negative;
otherwise it is positive.)

As an aside, eqs. (8.1.10) and (8.1.11) highlight the “µ problem” already mentioned in section 6.1.
Without miraculous cancellations, all of the input parameters ought to be within an order of magnitude
or two of m2

Z . However, in the MSSM, µ is a supersymmetry-respecting parameter appearing in
the superpotential, while b, m2

Hu
, m2

Hd
are supersymmetry-breaking parameters. This has lead to a

widespread belief that the MSSM must be extended at very high energies to include a mechanism that
relates the effective value of µ to the supersymmetry-breaking mechanism in some way; see sections
11.2 and 11.3 and ref. [66] for examples.

Even if the value of µ is set by soft supersymmetry breaking, the cancellation needed by eq. (8.1.11)
is often remarkable when evaluated in specific model frameworks, after constraints from direct searches
for the Higgs bosons and superpartners are taken into account. For example, expanding for large tan β,
eq. (8.1.11) becomes

m2
Z = −2(m2

Hu
+ |µ|2) + 2

tan2 β
(m2

Hd
−m2

Hu
) +O(1/ tan4 β). (8.1.12)

Typical viable solutions for the MSSM have −m2
Hu

and |µ|2 each much larger than m2
Z , so that signifi-

cant cancellation is needed. In particular, large top squark squared masses, needed to avoid having the
Higgs boson mass turn out too small [see eq. (8.1.25) below] compared to the direct search limits from
LEP, will feed into m2

Hu
. The cancellation needed in the minimal model may therefore be at the several

per cent level, or worse. It is impossible to objectively characterize whether this should be considered
worrisome, but it certainly causes subjective worry as the LHC bounds on superpartners increase.

Equations (8.1.8)-(8.1.11) are based on the tree-level potential, and involve running renormalized
Lagrangian parameters, which depend on the choice of renormalization scale. In practice, one must
include radiative corrections at one-loop order, at least, in order to get numerically stable results. To
do this, one can compute the loop corrections ∆V to the effective potential Veff(vu, vd) = V +∆V as a
function of the VEVs. The impact of this is that the equations governing the VEVs of the full effective
potential are obtained by simply replacing

m2
Hu

→ m2
Hu

+
1

2vu

∂(∆V )

∂vu
, m2

Hd
→ m2

Hd
+

1

2vd

∂(∆V )

∂vd
(8.1.13)

in eqs. (8.1.8)-(8.1.11), treating vu and vd as real variables in the differentiation. The result for ∆V has
now been obtained through two-loop order in the MSSM [135, 188]. The most important corrections
come from the one-loop diagrams involving the top squarks and top quark, and experience shows that
the validity of the tree-level approximation and the convergence of perturbation theory are therefore
improved by choosing a renormalization scale roughly of order the average of the top squark masses.

The Higgs scalar fields in the MSSM consist of two complex SU(2)L-doublet, or eight real, scalar
degrees of freedom. When the electroweak symmetry is broken, three of them are the would-be Nambu-
Goldstone bosons G0, G±, which become the longitudinal modes of the Z0 and W± massive vector
bosons. The remaining five Higgs scalar mass eigenstates consist of two CP-even neutral scalars h0

92
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Are there ways around 
for the Neutralino?

• Tune away the coupling 
to the Higgs

• Smaller cross-sections 
correspond to more 
tuning in the neutralino 
components
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Figure 17: The gray shaded areas depict target regions in the (m�, �SI

) plane for thermal
bino/Higgsino DM, superimposed on the current limit from XENON100 and the projected
reaches for LUX and XENON1T. The edge of these gray regions at low m� results from the LEP
requirement of |µ| & 100 GeV, while the largest value of m�, just above 1 TeV, corresponds to
pure Higgsino LSP, and is present for both signs of µ. The upper dark shaded region is for µ > 0
(here we fix M

1

> 0) with the upper (lower) edge corresponding to low (high) tan �. Much of the
low mass part of this region has been excluded by XENON100. The lower two regions, shaded
in lighter gray, are for µ < 0. The boundary between the µ > 0 and µ < 0 regions occurs at
large tan�, where the sign of µ becomes unphysical. In the µ < 0 regions the cross-section falls
as tan � is reduced towards its value at the blind spot, where M

1

+ sin 2� µ = 0. The contour
between the two µ < 0 regions is given by |M

1

+ µ sin 2�| = 0.1M
1

, roughly corresponding to
a 10% fine-tuning in the scattering amplitude. In the lower region, for each order of magnitude
further reduction in the cross-section, a factor of

p
10 more fine-tuning is required.

of Fig. (7). Pure Higgsino thermal dark matter will also evade discovery for M
1

> 2 TeV, as
shown by the vertical brown bands in Fig. (5).

Fig. (6) depicts current limits and projected reaches for bino/Higgsino LSP which is just
one component of multi-component DM. Present constraints are quite weak, but LUX and
XENON1T will probe the fraction of LSP dark matter powerfully, especially at low LSP mass,
although with the usual blind spot caveat at low tan �.

The more general case of bino/wino/Higgsino DM is shown schematically in Fig. (10), and
contains the interesting possibility of bino/wino thermal DM. Fig. (11) shows the present limits
and future reach for non-thermal production in a slice of parameter space. While three of the
four quadrants are a↵ected by blind spots and are currently unconstrained by direct detection,
all four quadrants will be significantly probed by XENON1T and LUX. Fig. (12) shows the same
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m� condition signs

M
1

M
1

+ µ sin 2� = 0 sign(M
1

/µ) = �1
M

2

M
2

+ µ sin 2� = 0 sign(M
2

/µ) = �1
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Table 1: Table of SI blind spots, which occur when the DM coupling to the Higgs vanishes
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of any of neutralino to the Higgs boson can then be obtained by replacing v ! v+h, as dictated
by low-energy Higgs theorems [45, 46]:
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m�i(v + h)�i�i (13)
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1

2
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which implies that @m�i(v)/@v = ch�i�i [47, 48].
Consider the characteristic equation satisfied by one of the eigenvalues m�i(v),

det(M� � 1m�i(v)) = 0. (15)

