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Why rare B decays
Solutions to the hierarchy problem must bring in particles to cut 
off the top contribution to the weak scale (Higgs mass 
parameter).  

The new particles’ couplings tend to break flavour (they do in all 
the major proposals for TeV physics)

At least they will have CKM-like flavour violations (minimal 
flavour violation), so will always affect rare decays
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Figure 1.1: One-loop quantum corrections to the Higgs squared mass parameter m2
H , due to (a) a Dirac

fermion f , and (b) a scalar S.

The Standard Model requires a non-vanishing vacuum expectation value (VEV) for H at the minimum

of the potential. This will occur if λ > 0 and m2
H < 0, resulting in 〈H〉 =

√
−m2

H/2λ. Since we

know experimentally that 〈H〉 is approximately 174 GeV, from measurements of the properties of the
weak interactions, it must be that m2

H is very roughly of order −(100 GeV)2. The problem is that m2
H

receives enormous quantum corrections from the virtual effects of every particle that couples, directly
or indirectly, to the Higgs field.

For example, in Figure 1.1a we have a correction to m2
H from a loop containing a Dirac fermion

f with mass mf . If the Higgs field couples to f with a term in the Lagrangian −λfHff , then the
Feynman diagram in Figure 1.1a yields a correction

∆m2
H = − |λf |2

8π2
Λ2

UV + . . . . (1.2)

Here ΛUV is an ultraviolet momentum cutoff used to regulate the loop integral; it should be interpreted
as at least the energy scale at which new physics enters to alter the high-energy behavior of the theory.
The ellipses represent terms proportional to m2

f , which grow at most logarithmically with ΛUV (and
actually differ for the real and imaginary parts of H). Each of the leptons and quarks of the Standard
Model can play the role of f ; for quarks, eq. (1.2) should be multiplied by 3 to account for color. The
largest correction comes when f is the top quark with λf ≈ 1. The problem is that if ΛUV is of order
MP, say, then this quantum correction to m2

H is some 30 orders of magnitude larger than the required
value of m2

H ∼ −(100 GeV)2. This is only directly a problem for corrections to the Higgs scalar boson
squared mass, because quantum corrections to fermion and gauge boson masses do not have the direct
quadratic sensitivity to ΛUV found in eq. (1.2). However, the quarks and leptons and the electroweak
gauge bosons Z0, W± of the Standard Model all obtain masses from 〈H〉, so that the entire mass
spectrum of the Standard Model is directly or indirectly sensitive to the cutoff ΛUV.

One could imagine that the solution is to simply pick a ΛUV that is not too large. But then one
still must concoct some new physics at the scale ΛUV that not only alters the propagators in the loop,
but actually cuts off the loop integral. This is not easy to do in a theory whose Lagrangian does not
contain more than two derivatives, and higher-derivative theories generally suffer from a failure of either
unitarity or causality [2]. In string theories, loop integrals are nevertheless cut off at high Euclidean
momentum p by factors e−p2/Λ2

UV . However, then ΛUV is a string scale that is usually† thought to be
not very far below MP. Furthermore, there are contributions similar to eq. (1.2) from the virtual effects
of any arbitrarily heavy particles that might exist, and these involve the masses of the heavy particles,
not just the cutoff.

For example, suppose there exists a heavy complex scalar particle S with mass mS that couples to
the Higgs with a Lagrangian term −λS |H|2|S|2. Then the Feynman diagram in Figure 1.1b gives a
correction

∆m2
H =

λS

16π2

[
Λ2

UV − 2m2
S ln(ΛUV/mS) + . . .

]
. (1.3)

†Some recent attacks on the hierarchy problem, not reviewed here, are based on the proposition that the ultimate
cutoff scale is actually close to the electroweak scale, rather than the apparent Planck scale.
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weak  ΔB=ΔS=1 Hamiltonian

The operators Pi are given in [], the Qi are defined as

O7 =
e

16⇤2
m̂b s̄⌅µ⇥PRF

µ⇥b ,

OV =
�em

4⇤
(s̄⇥µPLb)(l̄⇥

µl) ,

OS =
�em

4⇤
m̂b(s̄PRb)(l̄l) ,

OT =
�em

4⇤
m̂b(s̄⌅µ⇥PRb)(l̄⌅

µ⇥PRs) ,

O8 =
gs

16⇤2
m̂b s̄⌅µ⇥PRG

µ⇥b ,

OA =
�em

4⇤
(s̄⇥µPLb)(l̄⇥

µ⇥5l)A ,

OP =
�em

4⇤
m̂b(s̄PRb)(l̄⇥

5l) ,
(5)

and the primed operators O⇤
i are obtained from these by PR ⇤ PL, PL ⇤ PR in

the quark bilinears. gs (e) denotes the strong (electromagnetic) coupling constant
coming from the covariant derivative Dµ = �µ+ ieQfAµ+ igsTAAA

µ (Qf = �1 for

the leptons), �em = e2/(4⇤) and m̂b the b-quark mass defined in the MS scheme.
The contribution of the semileptonic Hamiltonian Hsl

e� to the decay amplitude
factorizes (in the “naive” sense) into a sum of products of hadronic and leptonic
currents,

Asl = Lµ
V aV µ + Lµ

A aAµ + LS aS + LP aP + Lµ
TL aTL,µ + Lµ

TR aTR,µ, (6)

where

Lµ
V = ⌥+�|l̄⇥µl|0�,

LS = ⌥+�|l̄l|0�,

Lµ
TL =

i⇥
q2
⌥+�|q⇥ l̄⌅µ⇥PLl|0�,

Lµ
A = ⌥+�|l̄⇥µ⇥5l|0�,

LP = ⌥+�|l̄⇥5l|0�,
Lµ
TR = i⌥+�|q⇥ l̄⌅µ⇥PRl|0�,

(7)

and we have made use of the relation

(s̄⌅µ⇥PR(L)b)(l̄⌅
µ⇥PR(L)s) =

4

q2
(s̄q⇥⌅

µ⇥PR(L)b)(l̄q⇤⌅
µ⇤PR(L)l), (8)

where q = p � k is the dilepton four-momentum.1 The hadronic amplitude
coe⇥cients a... are sums of products of form factors and Wilson coe⇥cients and
will be given below.

