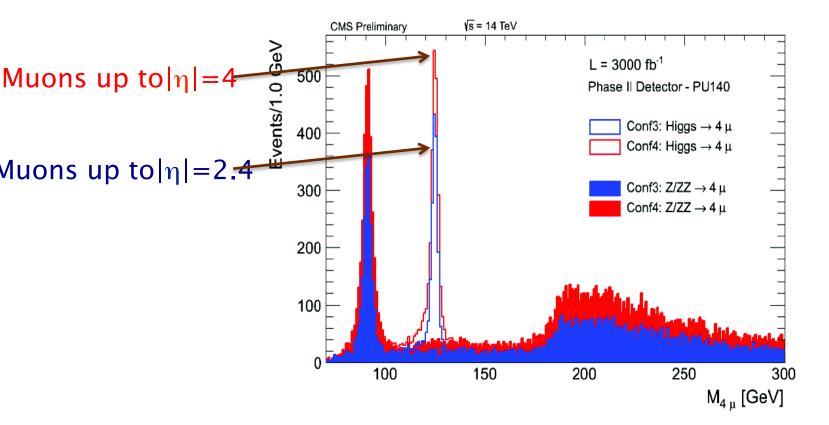


Challenges for SLHC Detector Sensors $2.4 \le \eta \le 6$

David R Winn Fairfield/CMS

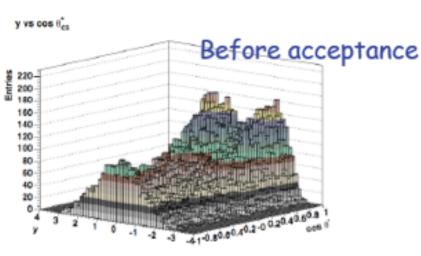
winn@fairfield.edu

Thank you to the organizers, to colleagues on CMS, especially the Forward Calorimetry groups, and apologies to ATLAS for likely mistakes in discussing their publicly available information.

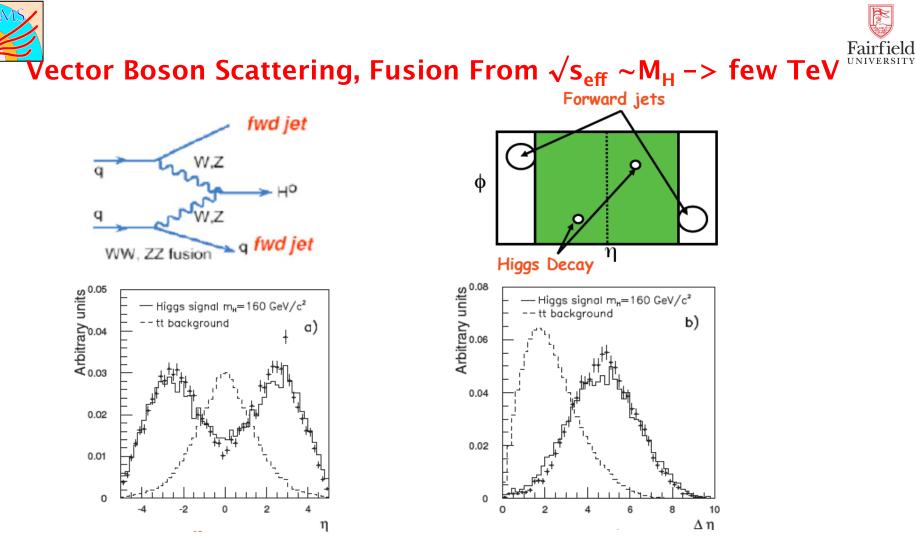


- An Example MET: 1 TeV muon @ $\eta=3$: $E_T \sim 100 \text{ GeV} \rightarrow CMS/ATLAS: N.A.!$
- "Processes" where forward detectors may enhance physics reach:
 - Z/W Forward/Backward Asymmetries/BSM physics
 - SuSY: MET(->smaller); F/B & Same Sign Asymmetries;
 - 125 GeV Higgs: Acceptance; $H \rightarrow \mu\mu\mu\mu$, $H \rightarrow \mu\mu$
 - Vector Boson collisions: $\gamma\gamma$, γW , WZ, W⁺W⁻, W[±]W[±], ZW
 - *Color not exchanged* -> E-W bosons collide ~ headon -> *forward tag-jets*
 - Boson Fusion 3,4... boson vertices.
 - Inverse decay: γγ->H
 - Is H consistent with damping strong boson interactions?
 - **PDF's at low x** consistency; calibrations; acceptance J/Ψ ,Y...
 - $-\mathbf{F}_2(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_n)$: multiple D-Y, Z/W Correlation Fn's
 - b_x jets, W, Z -> jet-jet ID
 - **Rare Decays** $B_s \rightarrow \mu \mu$ (μ 's: LHCb 2< η <5; CMS 0 $\leq \eta$ < \pm 2.4)

Exotica- Heavy resonance/Z'/W'; heavy quasi-stable charged, neutral...



Tracking and muon system coverage extension from | $\eta|=2.4$ to $|\eta|=4$ under study Sizable impact on H->ZZ->4µ acceptance: +45%! H->µµ similar gains


Muon Pair F/B Asymmetries – $A_{FB} = (\sigma_F - \sigma_B)/(\sigma_F + \sigma_B)$ $\sigma_{F,B}$: d σ (qq->µµ), integrated over hemispheres. A_{FB} tests V–A in the SM; deviations: new physics BSM. Add µ's 2.5≤η≤5: ~50% more events, x2 smaller error, 4% larger A_{FB} .

	η_{max}	Events in Fit	$A_{ m FB}^{ m gen}$	b^{gen}
(a)	∞	50,000	0.611 ± 0.006	1.03 ± 0.03
(b)	5.0	49,800	0.611 ± 0.006	1.03 ± 0.03
(c)	3.0	42,100	0.602 ± 0.008	0.97 ± 0.03
(d)	2.4	33,400	0.590 ± 0.012	1.00 ± 0.04
(e)	2.1	28,000	0.585 ± 0.015	0.98 ± 0.04
(f)	0.9	6,560	0.478 ± 0.115	1.08 ± 0.15