Di↵erentiating the left-hand side with respect to v and setting @m�i(v)/@v = ch�i�i = 0, one
then obtains a new equation which defines when the neutralino of mass m�i(v) has a vanishing
coupling to the Higgs boson1:
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m�i(v)�
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2
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1

+M
2

+ cos 2✓W (M
1

�M
2

))

◆
= 0. (16)

The above equation implies that for regions in which ch�i�i = 0, m�i(v) is entirely independent
of v. At such cancellation points, m�i(v) = m�i(0), so the neutralino mass is equal to the mass
of a pure gaugino or Higgsino state and m�i(v) = M

1

,M
2

,�µ. As long as Eq. (16) holds for the
LSP mass, m�1(v), then the DM will have a vanishing coupling to the Higgs boson, yielding a
SI scattering blind spot. It is a nontrivial condition that Eq. (16) holds for the LSP, rather than
a heavier neutralino, because for some choices of parameters the DM retains a coupling to the
Higgs but one of the heavier neutralinos does not. We have identified these physically irrelevant
points and eliminated them from consideration. The remaining points are the SI scattering

1
We have checked that Eq. 16 can also be derived using analytical expressions for bilinears of the neutralino

diagonalization matrix from Ref. [49].
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Are there ways around 
for the Neutralino?

• Tune away the coupling 
to the Higgs

• Smaller cross-sections 
correspond to more 
tuning in the neutralino 
components
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When Should We Start 
Looking Elsewhere?

• Cannot kill neutralino DM via direct 
detection, but paradigm does become 
increasingly tuned

• Somewhat below Higgs pole -- 
Neutrino background?

• Well-motivated candidates that are 
much less costly to probe

• Light WIMPs
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Figure 26. A compilation of WIMP-nucleon spin-independent cross section limits (solid curves), hints
for WIMP signals (shaded closed contours) and projections (dot and dot-dashed curves) for US-led direct
detection experiments that are expected to operate over the next decade. Also shown is an approximate
band where coherent scattering of 8B solar neutrinos, atmospheric neutrinos and di↵use supernova neutrinos
with nuclei will begin to limit the sensitivity of direct detection experiments to WIMPs. Finally, a suite of
theoretical model predictions is indicated by the shaded regions, with model references included.

We believe that any proposed new direct detection experiment must demonstrate that it meets at least one
of the following two criteria:

• Provide at least an order of magnitude improvement in cross section sensitivity for some range of
WIMP masses and interaction types.

• Demonstrate the capability to confirm or deny an indication of a WIMP signal from another experiment.

The US has a clear leadership role in the field of direct dark matter detection experiments, with most
major collaborations having major involvement of US groups. In order to maintain this leadership role, and
to reduce the risk inherent in pushing novel technologies to their limits, a variety of US-led direct search

Community Planning Study: Snowmass 2013

CF1 Snowmass report, 1310.8327



Current Sensitivity 
Limited

4 Models of Dark Matter 11

Despite the richness of the theoretical work, none of these models can provide a physical explanation that
simultaneously accounts for all of the experimental observations without making the assumptions that one
or more of the measurements is flawed. Resolution of this confusing state of experimental data remains a
high priority for the field. It is also potentially within reach for the next generation of experiments. Several
technologies, which include point-contact Ge detectors, cryogenic Ge detectors, two-phase xenon detectors,
bubble chambers and CCD-based searches, are designing the next generation experiments with the goal of
pushing energy thresholds lower. Such experiments are expected to improve sensitivities by an order of
magnitude or more in the 1–10GeV range over the next 5–10 years. In addition, isospin-violating scenarios
strongly illustrate the need to have several direct detection experiments each with a di↵erent target nucleus.

4.4 Direct Detection Methodology

The basic methodology for direct detection experiments is to search for rare events that might be the signature
of WIMP interactions, namely the “billiard ball” elastic scattering of a WIMP from a target nucleus. The rate
of candidate nuclear recoils is converted into a cross section for WIMP-nucleon interactions following a stan-
dard prescription that includes the e↵ects of nuclear physics and astrophysical properties [23]. Experiments
can be sensitive to both nuclear spin-independent (SI) interactions and spin-dependent (SD) interactions.
For the range of momentum exchange of interest, the SI interaction is expected to be approximately coherent
across the entire nucleus, so for a WIMP with equal coupling to protons and neutrons, the rate scales with
the square of the atomic mass of the target nucleus. Current experiments are therefore more sensitive to SI
dark matter than SD dark matter. Experimental results are usually presented as a plot of WIMP-nucleon
cross section versus WIMP mass to allow comparison among experiments. Fig. 7 shows the current SI

Enectali Figueroa-Feliciano / Future of BSM Physics / Sheffield 2013
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Figure 7. Spin-independent WIMP-nucleon cross section limits vs WIMP mass as of summer 2013.
Experimental limits referenced [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37]

landscape, where strict upper limits exist for higher mass WIMPs. Fig. 8 zooms in on the low mass region,
where several “hints” for dark matter have been observed.

The SD interaction is generally divided into proton and neutron couplings; the current situation is sum-
marized in Fig. 9. Only direct detection can provide limits on neutron couplings, but solar neutrinos from
WIMP annihilation in the sun are stronger for proton coupling. Other types of interactions are possible,

Community Planning Study: Snowmass 2013

CF1 Snowmass report, 1310.8327



Anomalies and LUX

LUX talk



Uncertainties

• Experiment: Result assumes a 
particular choice of the energy 
calibration

• Theory: Also assumes spin-
independent, momentum-independent 
scattering

• How do the results fare under more 
general assumptions?



Energy Calibration 
Uncertainties
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FIG. 7. Relative scintillation e�ciencies, Le↵, used in this analysis. The “alt Le↵” curve is based

on the �1� boundaries of the measurement by Manzur et al [34]. The main expected S1 function,

⌫(ER) used in this analysis (blue for XENON100, black for LUX) was deduced directly from the

scale on Fig. 1 of [6] and Fig. 4 of [23] for XENON100 and LUX, respectively.

by XENON100. We consider only events below the mean of the gaussian fit to nuclear recoil

calibration events in slices of S1, in the S1-vs-log(S2b/S1) plane (below the solid red curve

of Fig. 4 of [23]). We take the acceptance of this hard cut as a function of S1 to be 50%.