The hadronic Hamiltonian He� requires in addition two insertions of the elec-
tromagnetic current (one hadronic and one leptonic) to mediate the semileptonic
decay,

A(had) =
e2

q2

�
d4xe�iq·x⌥+�|jem,lept

µ (x)|0�
�

d4yeiq·y⌥M |jem,had,µ(y)Hhad(0)|B̄�

⇥ e2

q2
Lµ
V a

had
µ .

(9)

1Equation (8) holds for arbitrary time-like four-vector qµ.
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with

Hhad
e� =

4GF�
2

⇤

p=u,c

⇤p

�
C1Q

p
1 + C2Q

p
2 +

⇤

i=3...6

CiPi + C8gQ8g

⇥
, (5)

Hsl
e� = �4GF�

2
⇤t

⌅
C7Q7� + C ⇥

7Q
⇥
7� + C9Q9V + C ⇥

9Q
⇥
9V + C10Q10A + C ⇥

10Q
⇥
10A

+CSQS + C ⇥
SQ

⇥
S + CPQP + C ⇥

PQ
⇥
P + CTQT + C ⇥

TQ
⇥
T

⇧
.
(6)

The operators Pi are given in [65], the Qi are defined as

Q7� =
e

16⌅2
m̂b s̄⇧µ⇤PRF

µ⇤b ,

Q9V =
�em

4⌅
(s̄⇥µPLb)(l̄⇥

µl) ,

QS =
�em

4⌅

m̂b

mW
(s̄PRb)(l̄l) ,

QT =
�em

4⌅

m̂b

mW
(s̄⇧µ⇤PRb)(l̄⇧

µ⇤PRl) ,

Q8g =
gs

16⌅2
m̂b s̄⇧µ⇤PRG

µ⇤b ,

Q10A =
�em

4⌅
(s̄⇥µPLb)(l̄⇥

µ⇥5l)A ,

QP =
�em

4⌅

m̂b

mW
(s̄PRb)(l̄⇥

5l) ,

(7)
and the primed operators Q⇥

i are obtained from these by PR ⇥ PL, PL ⇥ PR in
the quark bilinears. gs (e) denotes the strong (electromagnetic) coupling constant
coming from the covariant derivative Dµ =  µ+ ieQfAµ+ igsTAAA

µ (Qf = �1 for

the leptons), �em = e2/(4⌅) and m̂b the b-quark mass defined in the MS scheme.
The contribution of the semileptonic Hamiltonian Hsl

e� to the decay amplitude
factorizes (in the “naive” sense) into a sum of products of hadronic and leptonic
currents,

Asl = ⇧M�+��|Hsl
e� |B̄⌃ = Lµ

V aV µ+Lµ
A aAµ+LS aS+LP aP+Lµ

TL aTL,µ+Lµ
TR aTR,µ,

(8)
where

Lµ
V = ⇧�+��|l̄⇥µl|0⌃,

LS = ⇧�+��|l̄l|0⌃,

Lµ
TL =

i⌃
q2
⇧�+��|q⇤ l̄⇧µ⇤PLl|0⌃,

Lµ
A = ⇧�+��|l̄⇥µ⇥5l|0⌃,

LP = ⇧�+��|l̄⇥5l|0⌃,

Lµ
TR =

i⌃
q2
⇧�+��|q⇤ l̄⇧µ⇤PRl|0⌃,

(9)

and we have made use of the relation

(s̄⇧µ⇤PR(L)b)(l̄⇧
µ⇤PR(L)s) =

4

q2
(s̄q⇤⇧

µ⇤PR(L)b)(l̄q⌅⇧
µ⌅PR(L)l), (10)

where q = p�k is the dilepton four-momentum.1 The hadronic currents aV µ, . . .
are expressed in terms of form factors and Wilson coe⇥cients, and enter the
helicity amplitudes given below.

1Equation (10) holds for arbitrary time-like four-vector qµ.
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e� |B̄⌃ = Lµ

V aV µ+Lµ
A aAµ+LS aS+LP aP+Lµ

TL aTL,µ+Lµ
TR aTR,µ,

(8)
where

Lµ
V = ⇧�+��|l̄⇥µl|0⌃,

LS = ⇧�+��|l̄l|0⌃,

Lµ
TL =

i⌃
q2
⇧�+��|q⇤ l̄⇧µ⇤PLl|0⌃,

Lµ
A = ⇧�+��|l̄⇥µ⇥5l|0⌃,

LP = ⇧�+��|l̄⇥5l|0⌃,

Lµ
TR =

i⌃
q2
⇧�+��|q⇤ l̄⇧µ⇤PRl|0⌃,

(9)

and we have made use of the relation

(s̄⇧µ⇤PR(L)b)(l̄⇧
µ⇤PR(L)s) =

4

q2
(s̄q⇤⇧
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where q = p�k is the dilepton four-momentum.1 The hadronic currents aV µ, . . .
are expressed in terms of form factors and Wilson coe⇥cients, and enter the
helicity amplitudes given below.

