

• • • • • • • • • • • •

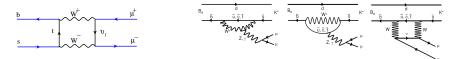
Rare heavy flavour decays at the LHC

Alexander Shires

TU Dortmund, Germany

Frontiers in Particle Physics, Aspen 2014

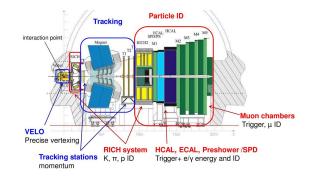
Alexander Shires (TU Dortmund)


Rare heavy flavour decays at the LHC

Aspen 2014 1 / 14

Introduction

- Rare decays of heavy flavour mesons predominantly refers to $b \rightarrow s$ transitions.
- These are flavour-changing neutral currents and hence forbidden at tree level in the Standard Model.
- Physics beyond the Standard Model can modify a range of observables, from branching fractions to moments of the angular distribution of the final state particles.


B⁰_s → μ⁺μ⁻ and B⁰ → μ⁺μ⁻: Sensitive to new scalars and pseudo-scalars.
 B⁰ → K^{*0}μ⁺μ⁻: Sensitive to new scalars, pseudo-scalars, vectors and tensor contributions.

< ロ > < 同 > < 回 > < 回 >

LHCb

• LHCb is a forward detector (2 < η < 5) designed to study heavy flavour physics

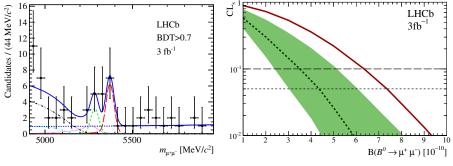
$B^0_s ightarrow \mu^+ \mu^-$ LHCb

arXiv:1307.5024, doi:10.1103/PhysRevLett.111.101805

- $b \rightarrow s$ transition into a purely leptonic final state.
- Helicity suppressed and sensitive to new scalar and pseudoscalar contributions.
- SM: $\mathcal{B}(B^0_s \to \mu^+ \mu^-) = (3.57 \pm 0.30) \times 10^{-9}$

$$\mathcal{B}_{B_{S}^{0} \to \mu^{+}\mu^{-}} = \mathcal{B}_{norm} \times \frac{\epsilon_{B_{S}^{0} \to \mu^{+}\mu^{-}}}{\epsilon_{norm}} \times f_{S}/f_{d} \times \frac{N_{B_{S}^{0} \to \mu^{+}\mu^{-}}}{N_{norm}}$$
(1)

- LHCb analysis based on 3.0 fb⁻¹ of data.
- Two muons, separated from PV, mass range between 4.9 and 6 GeV/c^2 .
- Measurement based on control channels B_{d,s} → h⁺h⁻ and B⁺ → J/ψ K⁺.
- Boosted decision tree based on kinematics and geometry of the decay and the event.
- Calibrated used data-derived methods from the control channels.
- Background estimated from B_{d,s} → h⁺h⁻ mis-identification probability, combinatorial taken from mass sideband regions and simulation of specific physics background processes.
- Results calculated in bins of BDT classifier and invariant mass. Apple Appl

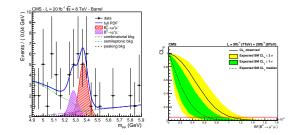

Alexander Shires (TU Dortmund)

 $B^0_s
ightarrow \mu^+ \mu^-$ LHCb results

arXiv:1307.5024, doi:10.1103/PhysRevLett.111.101805

Results (high BDT bin)

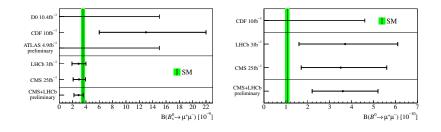
•
$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = 2.9^{+1.1}_{-1.0} \times 10^{-9}$$


- $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 7.4 \times 10^{-10}$
- Rarest B decay ever observed.