It’s clear from Fig. 3 that this cut removes most electron recoil events. Only one event at

{S1, log10(S2/S1)} = {3.2, 1.75} marginally makes this cut. We then set 90% C.L. contours

using a maximum gap analysis for the signal region of 2 to 30 PEs. We take expected events

to be as in (A7). We read ⌫(ER) o↵ of Fig. 4 by digitizing {S1, ER} values along the (red)

mean NR curve. We interpolate the e�ciency before the maximum gap cut from the NR

simulation points (purple triangles) of Fig. 1. The net e�ciency is given by the e�ciency from

Fig. 1 times the 50% for the maximum gap analysis cut. The collaboration “conservatively

model(s) no signal below 3 keVnr”. We follow suit by taking ✏S2 = ⇥(ER � 3keV) in (A7).

Fig. 8 shows that the bounds we get using the method described above are slightly weaker

than, though close to, the bounds reported by LUX for spin-independent WIMPs. We show

curves generated assuming the one event does (red) and does not (blue) make the 50% cut.

We use the conservative choice, keeping the one event, when drawing constraint curves.

In order to estimate uncertainty due to the energy conversion, as we did for XENON100,

we use the alternative Le↵ based on -1� boundaries of the Manzur measurement. We take

an even more conservative line and cut Le↵ o↵ at the lowest measured point: 4keV, as shown

21

We do a linear interpolation of {LogER, Qy} including the point Qy(0) = 0.7 We believe this

is an appropriately conservative case to consider given the reasons explained in the text. A

flat e�ciency of 94% was assumed. We also assumed an energy resolution � = ER/
p
ERQy

so that

N[E1,E2] = Ex

Z 1

0

dR

dER
✏ res(E1, E2;ER) dER. (A6)

We use the pmax method of Yellin [43] to set 90% C.L. exclusion curves.

f. XENON100 We digitize the e�ciencies shown in Fig. 1 of [6], including the hard

discrimination cut e�ciency used for the maximum gap method analysis. The S2 threshold

cut e�ciency, ✏S2, is applied “before taking into account the S1 resolution” [6]. In addition to

the red S2 threshold cut e�ciency curve, the other e�ciency curves from Fig. 1 (dotted green

and blue) are digitized as functions of photo-electron counts and are multiplied together to

get ✏. Following [47], the number of events expected in signal range S12 [s1, s2] is taken to

be

N[s1,s2] = Ex

Z s2

s1

" 1X

n=1

✏(S1)Gauss(S1|n,pn�PMT)

Z 1

0

Poiss (n|⌫(ER)) ✏S2(ER)
dR

dER
dER

#
dS1

(A7)

where ⌫(ER) =
Snr

See
LyERLe↵(ER) is the average expected number of photo-electrons if the

nuclear recoil energy is ER. We use an interpolation of a digitization of the scale on Fig. 1

for our default ⌫(ER).8 We use �PMT = 0.5PE. To get an idea of the sensitivity of the

XENON100 results on the energy calibration used, we also use a linear extrapolation of ⌫

from the �1� boundaries of the measurement of Le↵ by Manzur [34].9 To convert from Le↵

to ⌫(E) we use the same values as XENON100: See = 0.58, Snr = 0.95, and Ly = 2.28. This

alternate choice for ⌫ is shown in Fig. 7 along with the primary choice deduced directly from

the scale on Fig. 1. We use the maximum gap method [43] for the signal range S1 = 3PE

to S1 = 20PE in order to set limits. Two events passed all acceptance cuts in this range.

g. LUX Instead of using a profile likelihood ratio test statistic like the collaboration,

which also in includes an expected background model and takes into account expected radius,

depth, S1 and S2 of each event in a signal region that includes regions with primarily electron

recoils, we perform a simple maximum gap analysis much like the cross-check analysis used

7 More precisely, we set Qy(10�3keV) = 10�3e�/keV for the log extrapolation.
8 We also use the central values of the Le↵ curve measured by the collaboration to check that we get similar

⌫(ER).
9 We include the point {ER, npe} = {1keV, 0}. See also [48].
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FIG. 1. Regions of interest and exclusion curves for experiments and parameters as listed in Table

I, assuming a standard, spin-independent (12) or -dependent (13), isospin-conserving Nucleon-

WIMP interaction. A standard Maxwellian distribution is assumed, as explained in the text. All

constraint curves are 90% C.L. as explained in the appendix. We overlay the CDMSlite bound

for reference; all other curves were generated as described in the appendix. We show both a weak

and strong COUPP bound, as described in the appendix, and the choice of alternative Le↵ for the

Xenon experiments is shown in Fig. 7 in the appendix.

constraints.

Fig. 2 shows constraints and regions of interest for DM interacting via the anapole (14)

and magnetic dipole (15) interactions, in the �-mDM plane. Since both the anapole and

dipole have spin- and angular-momentum- dependent scattering components, we include the
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Operator Uncertainties

• Xenophobic -- tune 
away coupling to 
xenon

• However, none of the 
signal regions match in 
that case

• LUX constraints still 
strong
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FIG. 3. Regions of interest and exclusion curves for relevant experiments and parameters as listed

in Table I, assuming spin-independent Nucleon-WIMP interactions. We include constraints for a

momentum-suppressed interaction (with qref = 1 GeV) arising from scalar exchange as well as for

some Xenonphobic isospin benchmarks in addition to the “standard” isospin-conserving case.

bring LUX into agreement with even the 99% C.L. boundary of the CoGeNT region. Tak-

ing the very conservative choice for Le↵ that we discuss opens up a corner of an overlapping

CDMS/CoGeNT region of interest.

Fig. 4 includes constraints for spin-dependent interactions (13), including the most ex-

treme momentum-suppressed interactions arising from (6) and a couple of di↵erent choices

for relative DM coupling to neutrons and protons. The LUX and XENON100 bounds are

11
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Operator Uncertainties

• Momentum 
dependent

• Shift allowed signal 
regions to lower mass 
relative to constraints

• Does not escape LUX
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Operator Uncertainties

• Anapole and Dipole 
operators do best job, 
but neither escapes 
constraintsmoment operators,

Oa = ⇧̄�µ�5⇧Aµ (1)

Od = ⇧̄⌅µ⇥⇧Fµ⇥/�, (2)

are unique in that the contributions from spin-dependent and spin-independent scattering
can be equal for some elements (sodium in particular).1 The model that we have in mind
is a massive dark photon kinetically mixed with the visible photon. That the coupling to
nuclei in the scattering goes through the SM photon imposes constraints on the coe⇤cients
of the scattering cross-section which we utilize.