1Equation (10) holds for arbitrary time-like four-vector qµ.
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= EFT for ΔB=ΔS=1 transitions (up to dimension six)

look for observables sensitive to Ci’s, specifically 
those that are suppressed in the SM

Ci ∼ gNP

m2
W

M2
NP



B➔K*l l: angular distribution

The angular coefficients are functions of the Wilson 
coefficients, and can be used to probe for new physics

Figure 9: Definition of kinematic variables in the decay B0 → K∗0(→ K−π+)l+l−.

partially supported by the Deutsche Forschungsgemeinschaft under contract Bu.706/1-2.

A Angular distribution of B0
→ K∗0(→ K−π+)l+l−

In this appendix we give the differential decay rate formula for finite lepton mass. Assuming

the K∗ to be on the mass shell, and summing over the spins of the final particles, the differential

decay distribution of B0 → K∗0(→ K−π+)l+l− can be written as4

d4Γ =
9

32π
I(s, θl, θK∗ , φ)ds d cos θl d cos θK∗ dφ, (A.1)

with the physical region of phase space

4m2
l ! s ! (mB − mK∗)2, −1 ! cos θl ! 1, −1 ! cos θK∗ ! 1, 0 ! φ ! 2π, (A.2)

and

I = I1 + I2 cos 2θl + I3 sin2 θl cos 2φ + I4 sin 2θl cos φ + I5 sin θl cos φ + I6 cos θl

+ I7 sin θl sin φ + I8 sin 2θl sin φ + I9 sin2 θl sin 2φ. (A.3)

The three angles θl, θK∗ , φ, which uniquely describe the decay B0 → K∗0(→ K−π+)l+l−, are

illustrated in Fig. 9. Note that φ is the angle between the normals to the planes defined by

K−π+ and l+l− in the rest frame of the B meson; that is, defining the unit vectors

el =
pl− × pl+

|pl− × pl+ |
, eK =

pK− × pπ+

|pK− × pπ+ |
, ez =

pK− + pπ+

|pK− + pπ+ |
, (A.4)

where pi denote three-momentum vectors in the B rest frame, we have

sin φ = (el × eK) · ez, cos φ = eK · el. (A.5)
4For a Kπ pair with an invariant mass sKπ $= m2

K∗ , the decay is parametrized by five kinematic variables.
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2.3 Kinematic distribution

We now consider the process

B̄(p)⌃ V (k)[⌃ K̄(k1)⇤(k2)] �
�(q1)�

+(q2), (2.33)

i.e. decays to a vector decaying further into two pseudoscalars (for definiteness, a kaon and

a pion, with K̄ = K̄0 or K�, ⇤ = ⇤+ or ⇤0), where all four final-state particles carry

definite four-momenta. These are the states in which detection is made. Following [32], we

define angles �K , �l,⌅ as follows. We first define, in the B̄ rest frame,

el =
pl� ⇤ pl+

|pl� ⇤ pl+ |
, eK =

pK̄ ⇤ p⇥

|pK̄ ⇤ p⇥|
, ẑ =

pK̄ + p⇥

|pK̄ + p⇥|
. (2.34)

Then define ⌅, in the interval [0, 2⇤], through sin⌅ = (el ⇤ eK) · ẑ and cos⌅ = el · eK .

Moreover, �l is defined as the angle between the direction of flight of the B̄ and the ��

in the dilepton rest frame and �K as the angle between the direction of motion of the B̄

and the K̄ in the dimeson (K̄⇥) rest frame, both in the interval [0,⇤). For a B decay, we

define the angles in the same way, in particular �l is the angle between the �� (rather than

the �+) and the B. This convention agrees with [39] and leads to simple expressions for

untagged observables.

Next, we assume a resonant decay through an on-shell vector meson. (This means we

are making a narrow-width approximation.4) We should then make the replacement

|K̄⇥;⇥⌥ �⌃
 
b

⇤
d⇥KY �

1 (�,⌅K)|�K ;⌅K⌥, (2.35)

where �K is the angle between the +z direction and the K̄ direction in the K̄⇥ cm frame

and ⌅K is the angle between the x axis and the projection of the former onto the xy plane,

and b ⌅ BF (K⇥ ⌃ K⇤) ⇧ 1. (Except for the zero point of the angle ⌅K , this is entirely

fixed by conservation of probability and of angular momentum and is independent of the

details of the K̄⇥ decay vertex. See also [55].) Squaring the amplitude and summing over

lepton spins the fully di⇤erential decay rate is obtained as

d(4)�

dq2 d(cos �l)d(cos �k)d⌅
=

9

32⇤

⇤
�
Is1 sin

2 �k + Ic1 cos
2 �k + (Is2 sin

2 �k + Ic2 cos
2 �k) cos 2�l

+I3 sin
2 �k sin

2 �l cos 2⌅+ I4 sin 2�k sin 2�l cos⌅ (2.36)

+I5 sin 2�k sin �l cos⌅+ (Is6 sin
2 �k + Ic6 cos

2 �K) cos �l

+I7 sin 2�k sin �l sin⌅+ I8 sin 2�k sin 2�l sin⌅+ I9 sin
2 �k sin

2 �l sin 2⌅
⇥
.

4O�-resonance e�ects vanish in the limit of an infinitely narrow K̄⇥. They can be included in the

framework by introducing dependence on the hadronic final state invariant mass k2 and total angular

momentum L in the helicity amplitudes [55]. In particular, o�-resonant L = 0 (S-wave) contributions have

been recently studied in [58, 61, 62]. They modify some of the angular coe⇤cients, but do not impact on

those that involve only � = ±1 amplitudes.