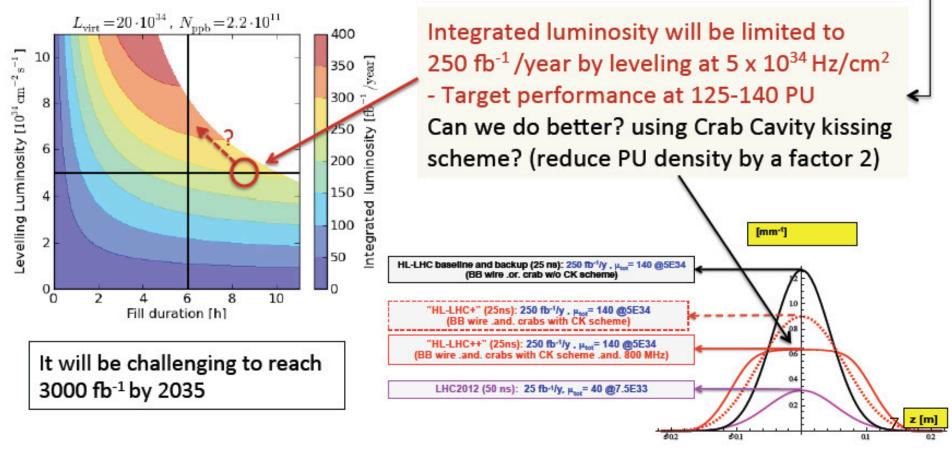
$$P(\cos \theta^*; A_{\rm FB}, b) = \frac{3}{2(3+b)}(1+b\cos^2 \theta^*) + A_{\rm FB}\cos \theta^*$$

http://www.pha.jhu.edu/~ntran/cms/papers/note05_022.pdf

S/LHC is an electroweak Boson-Boson Collider.

Checking Strong Boson Scattering/Higgs Unitary Requires>500 fb⁻¹ Tag Jets of~equal E, η ; $\Delta \Phi \sim \pi$, then heavy object fusion central- $\eta \sim 0$

Whither & Whether SLHC....? Start ~10 Years Hence... Ends >20 Years Hence

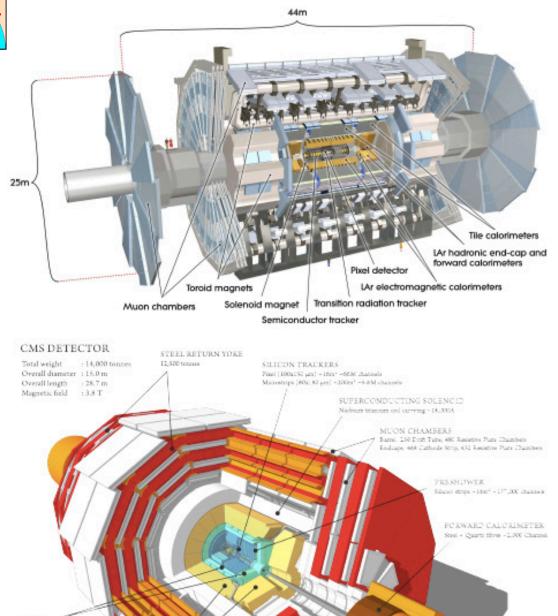

- How will the LHC perform till its end? When will S/LHC finish?
- Will the experiments be capable of facing the challenges set by high luminosity/radiation and age in the forward region?
- Is there time and funds for major upgrades 2021-23?
- To which level will we be able to fulfill precision Higgs physics?
- What BSM physics needs forward region μ , jet, [e, γ] measures?
- Some Answers elaborated in the last year in the context of ESG, Snowmass and ECFA

Beyond (2021) 2024

LHC:replace ~1.2km: IR-quads(inner triplets), 11T short dipoles Nb₃Sparfield

Phase 2: High Luminosity LHC upgrades at Interaction Regions

- New low-β quadrupoles improve beam focus allows ~ 70 fb⁻¹/year
- & Beam-Beam Wire Compensation reduce long range beam-beam effects ~ 170 fb⁻¹/year
- & Matching sections & Crab Cavities compensate crossing angle
- & New options: CC kissing scheme reduce PU density, 200 MHz RF in LHC longer & more intense bunches



Muons: -2.4 $\leq \eta \leq$ 2.4 Passive shielding $\eta >$ 2.4

Calorimeters: Performance η>3?

Trackers? η>2.5?

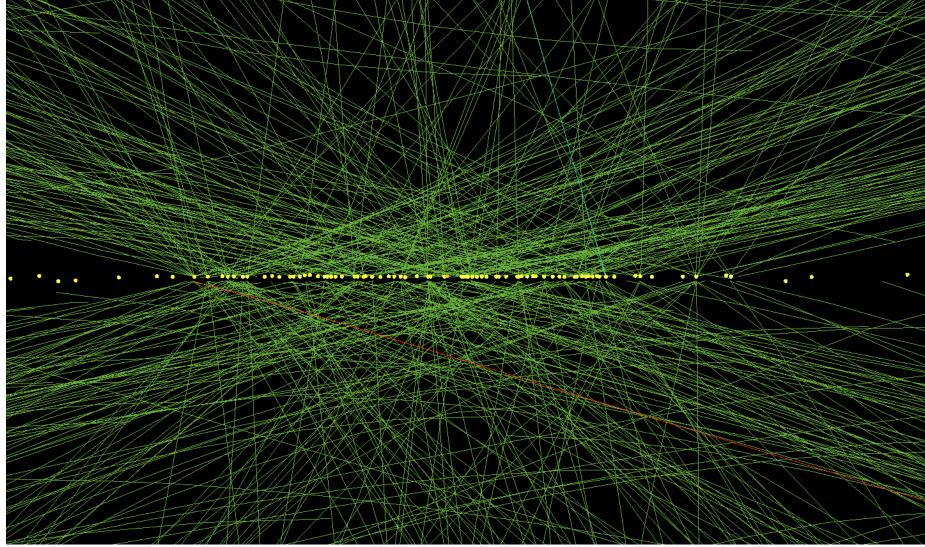
CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL) -79,000 confilating P9W0, crystals

HADRON CALORIMETER (HCAL) Isaus + Plastic scintillatic -7,000 dannels

Taking 2012 as a Reference:

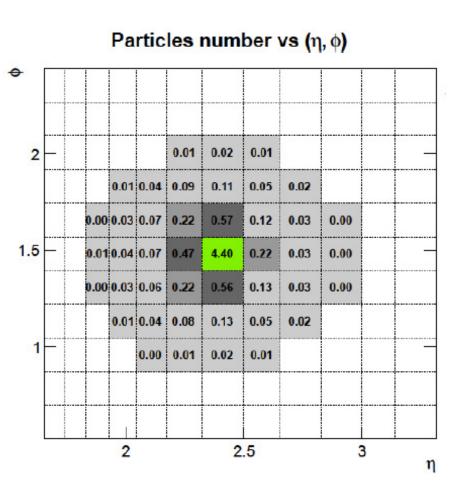
 $\begin{array}{l} T= \ 6.5 \times 10^6 \ \text{s}, \ \pounds = 23 \ \text{fb}^{-1} < \pounds > = 3.7 \ \text{nb}^{-1} \ \text{s}^{-1} \\ 10 \ \text{years} \ @ \ < \pounds > = 50 \ \text{nb}^{-1} \ \text{s}^{-1} \ \ - > \ \pounds = 3000 \ \ \text{fb}^{-1} \\ \text{Pileup:} \ (\sigma_{\text{lnel}} = 81 \ \text{mb}, \ n = 2808, \ 25 \ \text{ns} \ \text{spacing}) \\ & \ 130 < \mu < 150 \end{array}$