These operators also have unusual velocity and momentum dependence:

⌅a =
µ2
N

4⇤(q2 +M2)2

⇤⇤
4v2 � q2

(mN +m⇤)2

m2
Nm

2
⇤

⌅
F 2
1 + (F1 + F2)

2q2
2

m2
N

⌅
, (3)

⌅d =
4µ2

Nq
2

⇤�2(q2 +M2)2

⇤⇤
4v2 � q2

⇤
1

m2
N

+
2

mNm⇤

⌅⌅
F 2
1 + (F1 + F2)

2q2
2

m2
N

⌅
, (4)

with M the mediator mass, � an expansion parameter (associated in some models with
strong coupling in the DM state), mN the nucleus mass, m⇤ the DM mass, and q and
v the momentum transfer and velocity of the incoming WIMP. We use the standard
notation for the form factors F1, F2 for a coupling of a gauge field to N , e.g. ON ⇥
iAµN̄

�
F1�µ +

iF2
2mN

⌅µ⇥q⇥
⇥
N when N is spin-1/2. This unusual momentum and velocity

dependence has been noted before in other contexts [14, 17–23], though in most of these
cases only some of the terms in the full expression are considered (but see [8]). We find,
by contrast, that both terms arising from the magnetic and electric form factors can be
important and give rise to significantly modified spectra.

In this paper we show that non-standard velocity and momentum dependence can,
depending on how they enter into scattering cross-section, reconcile the DAMA and CoGeNT
regions. The dark magnetic dipole moment interaction in particular has the right structure
to give agreement between the two experiments, consistent with null results of other direct
detection experiments. The dark anapole interaction on the other hand does not bring the
two experimental regions together, and its main benefit is to alleviate tension between DAMA
and the null results. The magnitude of the shifts in the preferred DAMA and CoGeNT
regions, and whether this leads to better agreement, is a detailed numerical question.
This can however be understood qualitatively as follows. CoGeNT records slightly lower
momentum transfer than DAMA, and since these operators are momentum suppressed, this
causes CoGeNT to shift slightly up relative to DAMA in comparison to the standard spin-
independent case. More importantly for these operators, however, is the velocity dependence.

1 The operator which is usually called the anapole couples to the current, Oa = ⇥̄�µ�5⇥⇤⇥Fµ⇥ , as discussed

in [17]. This operator has the same spin structure as Eq. (1), but has an additional q2 suppression.
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FIG. 2. Regions of interest and exclusion curves for relevant experiments and parameters as listed

in Table I, assuming an anapole (14) or magnetic dipole (15) Nucleon-WIMP interaction. We

checked that the strong COUPP bound is weaker than the combination of LUX + PICASSO.

Refer to Fig. 1.

constraint from PICASSO as well, and we checked that the COUPP constraint is weaker

than the PICASSO+XENON bound throughout the region. Both the anapole and dipole in-

teractions bring the three regions of interest into good or marginal agreement, but the Xenon

bounds do not loosen for the anapole in the region of interest relative to the spin-independent

case. For the magnetic dipole, more of the CoGeNT preferred region is consistent with the

LUX bounds, while remaining constrained by XENON10 S2 only.

Fig. 3 shows constraints and regions of interest for other spin-independent interactions,

including momentum-suppressed interactions arising from Eq. (4) and isospin-violating in-

teractions (see [22, 36]), Eq. (12) with fn 6= fp. Even given the “xenophobic” choice,

fn/fp = �0.7, which minimizes DM coupling to Xenon, LUX still rules out all of the DAMA

and most of the CoGeNT regions of interest, and much of the CDMS Silicon region of inter-

est. Furthermore, while older studies emphasized that the xenophobic isospin choice brings

the CoGeNT and DAMA regions of interest into “agreement”, we can see that the 99%

C.L. regions for CoGeNT and DAMA are much closer than in the isospin-conserving case,

but do not overlap with each other or with the CDMS Silicon region of interest. For the

momentum-suppressed spin-independent interaction, the regions of interest shift towards

lower masses to compensate for the momentum suppression, while XENON100 and LUX

constraints shift relatively less since the larger target mass implies a larger momentum trans-

fer in the scattering at a given nuclear recoil energy. This shift is not enough, however, to
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where � = (
p
�p +

p
�n)2, with �p,n the scattering cross-sections o↵ protons and neutrons.

For hSp,ni we take the values as in Table 1 of [30]. Here we are justified in neglecting the

momentum-dependence of the spin-dependent nuclear form factor because we are specializing

to the case of light (mDM . 20GeV) DM where only small |~q|b, where b is nuclear size, is

relevant. For the anapole and dipole cases, WIMPs couple to the electromagnetic current

and lead to spin-independent, angular-momentum- and spin-dependent couplings.2 The

nuclear scattering cross-sections are

�a
N = f 2

a

µ2
N

⇡M4

✓
Z2F 2(A; ~q2)

✓
~v2 � ~q2

4µ2
N

◆
+

J + 1

3J
g2NA

2 ~q2

2m2
N

◆
(14)

�d
N = f 2

d

µ2
N

⇡M4

~q2

⇤2

✓
Z2F 2(A; ~q2)

✓
~v2 � ~q2

4µ2
N

+
~q2

4m2
DM

◆
+

J + 1

3J
g2NA

2 ~q2

2m2
N

◆
, (15)

where J is the spin of the nucleus and gN is the nucleus magnetic g-factor. When reporting

cross-sections, we use the convention �̃ = f 2
aµ

2
n/⇡M

4 for the anapole and �̃ = f 2
dµ

2
n/⇡M

4,

⇤ = 1 GeV for the magnetic dipole. In addition, while recent work has suggested that the

inclusion of proper nuclear responses may be important [32, 33], we have explicitly checked

that, for the low momentum transfer relevant for light DM scattering, their momentum de-

pendence is negligible. Hence we proceed with the usual spin-independent form factors. For

the ~q2 and ~q4 momentum dependent operators O1�O3, as done in [13] we will take the stan-

dard spin-independent scattering cross-section in (12) (for O1) or the spin-dependent scat-

tering cross-section in (13) (for O2,O3) and rescale it by a reference momentum-dependent

factor, (~q2/~q2ref)
n, where n = 1, 2. By default we take |~qref| = 1 GeV. If the mediator mass

is comparable to the momentum transfer, other important e↵ects could occur, which we

neglect here.