– 9 –

 fig. Krueger, Matias 2002



three helicity states for V=K*
dilepton can have J=0 or J=1
several leptonic currents
photon couples only to vector leptonic current. At q2 = 0 photon pole

B̄ ⇤ K̄ ⇥`+`� amplitude up to ↵2
em . . .

A(B̄ ⇤ V ⇤�⇤+) =
�

i

Ci⌃⇤�⇤+ |̄l�i l |0⌥⌃V |s̄�⇥i b|B̄⌥

+
e2

q2 ⌃⇤
�⇤+ |̄l�µl |0⌥F .T .⌃V |T (jhad

µ,em(x)Hhad
W (0))|B̄⌥

We have 2 types of uncertainties
Hadronic parameters (form factors)

I QCDf + estimated power-corrections BFS’01, Egede et al.’08
I Theoretical prediction (LCSRs) Altmannshofer et al.’09

Non-local contribution from Hhad
W in QCDf

I Non-factorizable charm-loop effects BFS’01, Khodjamiran et al.’10
I Non-factorizable light-quark effects BFS’01

Re-asses uncertainties at low-q2

J. Martin Camalich (Brighton) B ⇤ K⇥`+`� at the low-q2 endpoint September 10, 2012 4 / 15

form factor                     

nonlocal “quark loops”                  

matrix elements of semileptonic/radiative 
Hamiltonian factorize “naively”                   

lepton current                     

KINEMATICS & (q̄q)-RESONANCE BKGR

KINEMATICS – B(pB)⇤ P(pP) + ⌅̄(p⇤̄) + ⌅(p⇤)

1) q2 = m2
⇤̄⇤

= (p⇤̄ + p⇤ )2 = (pB � pP)2 4m2
⇤ � q2 � (MB �MP)2

2) cos �⇤ with �⇤⇥(⌅pB ,⌅p⇤̄) in ⇤̄⇤-c.m. system �1 � cos �⇤ � 1

general problem in b ⇤ {d , s}+ ⌅̄⌅ due to Op’s: [s̄�q][q̄�⇥b] and [s̄�b][q̄�⇥q]

LONG DISTANCE - (q̄q)-RESONANCE BACKGROUND

A[B ⇤ P + ⌅̄⌅] = A[B ⇤ P + ⌅̄⌅]SD�FCNC

+A[B ⇤ P + (q̄q)⇤ P + ⌅̄⌅]LD

b s

qq

l

l

for B ⇤ K + ⌅̄⌅ (q2
max ⇥ 22.9 GeV2):

q = u, d , s light resonances below q2 � 1 GeV2

suppr. by small QCD-peng. Wilson coeff. or CKM �̂u

q = c start @ q2 � (MJ/�)2 ⇥ 9.6 GeV2, (M��)2 ⇥ 13.6 GeV2

⌅ usually A[B ⇤ P + ⌅̄⌅]SD�FCNC = “non-resonant part”
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γZ NP

B->K*l+ l-   decay amplitude

correct to lowest order in electromagnetism      
exact in QCD - no assumptions (yet)           
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}

7 (14) complex helicity amplitudes 
in SM (BSM)



three helicity states for V=K*
dilepton can have J=0 or J=1
several leptonic currents
photon couples only to vector leptonic current. At q2 = 0 photon pole

B̄ ⇤ K̄ ⇥`+`� amplitude up to ↵2
em . . .

A(B̄ ⇤ V ⇤�⇤+) =
�

i

Ci⌃⇤�⇤+ |̄l�i l |0⌥⌃V |s̄�⇥i b|B̄⌥

+
e2

q2 ⌃⇤
�⇤+ |̄l�µl |0⌥F .T .⌃V |T (jhad

µ,em(x)Hhad
W (0))|B̄⌥

We have 2 types of uncertainties
Hadronic parameters (form factors)

I QCDf + estimated power-corrections BFS’01, Egede et al.’08
I Theoretical prediction (LCSRs) Altmannshofer et al.’09

Non-local contribution from Hhad
W in QCDf

I Non-factorizable charm-loop effects BFS’01, Khodjamiran et al.’10
I Non-factorizable light-quark effects BFS’01
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nonlocal “quark loops”                  

matrix elements of semileptonic/radiative 
Hamiltonian factorize “naively”                   

lepton current                     

KINEMATICS & (q̄q)-RESONANCE BKGR

KINEMATICS – B(pB)⇤ P(pP) + ⌅̄(p⇤̄) + ⌅(p⇤)

1) q2 = m2
⇤̄⇤

= (p⇤̄ + p⇤ )2 = (pB � pP)2 4m2
⇤ � q2 � (MB �MP)2

2) cos �⇤ with �⇤⇥(⌅pB ,⌅p⇤̄) in ⇤̄⇤-c.m. system �1 � cos �⇤ � 1

general problem in b ⇤ {d , s}+ ⌅̄⌅ due to Op’s: [s̄�q][q̄�⇥b] and [s̄�b][q̄�⇥q]

LONG DISTANCE - (q̄q)-RESONANCE BACKGROUND

A[B ⇤ P + ⌅̄⌅] = A[B ⇤ P + ⌅̄⌅]SD�FCNC

+A[B ⇤ P + (q̄q)⇤ P + ⌅̄⌅]LD

b s

qq

l

l

for B ⇤ K + ⌅̄⌅ (q2
max ⇥ 22.9 GeV2):

q = u, d , s light resonances below q2 � 1 GeV2

suppr. by small QCD-peng. Wilson coeff. or CKM �̂u

q = c start @ q2 � (MJ/�)2 ⇥ 9.6 GeV2, (M��)2 ⇥ 13.6 GeV2

⌅ usually A[B ⇤ P + ⌅̄⌅]SD�FCNC = “non-resonant part”
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in SM (BSM)



three helicity states for V=K*
dilepton can have J=0 or J=1
several leptonic currents
photon couples only to vector leptonic current. At q2 = 0 photon pole

B̄ ⇤ K̄ ⇥`+`� amplitude up to ↵2
em . . .