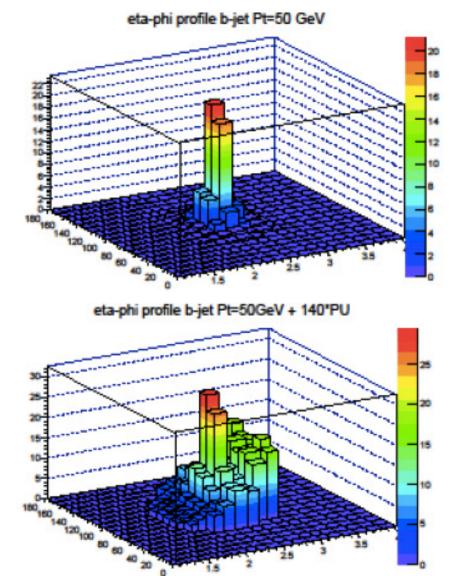
CMS, ATLAS designed for relatively low pileup, μ ~24: - NB! BUT Excellent performance with μ up to 35!


Is precision Physics possible with $\mu \sim 140$?

- Primary Vertex identification (e.g. for $H > \gamma\gamma$)
- Secondary vertex and b-tagging
- Tracking needs to cope with much higher occupancy
- Huge energy flow ($\Sigma E_T \sim 60$ GeV per pileup event), MET resolution and tails
- Forward jets association to vertex (pivotal for VBS)

PileUp!




78 primary vertices ~Double this all too often....

quark jet pT=50 GeV, η =2.4 transverse jet size ~ single hadron shower

Pile-Up Mitigation Rules-of-Thumb for Sensors (ROTs may apply to all regions)

- pixels -> 25-50 µm
- non-hydrogenous (neutron bad bongoes)

Calorimeters: FOM: Can Your Calorimeter resolve/tag a muon to $\sim 5\sigma$? Within a jet?

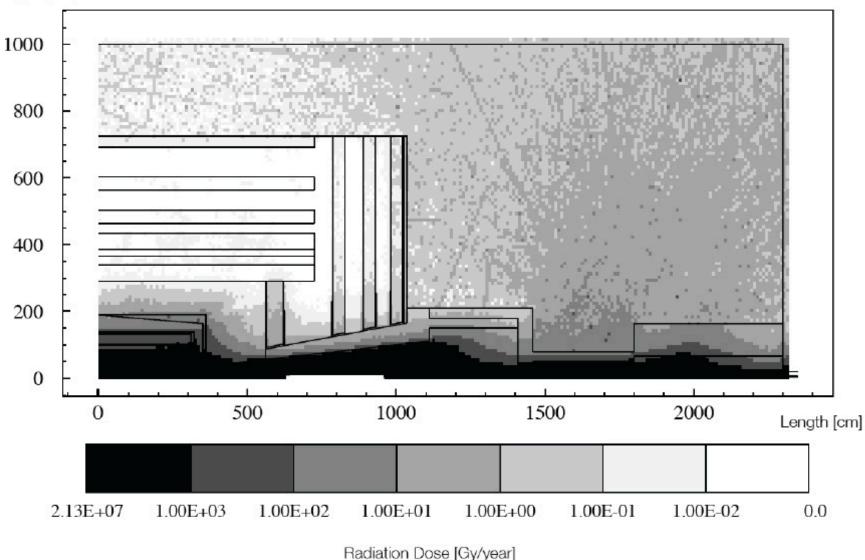
- $\Delta\eta x \Delta \phi$ increased by *at least* 2x2
- Transverse segmentation: 1/2-1/3 shower diameter (conflict with above?)
- T_{integration} < 25ns; rate 40 Mhz; σ_t <0.5ns -> Waveform Analysis? Hysteresis?
- $\sigma E_{h}/E_{h} \rightarrow 30\%/\sqrt{E} + 1-2\%$ [Compensation]*
- $\sigma E_{em}/E_{em}$ -> <10%/ \sqrt{E} + 1% AND Compensated*
- Low background/fake signal generation from punchthru, neutrons,...
- Denser** (and/or Increase distance to crossing)
- Thicker to beam: 10 L_{int} : ~1 per 1000 π ,K go whistling right through/µ-like

Muons:

- Increase η up to ~5
- Pixellate in high rate regions
- Non-hydrogenous the gas of neutrons is a problem
- T_{integration} < 25 ns; rate 40 MHz
- Neutrons: Methods to reduce the flux absorbers

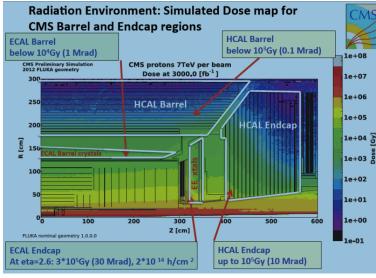
* - Top tags via jet-jet require excellent jet resolution – some jets in forward region...

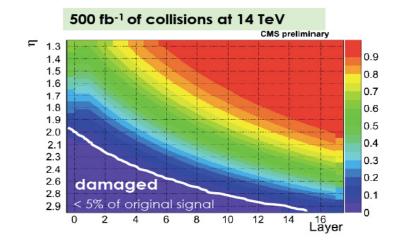
** - ACHTUNG! Pb, W produce ~4-5 more neutrons per hadron than Cu, and they spill out over ~ $^{10}_{12}$ 0 ns. W absorber excellent for an e-m compartment, as long as it is compensated.