III. LIGHT MOMENTUM DEPENDENT DARK MATTER VERSUS XENON

CONSTRAINTS

Our results are shown in Figs. 2-4 for spin-independent, anapole, dipole, spin-dependent,

isospin-violating, and momentum-dependent DM. We include fits to the CoGeNT [4], CDMS

Silicon [21], and DAMA results [2], and constraints from the CDMS germanium low-energy

analysis [9], the XENON10 S2 only analysis [5], XENON100 [6], COUPP [8] and PICASSO

2 See e.g. the appendix of [31].
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Contact with Nuclear 
Physics

• Signals have cause DM theorists to look 
beyond the simplest types of DM-
nucleus interactions

• From spin-dependent and spin-
independent to 
• anapole DM
• electric and magnetic dipole DM
• momentum dependent DM



Contact with Nuclear 
Physics

• These interactions are 
theoretically well-
motivated

• But the proper modeling 
of the nuclear response 
has not been taken into 
account until recently

where

�SD

p =
µ2

p

⇡

C�

⇤4

3(f p
SD

)2. (15)

Note that the combination of nuclear responses,

X

N,N 0

fN
SD

fN 0

SD

⇣
W̃ (N,N 0

)

⌃

0 (0) + W̃ (N,N 0
)

⌃

00 (0)
⌘
= 4

J + 1

J
(f p

SD

hSpi+ fn
SD

hSni)2, (16)

gives rise to the usual spin-dependent factors.

B. Anapole Dark Matter

Majorana fermion DM scattering o↵ of nucleons via a spin-1 mediator that kinetically

mixes with the photon proceeds via the following e↵ective interaction:4

Lanapole

int

=
fa
M2

�̄�µ�5�J EM

µ (17)

where

J EM

µ ⌘
X

N=n,p

N̄

✓
QN

Kµ

2mN
� µ̃N

i�µ⌫q⌫

2mN

◆
N (18)

is the electromagnetic current restricted to nucleons. We have used the conventions of [35],

taking Kµ = kµ + k0µ and four-momentum-transfer qµ = p0µ � pµ = kµ � k0µ with p(p0) the

incoming(outgoing) DM four-momentum and similarly k(k0) the incoming(outgoing) nucleon

four-momentum. We have used µ̃ to denote a dimensionless magnetic moment,

µ̃ =
magnetic moment

nuclear magneton
. (19)

The relevant EM constants are µ̃n = �1.9, µ̃p = 2.8, Qp = 1, and Qn = 0.

In the non-relativistic limit,

Lanapole

int

! 2fa
M2

X

N=n,p

(QNO8

+ µ̃NO9

) (20)

where the non-relativistic operators O
8

and O
9

are as defined in [35] and Table II.

4 The non-relativistic reduction for this and other interactions considered in the paper can be

read from Table 1 of [35]. To do so, one must recall the Gordon identities, ū(p0)�µu(p) =

ū(p0)
⇣

(p+p0)µ

2m + i�µ⌫(p0�p)⌫
2m

⌘
u(p) and ū(p0)�µ⌫(p0�p)⌫�5u(p) = ū(p0)

�
i(p+ p0)µ�5

�
u(p). Note that signs

in Table 1 in v1 of [35] for the non-relativistic reduction of relativistic operators with an odd power of

momentum transfer are incorrect by a factor of -1, because the convention q = p � p0 was used rather

than the stated q = p0 � p convention.
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Evaluating Eq. 2, taking c
8

, c
9

from Eq. 20, and substituting the “WIMP form factors”

Rk found in [35] and reproduced in Appendix A, we obtain (for Dirac DM)

�anapole

T =
µ2

T

⇡

✓
fa
M2

◆
2

C�

⇢
~v?2

T W̃ (p,p)
M +

~q 2

m2

N


W̃ (p,p)

�

� µ̃nW̃
(p,n)
�⌃

0 � µ̃pW̃
(p,p)
�⌃

0 +
1

4

⇣
µ̃2

pW̃
(p,p)
⌃

0 + 2µ̃nµ̃pW̃
(p,n)
⌃

0 + µ̃2

nW̃
(n,n)
⌃

0

⌘��
(21)

where C� ⌘ 4j�(j�+1)/3. The shell model predicts that the magnetic moment of a nucleus,

T , is given by

µ̃T = 2µ̃phSpi+ 2µ̃nhSni+ hLpi. (22)

Referring to Table I, one can check that in the q2 ! 0 limit, the term in square brackets

goes to J+1

6J µ̃2

T and W̃ (p,p)
M ! Z2. In this limit, Eq. 21 reproduces the cross-section derived

in [27]:

�anapole

T =
µ2

T

⇡

✓
fa
M2

◆
2

✓
(~v 2 � ~q 2

4µ2

T

)Z2F (ER)
2 + ~q 2

J + 1

6J

µ̃2

T

m2

N

◆
. (23)

When drawing bounds or regions of interest, we will parameterize the anapole coupling

strength via �̃ = f 2

aµ
2

p/⇡M
4.

C. Dipole-Interacting Dark Matter

We next consider Dirac fermion DM that acquires dipole moments so that the e↵ective

WIMP-nucleon interaction is given by

Lmagnetic dipole

int

=
f
md

M2

�̄
i�µ⌫q⌫
⇤

�J EM

µ (24)

! 2f
md

M2

X

N=n,p

✓
QN

✓
mN

⇤
O

5

� ~q 2

4m�⇤
O

1

◆
+ µ̃N

✓
mN

⇤
O

6

� ~q 2

mN⇤
O

4

◆◆
.