A(B̄ ⇤ V ⇤�⇤+) =
�

i

Ci⌃⇤�⇤+ |̄l�i l |0⌥⌃V |s̄�⇥i b|B̄⌥

+
e2

q2 ⌃⇤
�⇤+ |̄l�µl |0⌥F .T .⌃V |T (jhad

µ,em(x)Hhad
W (0))|B̄⌥

We have 2 types of uncertainties
Hadronic parameters (form factors)

I QCDf + estimated power-corrections BFS’01, Egede et al.’08
I Theoretical prediction (LCSRs) Altmannshofer et al.’09

Non-local contribution from Hhad
W in QCDf

I Non-factorizable charm-loop effects BFS’01, Khodjamiran et al.’10
I Non-factorizable light-quark effects BFS’01

Re-asses uncertainties at low-q2

J. Martin Camalich (Brighton) B ⇤ K⇥`+`� at the low-q2 endpoint September 10, 2012 4 / 15

form factor                     

nonlocal “quark loops”                  

matrix elements of semileptonic/radiative 
Hamiltonian factorize “naively”                   

lepton current                     

KINEMATICS & (q̄q)-RESONANCE BKGR

KINEMATICS – B(pB)⇤ P(pP) + ⌅̄(p⇤̄) + ⌅(p⇤)

1) q2 = m2
⇤̄⇤

= (p⇤̄ + p⇤ )2 = (pB � pP)2 4m2
⇤ � q2 � (MB �MP)2

2) cos �⇤ with �⇤⇥(⌅pB ,⌅p⇤̄) in ⇤̄⇤-c.m. system �1 � cos �⇤ � 1

general problem in b ⇤ {d , s}+ ⌅̄⌅ due to Op’s: [s̄�q][q̄�⇥b] and [s̄�b][q̄�⇥q]

LONG DISTANCE - (q̄q)-RESONANCE BACKGROUND

A[B ⇤ P + ⌅̄⌅] = A[B ⇤ P + ⌅̄⌅]SD�FCNC

+A[B ⇤ P + (q̄q)⇤ P + ⌅̄⌅]LD

b s

qq

l

l

for B ⇤ K + ⌅̄⌅ (q2
max ⇥ 22.9 GeV2):

q = u, d , s light resonances below q2 � 1 GeV2

suppr. by small QCD-peng. Wilson coeff. or CKM �̂u

q = c start @ q2 � (MJ/�)2 ⇥ 9.6 GeV2, (M��)2 ⇥ 13.6 GeV2

⌅ usually A[B ⇤ P + ⌅̄⌅]SD�FCNC = “non-resonant part”
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three helicity states for V=K*
dilepton can have J=0 or J=1
several leptonic currents
photon couples only to vector leptonic current. At q2 = 0 photon pole

B̄ ⇤ K̄ ⇥`+`� amplitude up to ↵2
em . . .

A(B̄ ⇤ V ⇤�⇤+) =
�

i

Ci⌃⇤�⇤+ |̄l�i l |0⌥⌃V |s̄�⇥i b|B̄⌥

+
e2

q2 ⌃⇤
�⇤+ |̄l�µl |0⌥F .T .⌃V |T (jhad

µ,em(x)Hhad
W (0))|B̄⌥

We have 2 types of uncertainties
Hadronic parameters (form factors)

I QCDf + estimated power-corrections BFS’01, Egede et al.’08
I Theoretical prediction (LCSRs) Altmannshofer et al.’09

Non-local contribution from Hhad
W in QCDf

I Non-factorizable charm-loop effects BFS’01, Khodjamiran et al.’10
I Non-factorizable light-quark effects BFS’01

Re-asses uncertainties at low-q2

J. Martin Camalich (Brighton) B ⇤ K⇥`+`� at the low-q2 endpoint September 10, 2012 4 / 15

form factor                     

nonlocal “quark loops”                  

matrix elements of semileptonic/radiative 
Hamiltonian factorize “naively”                   

lepton current                     

KINEMATICS & (q̄q)-RESONANCE BKGR

KINEMATICS – B(pB)⇤ P(pP) + ⌅̄(p⇤̄) + ⌅(p⇤)

1) q2 = m2
⇤̄⇤

= (p⇤̄ + p⇤ )2 = (pB � pP)2 4m2
⇤ � q2 � (MB �MP)2

2) cos �⇤ with �⇤⇥(⌅pB ,⌅p⇤̄) in ⇤̄⇤-c.m. system �1 � cos �⇤ � 1

general problem in b ⇤ {d , s}+ ⌅̄⌅ due to Op’s: [s̄�q][q̄�⇥b] and [s̄�b][q̄�⇥q]