3

3000 fb⁻¹ - 10+ years of 4x10³⁴< L ≤10³⁵ • *Radiation Damage! 0.1-2 GigaRads η>3*


Length [cm]



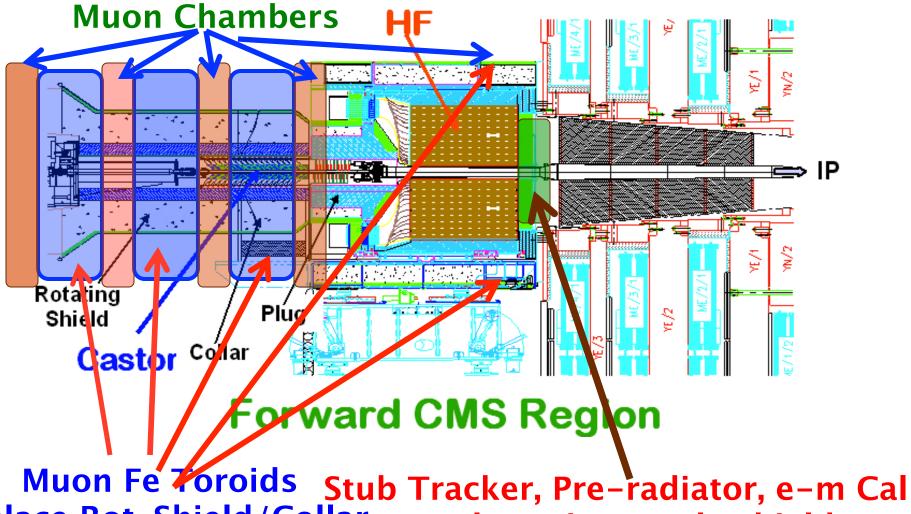
- Ex: CMS Forward Calorimeter Quartz Fibers embedded in Fe $3 \le \eta \le 5$
- $-5 \le \eta \le 3$ Survives 2 GRad signal loss in highest $\eta \sim 40-60\%$
- Damn Fast Signal over in ~12ns + Visible hadron "tube"~ 9cm Diameter
- BUT Needs much better $\sigma E/E <->$ compensation PhotoStat. Ltd.
- Needs thicker absorber

CMS Scintillator Endcaps

ATLAS LArgon Forward Calorimetry - Cu rods embedded in LAr survives;

- ~ x2 Better Resolution than CMS
- in-LAr electronics may need work(?)
- Ion current, potential for bubbles/cooling problematic at 5 x 10^{34} .
- Even smaller drift gaps?

Calorimeter Raddam Mitigation Many plastics -> Dust! *Require Low Activation*



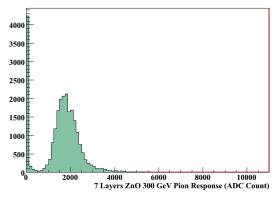
- noble elements
- metal & semi-conductor oxides [scintillation, ionization, Cerenkov, Secondary Emission(SE)] Examples:
 - ZnO:Ga; SiC; Al₂O₃(alumina/sapphire), BeO, WO₂; Quartz (epi Si fails $\eta > 3$)
- PMT dynodes, Accelerator Beam monitors (CERN BLM's: 10²¹ p/cm² no loss of signal) (Metal Oxides & Fluorides)
- III-V semiconductors & semiconductor alloys with large bandgaps: GaAs, GaInP, InGaAs...(Lower Signals, \$\$-yet common digital radios)
- Diamond (doping) [Aside: SE Gain -> 3000! Xmission dynode films]
- Scint/WLS: Thin films, nanocrystals embedded, coated on quartz, metal,... (+*ALD*, *MOCVD*, *Flood MBE*, *Large flat-panel tooling*....)
- Rapid Periodic Replacement: robotics, liquids, gasses
- Annealing liquids, soft materials, thermal/optical Ex: BaF₂ anneals fully with ~1 day of UV

Forward μ System?

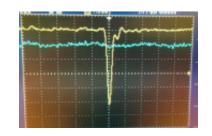
eplace Rot. Shield/Collar -replaces inert poly shield 16

- ~2-3 m of Fe Toroids: in 4 *or many more* Segments ~1.8 T Saturation. Superferric? H_{TC}LN₂ -2.2-2.5T inner radius; SC Toroids B>3T
- ~1-1.5 m max radius chambers, 50 µm pixels nonhydrogenous –> Si trackers!
- ~0.5 m wide chamber stacks (100 μ rad per stage)
- σ_p/p ~11-12% MS limit @ 1.5 TeV (6 Toroid, 2.5m Fe)
 p term in dp (B²L) ~10⁻⁴ p (GeV)
- ->low Z Toroids: Al($\rho=2.7$), Alumina($\rho=4$ -> Porous Al₂O₃)
 - ~1 L_{int} thick toroids + Energy "harps" for Brem ID

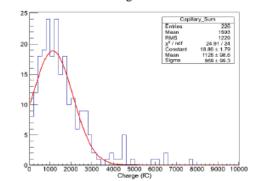
Compensation via Cerenkov Light*


Tile Dual Readout – use to tune e/h->1

A Toy Example: Back-Back Quartz Tile + Rad-Hard Scintillator Tile: Scintillator Tiles: Lscint boxes; BaF2+UV anneal; ZnO:Ga coated Quartz, ReadOut by WLS fibers:


Robotic-Replaceable plastic; LiqWLS or soft WLS material (pTP) in quartz capillary cores or on quartz cores; annealable materials;

E-M compartment - 0.5Lrad W plates Hadron Compartment: - 0.5 Lint Cu plates



0.2µm ZnO(4%Ga) film on 100µm thick quartz tile x 7 tile stack < 0.8mm tile Exposed MIPs (300 GeV π) ZnO:Ga <2ns; 10-20% Nal

700µmx25 cm Quartz Capillary Anthracene Core Via vacuum melt imbibition MIP-10 mV/div x 10ns/div 8 p.e./end Both charges > 20 fC

Bonus! Porous Al₂O₃ Cladding n~1.25 - TIR w/H₂O! On quartz: NA~0.9

*D.R.Winn and W.A.Worstell, Compensating Hadron Calorimeters with Cerenkov Light, IEEE Trans.Nuc.Sci 36,334(1989) Secondary Emission Ionization Calorimeters?

•Secondary Emission(SE): Rad-Hard + Fast (Damn Fast!)

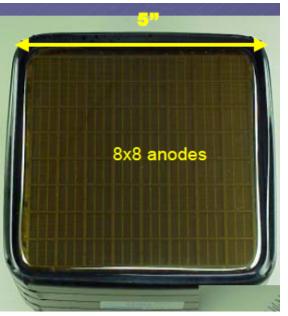
- a) Metal-Oxide SE PMT Dynodes survive > 100 GigaRad

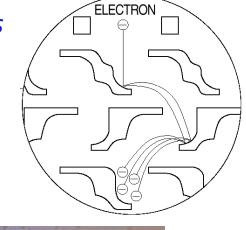
- b) SE Beam Monitors survive 10²¹ mip/cm²

• SEe signal: SE surfaces inside em/had Showers:

- SE yield δ : Scales with particle momentum \sim dE/dx

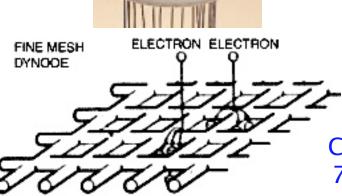
- e⁻: 3 < δ <100, per 0.05 <e⁻<100 KeV (material depnt)
- δ~1.05 -1.3 (0.05-0.1 SEe⁻ per MIP)
- BUT SEe Must be Amplified do this exactly like p.e.... NB: an SEe is statistically exactly like a p.e.