$B_s^0 \rightarrow \mu^+ \mu^-$ CMS results

arXiv:1307.5025, doi:10.1103/PhysRevLett.111.101804

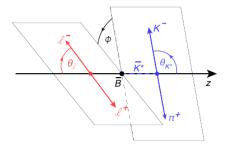
- Use 5 fb^{-1} at 7 TeV from 2011 and 20 fb⁻¹ at 8 TeV from 2012.
- Normalise to $B^+ \rightarrow J/\psi K^+$, take f_s/f_d from LHCb.
- Use MVA discriminant based on information from track and muon chambers.
- Variables independent of pile-up (up to 30PVs!)
- Simultaneous fit to $B_s^0 \rightarrow \mu^+ \mu^-$ and $B^0 \rightarrow \mu^+ \mu^-$ in bins of MVA classifier.


• $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.0^{+1.0}_{-0.9}) \times 10^{-9}$ • $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 1.1 \times 10^{-9}$

$B^0_{{\scriptscriptstyle S}} ightarrow \mu^+ \mu^-$ LHCb and CMS combination

CMS-PAS-BPH-13-007 ; LHCb-CONF-2013-012

- Combine both results from experiements.
- Shared normalisation and inputs.
- Account for known correlations, integrate of B_s^0 and B^0 time dependence.


•
$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (2.9 \pm 0.7) \times 10^{-9}$$

• $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.6 \pm ^{+1.6}_{-1.4}) \times 10^{-10}$

 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

Introduction

- $B^0 \to K^{*0} \mu^+ \mu^-$ is a $b \to s \ell^+ \ell^-$ transition
- Described by three angles $(\cos \theta_l, \cos \theta_K, \phi)$ and the di-muon invariant mass squared (q^2) .

 There are contributions from the photon, vector and tensor operators and from their interference from the right-handed counterparts.

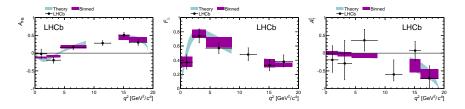
イロト 不得 トイヨト イヨト

$$B^0\!
ightarrow K^{*0}\mu^+\mu^-$$

Angular analysis

• Analysis based on measurements of the angular distribution

 $\frac{d^4\Gamma}{dq^2 d\cos\theta_K d\cos\theta_l d\phi} = \frac{9}{32\pi} \bigg[J_{1s} \sin^2\theta_K + J_{1c} \cos^2\theta_K + (J_{2s} \sin^2\theta_K + J_{2c} \cos^2\theta_K) \cos 2\theta_l$ $+ J_3 \sin^2\theta_K \sin^2\theta_l \cos 2\phi + J_4 \sin 2\theta_K \sin 2\theta_l \cos\phi + J_5 \sin 2\theta_K \sin\theta_l \cos\phi$ $+ (J_{6s} \sin^2\theta_K + J_{6c} \cos^2\theta_K) \cos\theta_l + J_7 \sin 2\theta_K \sin\theta_l \sin\phi + J_8 \sin 2\theta_K \sin 2\theta_l \sin\phi$ $+ J_9 \sin^2\theta_K \sin^2\theta_l \sin 2\phi \bigg],$ (1)


- Angular coefficients constructed from combinations of the K^{*0} transversity amplitudes.
- Amplitudes depend on the Wilson coefficients and $B^0 \rightarrow K^*$ form factors.
- Construct angular observables that maximise sensitivity to Wilson coefficients!
- Possible to make precise theoretical predictions for each of these observables (Altmannshofer [arXiv:0811.1214], Kruger [arXiv:0502060], Egede [arXiv:0807.2589], Bobeth [arXiv:1006.5013] for example).

 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ Results from LHCb (1)

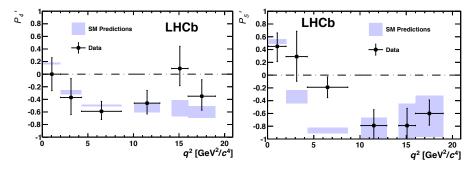
arXiv:1304.6325, doi:10.1007/JHEP08(2013)131

- Analysis based on 1.0 fb⁻¹ of data collected in 2011.
- Event selection based on kinematic variables and topology of the decay.
- Events corrected for detector acceptance to restore 'true' angular distribution.
- Three observables: A_{FB}, F_L and A².