LONG DISTANCE - (q̄q)-RESONANCE BACKGROUND

A[B ⇤ P + ⌅̄⌅] = A[B ⇤ P + ⌅̄⌅]SD�FCNC

+A[B ⇤ P + (q̄q)⇤ P + ⌅̄⌅]LD

b s

qq

l

l

for B ⇤ K + ⌅̄⌅ (q2
max ⇥ 22.9 GeV2):

q = u, d , s light resonances below q2 � 1 GeV2

suppr. by small QCD-peng. Wilson coeff. or CKM �̂u

q = c start @ q2 � (MJ/�)2 ⇥ 9.6 GeV2, (M��)2 ⇥ 13.6 GeV2

⌅ usually A[B ⇤ P + ⌅̄⌅]SD�FCNC = “non-resonant part”
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7 (14) complex helicity amplitudes 
in SM (BSM)



Rate: q2 dependence (qualitative)
photon pole

[C7/q2]^2  ([C’7/q2]^2)BF

q2 = (mB-mV)2q2 = 4ml2

↑

interference of
C7, C9, C10

(+BSM)
narrow charm
resonances

open charm region

C9, C10 dominate

resonant structure

“low q2 /
large recoil”

“high q2 /
low recoil”

Note - artist’s impression only.
LHCb has not yet published sufficiently fine binning to show the resonant features
[open charm resonances are however visible in published B->K l l data]

this talk



Phenomenology issues
Examples of theory predictions - intentionally dated ones!
Here, forward-backward asymmetry

our original motivation
- critically (re)examine all theory uncertainties, specifically power 
corrections: separate parameterisation from estimation

- Should one cut at low q2 end? Costs sensitivity to C7’, C7 
What is the residual error with a given set of cuts?

This is also (very) relevant to current “anomalies” in data (P5’) !
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Figure 7: The forward-backward asymmetry in a) B+ → ρ+"+"−, b) B− → ρ−"+"−,
and c) the CP-averaged B → ρ0"+"− decay. The solid (dashed) line shows the next-to-
leading (leading) order result. The band represents the theoretical error due to hadronic
uncertainties.

The next-to-leading order prediction of the forward-backward asymmetry for the
B → K∗"+"− decay has been discussed in detail in our previous paper [3]. For the

b → s transitions the term C(u)
9,⊥(q2) is negligible, because the corresponding Rut is very

small. Hence there is no difference between B and B̄ decay, and the asymmetry zero is
determined by the zero of the real part of C(t)

9,⊥(q2). In [3] we found that the next-to-
leading order correction shifts the zero by 30%, but once this correction is included, a
precise measurement of the location of the zero translates into a determination of the
Wilson coefficient C9 with an accuracy of about 10%. Our updated result for the position
of the forward-backward asymmetry zero reads

q2
0 [K

∗0] = 4.36+0.33
−0.31 GeV2, q2

0[K
∗+] = 4.15+0.27

−0.27 GeV2. (38)

The small difference compared to [3] is due to the different treatment of form factors
and the inclusion of isospin breaking power corrections in the present analysis.

In case of B → ρ "+"− decays there exists an important new contribution from
C(u)

9,⊥(q2). As a consequence, the decays of B or B̄, neutral or charged B mesons to
ρ "+"− may show significantly different forward-backward asymmetries. When α is near
90◦ as expected in the Standard Model, we may approximate eiα " i sin α, and therefore
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Figure 9: Forward-backward asymmetry dAFB(B− → K∗−!+!−)/dq2 at next-
to-leading order (solid center line) and leading order (dashed). The band re-
flects all theoretical uncertainties from parameters and scale dependence com-
bined.

for q2 ∼ Λ2
QCD, but perturbative for q2 ∼ mbΛQCD. Furthermore, the non-perturbative

contribution is formally power-suppressed when the lepton invariant mass spectrum is
integrated from 0 to some q2 of order mbΛQCD.

5.2 Forward-backward asymmetry

The QCD factorization approach proposed here leads to an almost model-independent
theoretical prediction for the forward-backward asymmetry [30]. It has been noted in
[31] that the location of the forward-backward asymmetry zero is nearly independent of
particular form factor models. An explanation of this fact was given in [32], where it
has been noted that the form factor ratios on which the asymmetry zero depends are
predicted free of hadronic uncertainties in the combined heavy quark and large energy
limit. In [4] the effect of the (factorizable) radiative corrections to the form factor ratios
has been studied and has been found to shift the position of the asymmetry zero about
5% towards larger values. We are now in the position to discuss the effect of both,
factorizable and non-factorizable radiative corrections to next-to-leading order in the
strong coupling constant on the location of the asymmetry-zero, and hence to complete
our earlier analysis.

We define the forward-backward (FB) asymmetry (normalized to the differential de-
cay rate dΓ(B− → K∗−!+!−)/dq2) by

dAFB

dq2
≡

1

dΓ/dq2

(

∫ 1

0
d(cos θ)

d2Γ

dq2d cos θ
−

∫ 0

−1
d(cos θ)

d2Γ

dq2d cos θ

)

(72)

Our result for the FB asymmetry is shown in Figure 9 to LO and NLO accuracy. From
(64) it is obvious that dAFB/dq2 ∝ Re (C9,⊥(q2)), and therefore the FB asymmetry van-
ishes if Re (C9,⊥(q2

0)) = 0. At leading order this translates into the relation

C9 + Re(Y (q2
0)) = −

2MBmb

q2
0

Ceff
7 , (73)
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zero crossing to 
0.3 GeV2 in SM

27 25 - 29 May 2010 FPCP, Torino, Italy  

Belle 

BaBar 

LHCb expected 

With 1 fb-1 LHCb expects 1200 events with q2 < 6 GeV2 

At Belle central value, SM could be excluded at 4! 