g >10⁴e/SEe which are generated by shower particles) (just like a p.e. is defined from a photoelectron)



SEe Dynodes: Etched Metal Sheets, Mesh

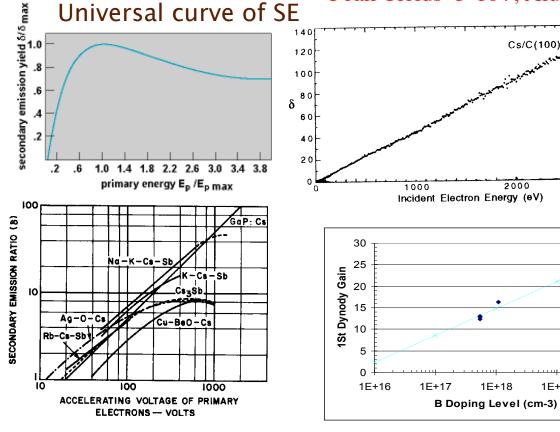
Hamamatsu Sheet Dynodes 15 cm now -> ~50 cm

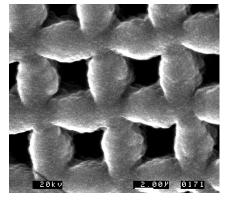


Use dynodes as aborber & detector - quasi heterogeneous

CuBe Mesh 37% transparent, 75 µm apertures- <\$1520n²

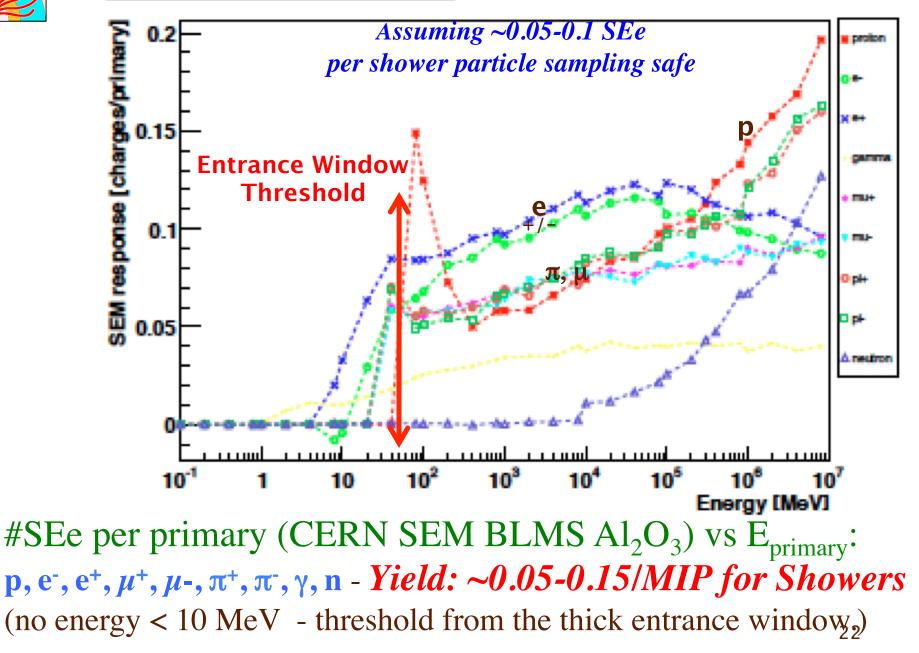
D_n-D_{n+1}: 0.5 mm C-C mesh: 13 μm Wire diameter: 2 μm 15D: g~10⁵, B_z~2 T B(20°)~10%



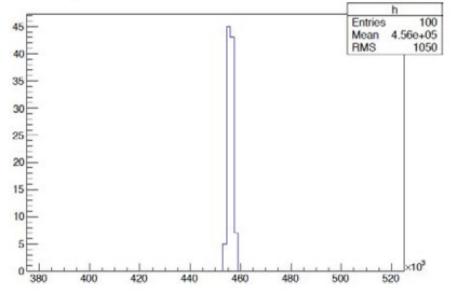

Low Cost High SE Yield Materials Peak Yields~5-10+; Alumina Easy

3000

1E+20


Diamond nucleated on Si MCP 12µm centers

B-doped Synthetic Diamond - 100 *nm poly film nucleated on* W - 300V@ 1KVe: $\delta = 40!$ Transmission Dynodes -


1E+19

Sensitivity of SEM detector

Secondary Emission Ionization Calorimeters

GEANT4 MC

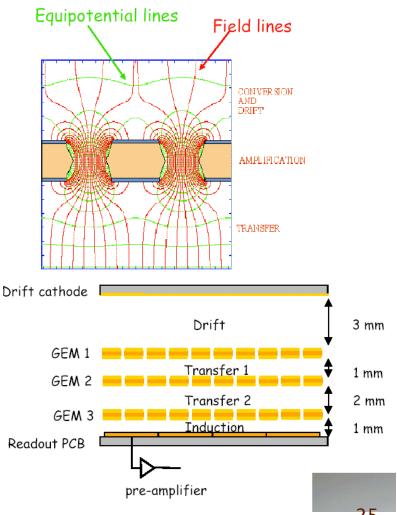
Monotonous 10µm W mesh 20% open 10µm spacing; ~40% density of W;150 V 100 GeV e Generates ~450k SE Implies $\sigma E/E < 3\%/\sqrt{E}$ If 50µm/50µm Cu -> 3%/ \sqrt{E} (but no gain spread, electronics)

SE Modules CERN Test Beam

COMMMMENTS:

- Scintillator Cal: Lots of Photons, but ~1% converted to p.e.
- SE Cal: Few SEe, but >90% collected and amplified.
- -A Dynode amplified SEe directly comparable to Dynode amplified p.e.
- Fine Segmentation, Arbitrary shapes, Tileable. ->energy flow NO ACTIVATION. ASSEMBLE IN AIR.
- No Photocathode processing (few hours).
- Bakeout (Refractory T)/Evacuate
- Vacuum 100 times worse than PMT ok.
- Alternative gain mechanism MCP et al.

- Liquid Scintillator Sampling: Organic or LXe under E-field
- Quartz Plates+Films:0.5-5 µm ZnO:Ga, pTP, nanophosphors, YAP:Ce, ...
- Quartz SciFi/WLS fibers: Ext. Films ZnO:Zn
- Quartz-Capillaries SciFi/WLS sub-Cores:
 - Lscint/WLS Liquid Core Fibers
 - pTP, Anthracene, ZnO:Ga, ZnO:Zn Core
- Fluorphosphate:Eu, Germania (GeO₂) Cerenkov Glasses
- Gaseous-Based non-hydrogenous pixels?
- Secondary Emission Modules?*
- Assume Compensation via Cerenkov.