(25)

Here again, we evaluate Eq. 2, taking c
1

, c
4

, c
5

, c
6

from Eq. 25, and substitute the

“WIMP form factors” Rk of [35] to obtain

�magnetic dipole

T =
µ2

T

⇡

✓
f
md

M2

◆
2 ~q 2

⇤2

⇢
C�~v

?2

T +
~q 2

4m2

�

�
W̃ (p,p)

M +

C�
~q 2

m2

N


W̃ (p,p)

�

� µ̃nW̃
(p,n)
�⌃

0 � µ̃pW̃
(p,p)
�⌃

0 +
1

4

⇣
µ̃2

pW̃
(p,p)
⌃

0 + 2µ̃nµ̃pW̃
(p,n)
⌃

0 + µ̃2

nW̃
(n,n)
⌃

0

⌘��
. (26)
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As for Eq. 21, one can verify that in the q2 ! 0 limit, we reproduce the results of [27]:5

�magnetic dipole

T =
µ2

T

⇡

✓
f
md

M2

◆
2 ~q 2

⇤2

✓✓
~v 2 � ~q 2

4

✓
2

mTm�
+

1

m2

T

◆◆
Z2F (ER)

2 + ~q 2

J + 1

6J

µ̃2

T

m2

N

◆
.

(27)

As in [36], when drawing bounds or regions of interest, we will parameterize the magnetic

dipole coupling strength via �̃ = f 2

md

µ2

p/⇡M
4 and take ⇤ = 1 GeV.

Likewise, the electric dipole reduces to,

Lelectric dipole

int

=
f
ed

M2

�̄
�µ⌫q⌫�5

⇤
�J EM

µ (28)

! 2f
ed

M2

X

N=n,p

✓
�QN

mN

⇤
O

11

+ µ̃N

✓
mN

⇤
O

15

+
m�~q 2

4m2

N⇤
O

11

◆◆
. (29)

Similarly to the anapole and magnetic dipole, this reduces to

�electric dipole

T =
µ2

T

⇡

✓
f
ed

M2

◆
2 ~q 2

⇤2

C�

✓
W̃ (p,p)

M + terms of order
~q 2

m2

N

◆
. (30)

For the electric dipole, the interesting terms depending on the novel response function W
�

00

(arising fromO
15

) are momentum-suppressed compared to the spin-independent term. Thus,

at the low energies relevant for direct detection, the cross section has the same form as the

momentum-suppressed, spin-independent “pseudoscalar-mediated” cross section considered

in [25] and below, and is an example of how a momentum-suppressed spin-independent

interaction could naturally arise with proton-only “photonic” [37] couplings. In Sec. III, we

will use the momentum-suppressed, spin-independent case (q2 ⇥ SI) to establish what sort

of typical error to expect in form factors at larger momentum transfer by comparing results

for the q2⇥SI rate using either the spin-indepentent (M) form factors of [1, 35] or using the

Helm form factor.

D. (~L · ~S)-Generating

In the case of both the anapole and magnetic dipole operators, the new response �,

as well as ⌃0 (which is not the usual spin-dependent combination ⌃0 + ⌃00), compete with,

and in some cases dominate over, the charge form factor M . By contrast, the new �00

response in the electric dipole operator is suppressed by q2/m2

N in comparison to the charge

5 Up to a of 4 factor having to do with the normalization of operator coe�cients.
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form factor, so that, unless the mediator couples only to the neutron, the standard form

factor M always dominates in the electric dipole operator. Here we consider what types of

interactions allow the (~L · ~S)-Generating �00 response to dominate, when the contribution

from M is subdominant. In particular, we consider the interaction highlighted in [1],

LLS

int

=
f
LS

⇤2

�̄�µ�
X

N=n,p

✓
N
1

q↵q↵

m2

N

N̄�µN + N
2

N̄
i�µ⌫q⌫
2mN

N

◆
(31)

! f
LS

⇤2

X

N=n,p

✓✓
N
2

4
� N

1

◆
~q 2

m2

N

O
1

� N
2

O
3

+ N
2

mN

m�

✓
~q 2

m2

N

O
4

�O
6

◆◆
. (32)

From Eqs. 38-40 of [35]

�LS

T =
µ2

T

⇡

✓
f
LS

⇤2

◆
2 ~q 2

m2

N

X

N,N 0

 
~q 2

m2

N

⇢✓
N
1

� N
2

4

◆✓
N 0

1

� N 0
2

4

◆
W̃ (N,N 0

)

M +

N
2

✓
N 0

1

� N 0
2

4

◆
W̃ (N,N 0

)

�

00M +
N
2

N 0
2

4


W̃ (N,N 0

)

�

00 +
C�

4

m2

N

m2

�

W̃ (N,N 0
)

⌃

0

��
+ ~v? 2

T

N
2

N 0
2

8
W̃ (N,N 0

)

⌃

0

!
.

(33)

To parameterize the overall coupling strength we will use �̃ = f 2

LS

µ2

p/⇡⇤
4. We will consider

the case where

N
1

� N
2

4
= 0 and p

2

= n
2

= 2. (34)

Of the target elements we examine in this paper, for all but fluorine the �00 response domi-

nates over the ⌃0 response (see Table IV). Even for fluorine the ~v? 2

T term becomes negligible

for recoil energies of order 1 keV and above. Therefore we compute rates without including

the ~v? 2

T term.

E. Pseudoscalar-Mediated Dark Matter

Lpseudoscalar

int

=
1

M2

X

N=n,p

�
fN
1

i�̄�5�N̄N + fN
2

i�̄�N̄�5N + fN
3

�̄�5�N̄�5N
�

(35)

The terms in (35) are included in decreasing order of importance: if f
1

, f
2

, and f
3

are

comparable, the f
1

term dominates over the f
2

term, which dominates over the f
3

term.