AFB(B➔K*μμ) w/ 1 fb-1

F Muheim @ FPCP2010



Angular coefficients

momentum and is independent of the details of the K̄⇥ decay vertex. See also
[47].) Squaring the amplitude and summing over lepton spins the fully di⇥erential
decay rate is obtained as

d(4)�

dq2 d(cos ⇥l)d(cos ⇥k)d⌅
=

9

32 ⇤

⇥
⇧
Is1 sin

2 ⇥k + Ic1 cos
2 ⇥k + (Is2 sin

2 ⇥k + Ic2 cos
2 ⇥k) cos 2⇥l

+I3 sin
2 ⇥k sin

2 ⇥l cos 2⌅+ I4 sin 2⇥k sin 2⇥l cos⌅ (38)

+I5 sin 2⇥k sin ⇥l cos⌅+ (Is6 sin
2 ⇥k + Ic6 cos

2 ⇥K) cos ⇥l

+I7 sin 2⇥k sin ⇥l sin⌅+ I8 sin 2⇥k sin 2⇥l sin⌅+ I9 sin
2 ⇥k sin

2 ⇥l sin 2⌅
⌃
.

The angular coe⇤cients Ii are functions exclusively of q2. They can be expressed
in terms of the helicity or transversity amplitudes Eqs. (17)–(22) as

Ic1 = F

⌥
1

2

�
|H0

V |2 + |H0
A|2
⇥
+ 4|HP |2 +

2m2
⌃

q2
�
|H0

V |2 � |H0
A|2
⇥
+ 4�2|HS|2

�
,

Is1 = F

⌥
�2+2

8

�
|H+

V |2 + |H�
V |2 + (V ⇤ A)

⇥
+

m2
⌃

q2
�
|H+

V |2 + |H�
V |2 � (V ⇤ A)

⇥�
,

Ic2 = �F
�2

2

�
|H0

V |2 + |H0
A|2
⇥
,

Is2 = F
�2

8

�
|H+

V |2 + |H�
V |2
⇥
+ (V ⇤ A),

I3 = �F

2
Re
⇤
H+

V (H
�
V )

⇥⌅+ (V ⇤ A),

I4 = F
�2

4
Re
⇤
(H�

V +H+
V )
�
H0

V

⇥⇥⌅
+ (V ⇤ A),

I5 = F

 
�

2
Re
⇤
(H�

V �H+
V )
�
H0

A

⇥⇥⌅
+ (V ⌅ A)� 2 �m⌃↵

q2
Re
⇤
H⇥

S(H
+
V +H�

V )
⌅
⌦

,

Is6 = F� Re
⇤
H�

V (H
�
A )

⇥ �H+
V (H

+
A )

⇥⌅ ,

Ic6 = 8F
�m⌃↵

q2
Re
⇤
H⇥

SH
0
V

⌅
,

I7 = F

 
�

2
Im
⇤�
H+

A +H�
A

⇥
(H0

V )
⇥ + (V ⌅ A)

⌅
� 2 �m⌃↵

q2
Im
⇤
H⇥

S(H
�
V �H+

V )
⌅
⌦
,

I8 = F
�2

4
Im
⇤
(H�

V �H+
V )(H

0
V )

⇥⌅+ (V ⇤ A),

I9 = F
�2

2
Im
⇤
H+

V (H
�
V )

⇥⌅+ (V ⇤ A), (39)

11

strongly suppressed in SM
good sensitivity to NP with 
different chirality structure 
(“right-handed currents”)

Melikhov 1998
Krueger, Matias 2002
Lunghi, Matias 2006

SJ, J Martin Camalich 2012

suppression of I3,I9 due to 
suppression of +-amplitudes
must quantify corrections



• hence

hence 

- “naively factorizing” part of the helicity amplitudes HV,A+ strongly 
suppressed as a consequence of chiral SM weak interactions 
- We see the suppression is particularly strong near low-q2 endpoint
- Form factor relations imply reduced uncertainties in suitable observables

2"$OJ\].$,U(7454I($'E(89,,"8&9'%(

Beyond the SM, HV and HA may receive extra contributions from modified Wilson co-

e⇤cients C7, C9, C10, as well as the parity-conjugate operators if present. Furthermore, in

the most general BSM there will a be further “scalar” and three “tensor” amplitudes. None

of this, however, matters for tensioning the data against the SM. On the other hand, the

fact that C9 always appears in linear combination with h� illustrates that particular care is

needed in attributing the data to a BSM value of this coe⇤cient, as was done in [? ]. (The

situation is better for C7 or its counterpart C ⇥
7, which can be picked out by considering the

q2 ⇥ 0 region [1], which is also related to B ⇤ K�⇥ and B ⇤ Xs⇥ decay.)

A. Minimal parameterisation of nonperturbative QCD

The helicity form factors V (⇤) and T (⇤) replace the more traditional transversity form

factors, to which they are related by a change of basis (of quark bilinears), i.e. the two sets

are related by linear relations. In either basis they obey certain algebraic constraints, and

further ones in the heavy-quark limit.