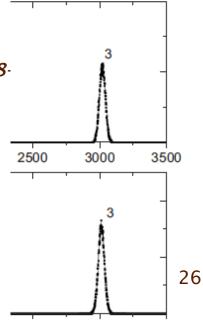


Stub Tracker/Preradiator+Muon Option

MPGD's – CMS Studies

- Spatial resolution $\sim 100 \ \mu m$
- Time resolution ~ 2-3 ns
- Efficiency > 98%
- Rate capability > 5 kHz/cm^2
- Track capability 10⁴/mm²
- $A/CO_2 OK????$

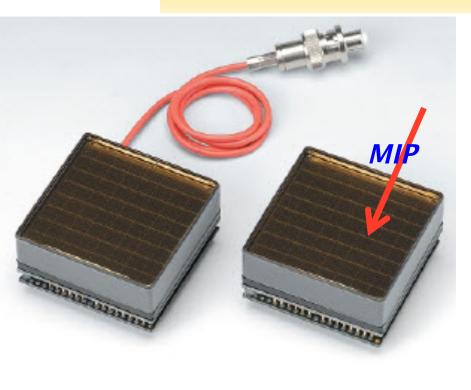
Stub-Tracker Pre-Radiator


- PMT: Excellent Direct e, μ , π Detectors!
 - Turning a Problem into a Feature....
 - Cerenkov light Gaussianly distributed...
- PMT: Rad-hard up to window transmission

Quartz, Sapphire Xmission: >90%/mm, ~500 Mrad (400-500 nm)

Nuclear Instruments and Methods in Physics Research A 581 (2007) 438-442 Radiation-hard photodetectors based on fine-mesh phototubes for calorimetry in very forward rapidity Y. Gusev et al. 10¹⁶ n/cm² (0.95MeV), gamma ray 5 MRad on FEU-187 mesh PMT

10¹⁶ n/cm² (0.95MeV), gamma ray 5 MRad on FEU-187 mesh PMT Gain shift consistent w/7% UV-glass transmission loss +/-2% Operates ~8-10% gain at 1 T (0°-20°)



....

Stub-Tracker/Pre-Radiator

Left: H10966A (HV cable input type), Right: H10966B (HV pin in

H10966 Series (c.2010) 52 mm (2") x 15 mm thick Active area 49mm Packing Density: 89% Risetime 0.4 ns – 200 ps σ_T Transit: 4 ns (!) Rate: ~1/8ns = 125 MHz *Pixel: 5.8 mm pitch->2.9mm* Window: 1.5 mm thick pe/MIP: ~20 (Gaussian!) Gain: 3 x 10⁵ Cross Talk: 2-3%

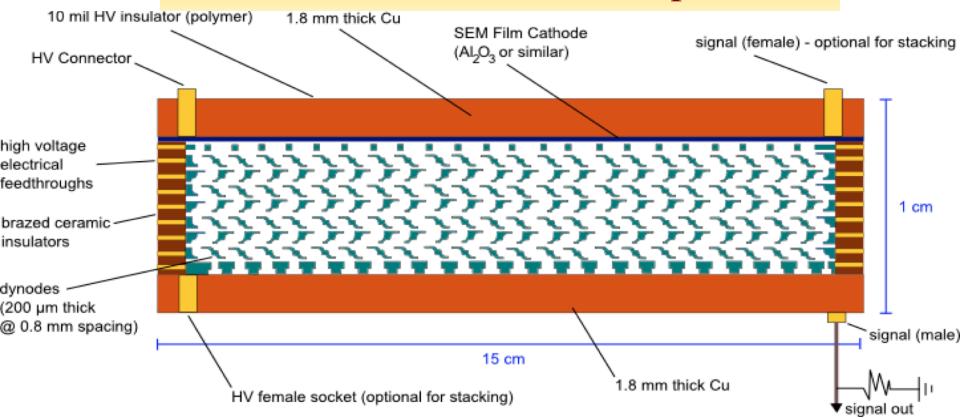
 $\Delta\theta \sim 2.9 mm/11.1 m \sim 250 \ \mu m \ pixel at 1 m = 0.5 \ mRad$ -> Tile front of E-M with layers of pixel PMT

Summary Forward System

- Lepton-Photon-Jet System at $3 \le \eta \le 5$ Feasible?
- Need Mechanical/Assy/B issues for Muon System
- Need Proofs of em cal, preradiator (cabling,...)
- Need Physics MC motivations using Target Perf:
 - $-\sigma_E/E \sim 10\%$ for +/- 1 TeV μ ; <10%/ \sqrt{E} for e, γ (No Sign)
 - Electron/Photon discrim.: ~90%,~1 cm
 - Electron Track: ~6mm box + geometric unsharpness from interaction diamond
 - $\sigma_E / E \sim 30\% / \sqrt{E}$ for jets via compensation
 - Time resolution ~200 ps

SUMMARY: SE Calorimeter R&D Secondary Emission Sensors for Calorimeters

- Basic Idea: Dynode Stack:High Gain Radiation Sensor
- ε ~0.1-0.2 SEe/mip/SE Surface Sample
- Signal $g > 10^4/SEe$ (15 Mesh Dynodes -> 1 SEe ~ 1pe ~ 10⁵e)
- $\sigma_{\text{Eem}}/E_{\text{em}} \sim \text{SEe/GeV} < 5\%/\sqrt{E(\text{GeV})}$
- Eh no information some indication of compensation
- Rad-Hard (PMT dynodes>100 GRads)
- Uber-Fast: signal ~cotemporal w/shower ~ PMT impulse
- Compact (dynodes <0.1mm thick/stage)
- Rugged/Structural Element/Non-Crit./NoActivation Assy
- Arbitrary Shapes/Integrate into large calorimeters
- Minimal Dead Areas or Services needed.
 - Energy-Flow Calorimeters (e+e-, µC, SLHC,....)
 - Forward HiRad HiRate Calorimeters
 - Compensation



Extra/Back-up Slides

SEe Detector Module Concept -HCal

3D Stackable x,y,z

Secondary Emission Calorimeter Sensor: Fairfield

- 1. Top Metal Oxide/C SE Cathode, thin film SE inner Surface Square/Hex/Rectangle/etc –can be thick!
- **2. Edge Wall:** ceramic, or metal w/ceramic HV insulators; HV feedthrus; vacuum metal tip-off: ~1cm high
- **3. Dynode Stack mesh, slats ~5-10 mm thick;**
- 4. Bottom Metal Anode thick ~Cathode; Vacuum pump tip; Seal – e-beam seam, braze, etc
- 5. Evacuate/Bake (Refractory T!), and Pinch-off tip.