World's most precise measurements of these observables.

• First ever measurement of the zero-crossing point of A_{FB} , $q_0^2 = 4.0 \pm 0.9 \,\text{GeV}^2/c^4$.

< ロ > < 同 > < 回 > < 回 >



$B^0 ightarrow K^{*0} \mu^+ \mu^-$

Results from LHCb (2)

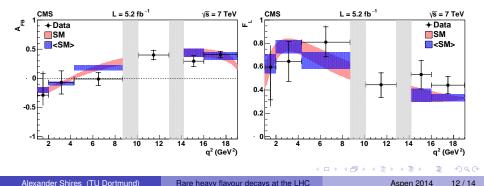
arXiv:1308.1707, doi: 10.1103/PhysRevLett.111.191801

 New basis of observables which are independent of B → K^{*0} form factor uncertainties to leading order (Matias [arXiv: 1202.4266]).

- 3.7σ tension in P₅...!
- 0.5% probability to see a deviation assuming 24 independant measurements of $B^0 \rightarrow K^{*0} \mu^+ \mu^-$.
- Currently there is no new physics explanation for this effect.

Alexander Shires (TU Dortmund)

Rare heavy flavour decays at the LHC

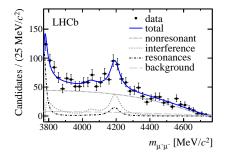

Aspen 2014 11 / 14

$$B^0
ightarrow K^{*0} \mu^+ \mu^-$$

CMS analysis

arXiv:1308.3409, doi:10.1016/j.physletb.2013.10.017

- Analysis based on 5 fb⁻¹ of data collected in 2011.
- Measurements of A_{FB} and F_L and the differential branching fraction of $B^0 \rightarrow K^{*0} \mu^+ \mu^-$.
- Trigger on high p_T muons.
- Select good quality muons and use kinematic and topological selection optimised for signal significance.
- Efficiency calculation based on simulation.



$$B^+
ightarrow K^+ \mu^+ \mu^-$$

Low recoil, high q² region

arXiv:1307.7595, doi:10.1103/PhysRevLett.111.112003

- Observation of higher charmonium resonances in $B^+ \rightarrow K^+ \mu^+ \mu^-$ at high q^2 .
- Measurement based on full 3.0 fb⁻¹ dataset.

• Evidence of $B^+ \rightarrow \blacksquare(4160)K^+$.

•
$$\mathcal{B}(B^+ \to \blacksquare(4160)K^+) = 5^{1.3}_{1.2} \pm 3.0 \times 10^{-4}$$

- No sign of the $B^+ \rightarrow \blacksquare (40\overline{4}0)K^+$.
- Important to consider these contributions in measurements in the low recoil high q² region.

Aspen 2014 13 / 14

Summary

- Rare decays of B^0 and B_s^0 mesons are powerful probes of new physics.
- LHCb, CMS and ATLAS have sufficient datasets to measure decays with $\mathcal{B} < 10^{-8}$!
- $B_s^0 \rightarrow \mu^+ \mu^-$ has a clean signature and is sensitive to new scalars and pseudo-scalars.
- Evidence of $B_s^0 \rightarrow \mu^+\mu^-$ from LHCb and CMS and discovery of $B_s^0 \rightarrow \mu^+\mu^-$ with combined dataset from LHCb and CMS.
- Angular analysis of B⁰ → K^{*0}µ⁺µ[−] extends sensitivity into vectors and tensor contributions.
- Measurements from LHCb are most precise to date and show possible hints at deviations from the SM.
- However, observation of resonances in B⁺ → K⁺µ⁺µ[−] indicates opportunity to perform spectroscopy.
- LHCb plans to collect 10 fb⁻¹ of data after Run II of the LHC, giving us exciting times ahead!