This is because the f
1

term leads to a q2-suppressed spin-independent interaction, the f
2

term to a q2-suppressed spin-dependent interaction, and the f
3

term to a q4-suppressed

spin-dependent interaction. We thus consider each term separately, and focus on the isospin
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X 4⇡
2J+1

W (p,p)
X (0)

M spin-independent Z2

⌃00 spin-dependent (longitudinal) 4J+1

3J hSpi2

⌃0 spin-dependent (transverse) 8J+1

3J hSpi2

� angular-momentum-dependent 1

2

J+1

3J hLpi2

�00 angular-momentum-and-spin-dependent ⇠ h~Sp · ~Lpi2a

a See Table 1 of [1].

TABLE I. Summary of the five nuclear responses relevant for DM direct detection. We also include

the q2 ! 0 limit of the associated response function, 4⇡
2J+1

W (N,N 0
)

X , for N = N 0 = p. The response

functions W are as defined in Eq. 41 of [35]. Responses M and �00 can interfere, as can ⌃0 and

�. In the q2 ! 0 limit, 4⇡
2J+1

W (N,N 0
)

�⌃

0 ! �2J+1

3J hLN ihSN 0i. The response entering into “standard”

spin-independent scattering is M while that entering into “standard” spin-dependent scattering is

⌃00 + ⌃0. As in, [1], we will refer to � and �00 as “novel” responses.

The models we consider, besides being well motivated by UV completions, also encom-

pass the most interesting operators in terms of probing the new nuclear responses. As we

will see explicitly below, di↵erent nuclei can have very di↵erent sensitivity to these new

responses. This can already be seen in the earlier work of [27], which utilized operators

in a relativistic e↵ective field theory. The anapole interaction, for example, leads to a

proton-orbital-angular-momentum response (�), which, because of the stronger � response

of sodium than germanium and xenon (see Table IV), can bring the DAMA region of interest

into agreement with the CoGeNT region of interest, and simultaneously reduce the tension

between DAMA and xenon-target experiments. In the treatment of [27], the stronger re-

sponse of sodium is apparent simply because of its large nuclear magnetic moment.1 The

new responses, as the momentum transfer drops to zero, also only depend on the spin and

orbital angular momentum of the nucleus, so that the new responses in this limit well re-

produce the result in [27], which neglects possible nonstandard momentum dependence of

the nuclear response. As the momentum transfer becomes large compared to inverse nuclear

size, this kind of treatment breaks down.

Thus, while this “standard treatment” using operators in a relativistic e↵ective field

1 The magnetic response is a particular combination of orbital angular momentum and spin responses.
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Does it matter?

• Put into the context of sensible UV 
completions

• Under what circumstances should one 
be concerned?

Model Relativistic Ops. Nonrel. Ops. Resp.

pseudo-
Orel

2

=i�̄�N̄�5N O
10

= i~SN · ~q
mN

⌃00

mediated
Orel

3

=i�̄�5�N̄N O
11

= i~S� · ~q
mN

M

Orel

4

=�̄�5�N̄�5N O
6

= (~S� · ~q
mN

)(~SN · ~q
mN

) ⌃00

magnetic Orel

9

=�̄i�µ⌫ q⌫
mM

� Kµ

mM
N̄N O

1

= 1�1N ,O
5

= i~S� · ( ~q
mN

⇥ ~v?) M,�

dipole Orel

10

=�̄i�µ⌫ q⌫
mM

�N̄i�µ↵
q↵

mM
N O

4

= ~S� · ~SN ,O
6

⌃00,⌃0

anapole
Orel

13

=�̄�µ�5� Kµ

mM
N̄N O

8

= ~S� · ~v? M,�

Orel

14

=�̄�µ�5�N̄ i�µ⌫q⌫

mM
N O

9

= i~S� · (~SN ⇥ ~q
mN

) ⌃0

electric Orel

17

=i Pµ

mM
�̄�µ�5� Kµ

mM
N̄N O

11

= i~S� · ~q
mN

M

dipole Orel

18

=i Pµ

mM
�̄�µ�5�N̄ i�µ⌫q⌫

mM
N O

11

,O
15

= �
⇣
~S� · ~q

mN

⌘⇣
(~SN ⇥ ~v?) · ~q

mN

⌘
M,�00,⌃0

~L · ~S-
Orel

5

= Pµ

mM
�̄� Kµ

mM
N̄N O

1

M

generating
Orel

6

= Pµ

mM
�̄�N̄ i�µ⌫q⌫

mM
N O

1

,O
3

= i~SN ·
⇣

~q
mN

⇥ ~v?
⌘

M,�00,⌃0

and Orel

10

(see above)

TABLE II. Relativistic operators from Table 1 of [35] (v1) that we consider in this work, grouped

according to the linear combinations that we consider together. Here K = k + k0 where k and

k0 are the incoming and outgoing four-momenta of the nucleon N , respectively, and similarly for

the DM momentum P = p + p0, and q is the four-momentum transfer (q = k � k0 = p0 � p).

We also include the non-relativistic operators that appear in the non-relativistic reduction of the

given relativistic operator. Note that O
1

is the standard spin-independent operator and O
4

is the

standard spin-dependent operator. Finally, we also include the dependence on the five nuclear

responses relevant for DM scattering, which are summarized in Table I. See also §II for discussion.

theory can work well in the low momentum transfer limit, the nuclear responses of [1] must

be employed at larger momentum transfer to correctly model the DM-nucleus interaction.

Thus direct detection rates for weak scale or heavier DM, for which larger momentum transfer

is relevant, can be more a↵ected by the new nuclear responses than for low-mass DM, where

the e↵ect of the momentum dependence of the new responses is negligible.

In addition, while the new nuclear responses of [1] should correctly reproduce macroscopic

properties of the nucleus like its spin and magnetic moment in the momentum transfer q2 ! 0

limit, in practice the responses for some nuclei di↵er substantially from the measured result.

Thus comparing the the nuclear responses from [1] against the treatment using operators

6
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Light Dark Matter

• Low 
momentum 
transfer; 
essentially 
irrelevant once 
properly 
normalized
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CDMS Ge L-E
PICASSO

no SD form factors
full form factors
renormalized form factors

FIG. 1. Limits and regions of interest for a representative set of direct detection experiments.