NO ACTIVATION! ASSEMBLE IN AIR! No Photocathode processing (few hours). Vacuum 100 times higher than PMT ok.

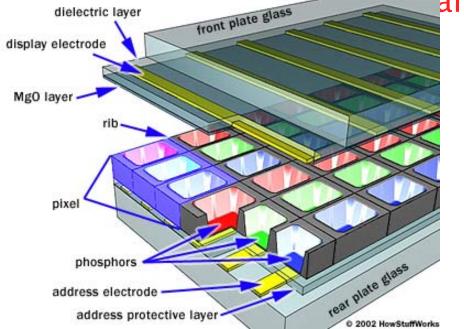
NOTE: Alternative gain – MCP et al.

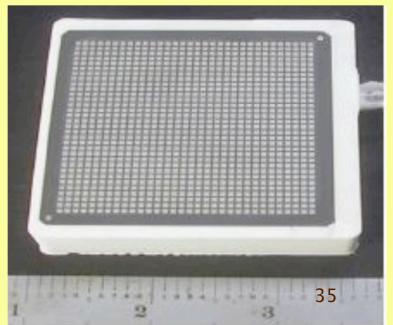
Technologies to make SE Calorimeters: Cheap Mesh!

CuBe Mesh 37% transparent 75 µm apertures- <\$18/m² 15 mesh/Lrad x 25 Lrad x 3m² x 2 arms x \$18/m² ~ \$40k³³

	DESY Secondary Emission Beam Monitor				
SEe-	NUCLEAR RADIATION DETECTOR TYPE: 9841				
Already	(Aluminium Cathode Electron Multiplier)				
In					
Vacuum	Description 22				
Use	Cathode; Aluminium. 32 mm Window; Borosilicate.				
Use	Dynodes; 10 linear foused type with CsSb secondary emitting surfaces.				
Dynodes	Base; B14B.				
То	This tube is a development from the THORN EMI 9902 photomultiplier for direct measurement of ionising radiation, in the MeV to GeV region, associated with				
Amplify!	particle accelerators and nuclear reactors. It is intended as an alternative to the use of an ionisation chamber with improved linearity and response time over				
	a wide dynamic range. The tube also has a high resistance to radiation and its high gain capability removes the need for additional high gain amplifier stages.				
	INCLIDENT F 1 3 5 7 9 11				

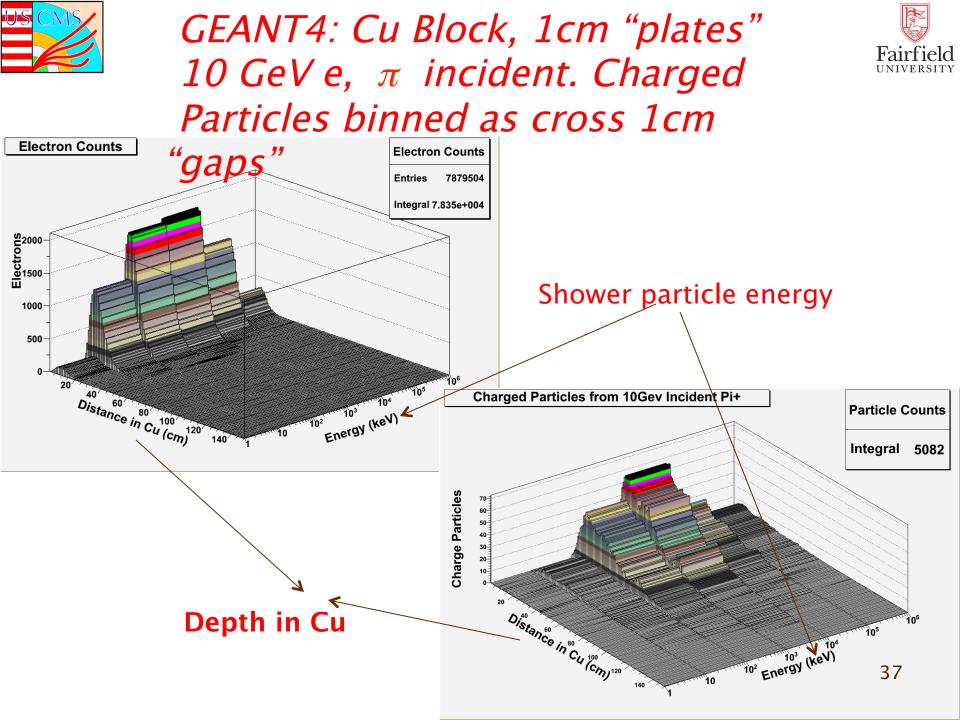
MIPs

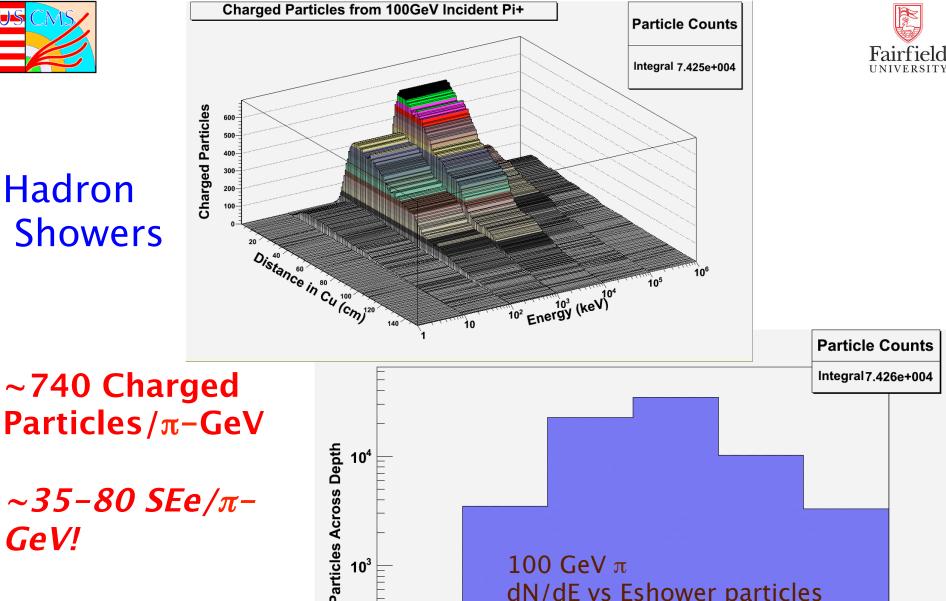

PHOTO-ELECTRONS



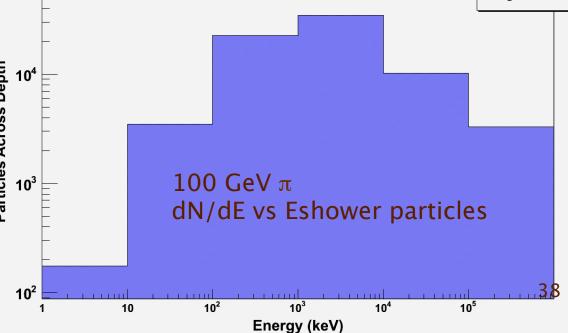
SE Calorimeter Sensors: Can Be Manufactured!