Thick, dotted lines are derived using the full form factors provided in [35], thin solid lines are those

derived as described in [36], employing only the helm form factor as the charge-dependent form

factor and no spin-dependent form factors, and thin dashed lines were derived using the “full form

factors” of [35] but (re)normalized to the [36] values at q2 ! 0.

deviates from the patterns of the spin-dependent and charge-dependent responses; the hier-

archy of response strength of fluorine, sodium, germanium, iodine, and xenon for scattering

o↵ of protons or neutrons is quite di↵erent than the hierarchy of response strengths for the

standard spin-independent and -dependent responses. This is because the � response is sen-

sitive also to the angular momentum of the orbital shell occupied by the unpaired nucleon

[1], making 73Ge and 127I particularly sensitive in comparison to 19F and 129,131Xe, respec-

tively. An interesting aspect of the �00 response is that it relates to the occupation levels of

orbitals and can be nonzero even for nuclei with zero total angular momentum [1], though

for the target nuclei highlighted here the hierarchy of �00 response strengths approximately
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Heavy Dark Matter
• Potentially important for certain 

elements; simulated signal

Anapole, mc=80 GeV HsolidL, 250 GeV HdottedL
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FIG. 3. For the anapole interaction, (top two panels) expected event spectrum (pink) alongside the

ratio of the foil rate to the true rate (blue), and (bottom four panels) fits for idealized iodine-target

and xenon-target experiments assuming full form factors (pink, used to generate the events in the

first place) or foil form factors (blue). True mass and cross sections are marked with an “⇥.” The

solid is for simulated 80 GeV DM and the dashed for 250 GeV. In the middle left panel no curve

appears for the 250 GeV case because a fit with the wrong form factors gives a poor fit to the

data. The results from fits to two sets of simulated data (100 events with 0 < ER < 50 keV or

0 < ER < 100 keV) for each target are shown in the bottom four panels.
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Hq4êqref4LâLongitudinal-Spin-Dependent H f3n= f3pL, mc=80 GeV HsolidL, 250 GeV HdottedL

0 20 40 60 80 100 120

0.6

0.7

0.8

0.3

1.

1.7

ER @keVD

r

‚
N
ê‚E

R
@eve

nt
sêke

V
DIodine

0 20 40 60 80 100 120

0.4

0.5

0.6

0.7

0.8

0.12

0.47

0.82

1.17

1.52

ER @keVD
r

‚
N
ê‚E

R
@eve

nt
sêke

V
DXenon

ââ ââ

50 100 200 500 1000
1â10-36

2â10-36

5â10-36

1â10-35

2â10-35

mc @GeVD

sé
@cm

2 D

I target, 100 events with ER<100 keV

ââ ââ

50 100 200 500 1000
1â10-36

2â10-36

5â10-36

1â10-35

2â10-35

mc @GeVD

sé
@cm

2 D
Xe target, 100 events with ER<100 keV

ââ ââ

50 100 200 500 1000
1â10-36

2â10-36

5â10-36

1â10-35

2â10-35

mc @GeVD

sé
@cm

2 D

I target, 100 events with ER<50 keV

ââ ââ

50 100 200 500 1000
1â10-36

2â10-36

5â10-36

1â10-35

2â10-35

mc @GeVD

sé
@cm

2 D

Xe target, 100 events with ER<50 keV

FIG. 4. For a momentum-dependent longitudinal spin-dependent interaction, (top two panels)

expected event spectrum (pink) alongside the ratio of the foil rate to the true rate (blue), and

(bottom four panels) fits for idealized iodine-target and xenon-target experiments assuming full

form factors (pink, used to generate the events in the first place) or foil form factors (blue). True

mass and cross sections are marked with an “⇥.” The solid is for simulated 80 GeV DM and

the dashed for 250 GeV. The results from fits to two sets of simulated data (100 events with

0 < ER < 50 keV or 0 < ER < 100 keV) for each target are shown in the bottom four panels.
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Hq4êqref4LâLongitudinal-Spin-Dependent H f3n= f3pL, mc=80 GeV HsolidL, 250 GeV HdottedL
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FIG. 4. For a momentum-dependent longitudinal spin-dependent interaction, (top two panels)

expected event spectrum (pink) alongside the ratio of the foil rate to the true rate (blue), and

(bottom four panels) fits for idealized iodine-target and xenon-target experiments assuming full

form factors (pink, used to generate the events in the first place) or foil form factors (blue). True

mass and cross sections are marked with an “⇥.” The solid is for simulated 80 GeV DM and

the dashed for 250 GeV. The results from fits to two sets of simulated data (100 events with

0 < ER < 50 keV or 0 < ER < 100 keV) for each target are shown in the bottom four panels.
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Heavy Dark Matter

• Mostly not 
relevant for 
current 
constraints, 
except COUPP

• Would be 
relevant for 
Xenon, except 
for low recoil
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FIG. 5. Constraints on DM-nucleon cross sections from LUX and XENON100 (Xe targets), CDMS

II (Ge Target), COUPP (F and I target), and PICASSO (F target) for scattering via our benchmark

models. Solid lines show constraints using the form factors provided by [1, 35] and dashed were

derived assuming the foil form factors discussed in Sec. III B. The spin-independent constraints

given by [1, 35] or Helm form factors are shown for reference.

periment, the more relevant the form factors become. The momentum dependence of novel

nuclear responses for smaller elements such as germanium, and for yet smaller elements like

fluorine and sodium, is practically negligible over the recoil energy range relevant for direct

detection. However, 73Ge is very sensitive to the orbital-angular-momentum response, so

if a germanium-based experiment were to probe an order 100+ keV energy range, it could
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Summary

• The window for the standard WIMP is closing, 
though it will be difficult to close completely

• Well-motivated lower mass candidates, 
though purported signals seem in substantial 
tension with constraints

• Signals have pushed us to look at non-
standard types of interactions, but must be 
careful to appropriately attach nuclear physics



Hidden Dark Worlds

Standard Model
Mp � 1 GeV

Our thinking has shifted

From a single, stable weakly 
interacting particle .....

(WIMP, axion)

...to a hidden world 
with multiple states, 

new interactions

Models: Supersymmetric light DM sectors,
Secluded WIMPs, WIMPless DM, Asymmetric DM .....

Production: freeze-in, freeze-out and decay, 
asymmetric abundance, non-thermal mechanicsms .....