- Similar to m² Low Pressure Gas Plasma Display Technology
- Proof Principle/Manufacture BUT SE Calo sensor far simpler
- Hermetic + Voltages similar to dynodes y 2.5" MCP-PMT em!

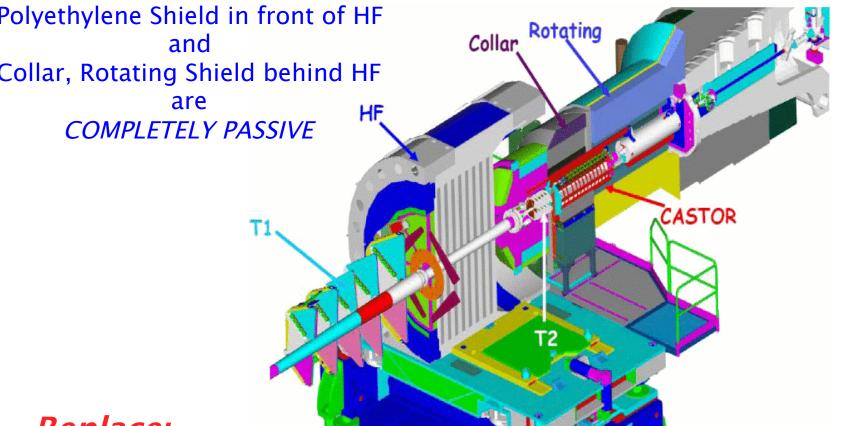

I BNI Instrumentation Seminar


Stub-Tracker/Pre-Radiator Option

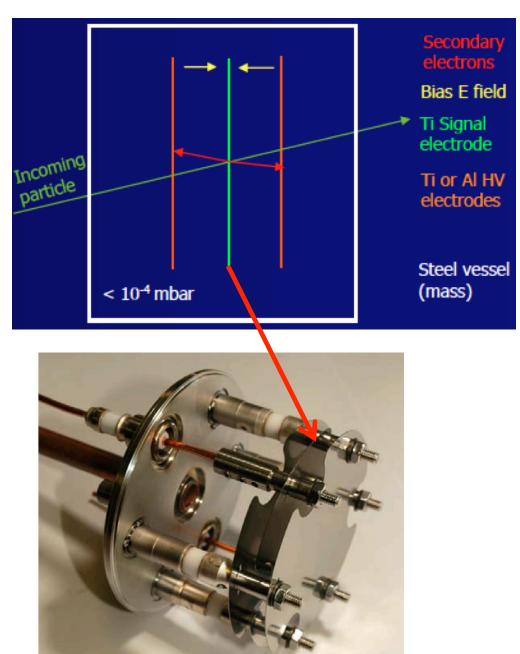
- 1 Layer Tile of both arms with H10966: 2,400 PMT =155K Channels
- 4 Layer tracker/pre-radiator: 10k PMT
- Base Ceramic Board, Individ.Dynode HV Bus
 - No active elements, multilayer strip-line readouts to outside of detector
- Edges covered by stripe prisms: 89% ->100%
- Alternating Layers displaced ½ cell
- 5" development PMT -> 2.5k PMT (pack eff)



GeV!


NB: % low E 2ndries vs e-m showers -ØLow Estimate...

Forward Muon Systems?

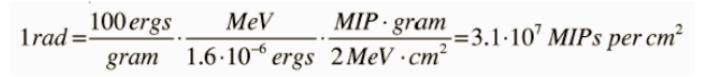

Replace:

Passive Poly Shield w/ PreRadiator/e-m Calorimeter Passive Collar/Rot. Shield w/Muon Toroids and Chambers

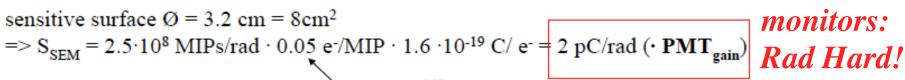
Example SE: CERN LHC Beam Loss Monitor

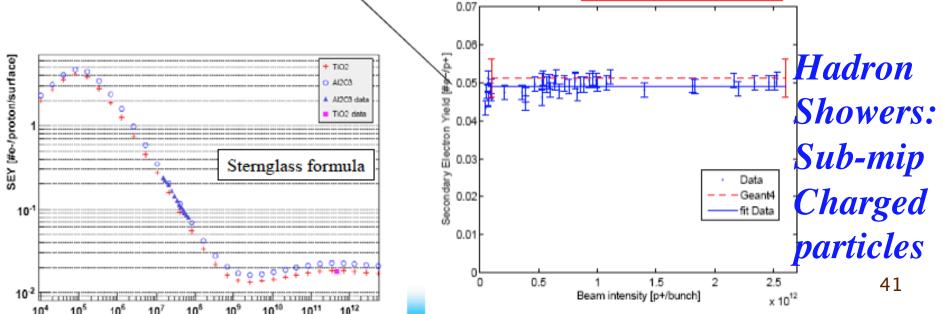
Al₂O₃,TiO₂ ~0.05 e⁻ per

Yet used as


MIP.

beam


Signal Generation from protons – DESY BPM


SEM Sensitivity (MIPs) :

Primary p+ energy [eV]

Beyond 2021 (2024)

LHC (replace more than 1.2 km):

- IR-quads (inner triplets), 11 T (short) dipoles->Nb3Sn
- Collimation upgrade
- Cryogenics upgrade
- Crab Crossing Cavities,
- Instantaneous luminosity limited by beam-beam
- lifetime level luminosity, $\langle L \rangle \sim 5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$.
- 2012 as ref: T=6.5x10⁶ s, L=23fb⁻¹ <L>=3.7 nb⁻¹s⁻¹

10 years @ <*L*>=50nb⁻¹s⁻¹ -> **L=3000 fb⁻¹**

Pileup: (σ_{Inel} =81mb, n_b=2808 (25 ns bunch spacing) μ >130