In practice, they make for very simple helicity amplitudes, eliminating awkward kinematic

factors, and the algebraic and heavy-quark limit constraints look particularly simple. In [1],

a parameterisation of the following form wa suggested for the form factors:

F (q2) = F⇤(q2) + aF + bF q
2/m2

B +O([q2/m2
B]

2). (3)

Here F denotes any form factor, F⇤(q2) = F⇤(0)/(1� q2/m2
B)

p +�F (�s; q2) carries the q2

dependence of the heavy-quark limit, with p = 2 or 3 depending on the form factor. The

first term follows from heavy-quark scaling relations when neglecting �s [3], and the second

term is computable in QCD factorization [4] as convolutions of perturbative (in �s) kernels

and light-cone distribution amplitudes of the B and K�. aF , bF and the remainder term in

(3) are all of order ⇥/mB in the heavy-quark expansion [4]. Note that the heavy-quark limit

only fixes F⇤(0) up to a power correction; in particular we can absorb aF into F⇤(0) and

replace F⇤(0) ⇤ F (0) in (3) for a given form factor.

The parameterisation (3) amounts to Taylor-expanding the power-suppressed part about

q2 = 0; higher-order terms should be below (1-2%) for q2 < 6 GeV2 throughout the low-q2

region and smaller still at the lower end, and will be neglected in the following.
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m2
BT�(q2) = ��µ(⇥)q⇤⌅M(⇥)|s̄⇤µ⇤PRb|B̄⇧,

imBS(q2) = ⌅M(⇥ = 0)|s̄PRb|B̄⇧

(similar to Bharucha et al.’10)

Form factors in the helicity basis
I T± related to T1,2, T0 related to T2,3

I V± related to V , A1 and V0 to A1,2, S related to A0

These form factors verify

T+(q2) = O(q2)⇥O(�/mb),

V+(q2) = O(�/mb).

J. Martin Camalich (Brighton) B ⇤ K⇥`+`� at the low-q2 endpoint September 10, 2012 5 / 15
(quark picture: Burdman, 
Hiller 1999)

fixed in heavy-quark limit (argument relies 
on properties of vector light-cone DA)

from heavy-quark/
large energy 
symmetry alone



Nonfactorizable contributions
no known way to treat charm resonance region to 
the necessary precision (would need << 1% to 
see short-distance contribution) 
“solution”: cut out 6 GeV2 < q2 < 14 GeV2

above (high-q2) charm loops calculable in OPE

Beneke, Feldmann, Seidel 01

Grinstein, Pirjol 2004; Beylich, Buchalla, Feldmann  2011
phenomenological applications: Bobeth et al 2008-2013

at low q2 , long-distance charm effects also suppressed, but photon can 
now be emitted from spectator withouth power suppression
systematic framework (QCD factorisation) based on 1/mb expansion

Figure 1: Leading contributions to 〈γ∗K̄∗|Heff |B̄〉. The circled cross marks
the possible insertions of the virtual photon line.

with αs ≡ αs(µ). The sign convention for O7,8 corresponds to a negative C7,8 and
+igsTA, +igemef for the ordinary quark–gauge-boson vertex (ef = −1 for the lepton
fields). We will present our result in terms of “barred” coefficients C̄i (for i = 1, . . . , 6),
defined as certain linear combinations of the Ci as described in Appendix A. The linear
combinations are chosen such that the C̄i coincide at leading logarithmic order with the
Wilson coefficients in the standard basis [7].

As for form factors and non-leptonic two-body decays there exist two distinct classes
of non-factorizable effects. (By “non-factorizable” we mean all those corrections that are
not contained in the definition of the QCD form factors for heavy-to-light transitions.
For example, the familiar leading-order diagrams shown in (a) and (b) of Figure 1 are
factorizable.) The first class involves diagrams in which the spectator quark in the B
meson participates in the hard scattering. This effect occurs at leading order in an
expansion in the strong coupling constant only through a weak annihilation diagram
[Figure 1c]. The relevant diagrams at next-to-leading order are shown as (a) and (b) in
Figure 2 below and in Figure 3. They contribute at order α0,1

s to the functions Ta in
(1). Diagrams of this form have already been considered (for q2 = 0) in [8]. However,
bound state model wave-functions (rather than light-cone distribution amplitudes) were
used and no attempt was made to systematically expand the hard scattering amplitude
in 1/mb. As a consequence, the result of [8] for B̄ → K∗γ depends on an infrared cut-off.
This difficulty is resolved in the present factorization approach. The second class contains
all diagrams shown in the second row of Figure 2 below. Here the spectator quark is
connected to the hard process represented by the diagram only through soft interactions.
The result is therefore proportional to the form factor ξa and the hard-scattering part
gives an αs-correction to the functions Ca in (1).

In this section we present the results of the calculation of these diagrams. Some of the
results needed for diagrams of the second class can be extracted from work on inclusive
radiative decays [9, 10] and we have made use of these results as indicated below. The
conventions for the form factors and light-cone distribution amplitudes for B mesons
and light mesons are those of [4].

2.1 Notation and leading-order result

Since the matrix elements of the semi-leptonic operators O9,10 can be expressed through
B → K∗ form factors, non-factorizable corrections contribute to the decay amplitude
only through the production of a virtual photon, which then decays into the lepton pair.

3

Figure 2: Non-factorizable contributions to 〈γ∗K̄∗|Heff |B̄〉. The circled cross
marks the possible insertions of the virtual photon line. Diagrams that follow
from (c) and (e) by symmetry are not shown. Upper line: hard spectator scat-
tering. Lower line: diagrams involving a B → K∗ form factor (the spectator
quark line is not drawn for these diagrams).

T (f)
⊥,−(u, ω) = T (f)

‖,−(u, ω) = 0 (22)

The non-factorizable correction is obtained by computing matrix elements of four-quark
operators and the chromomagnetic dipole operator represented by diagrams (a) and (b)
in Figure 2. The projection on the meson distribution amplitudes is straightforward. In
the result we keep only the leading term in the heavy quark limit, expanding the ampli-
tude in powers of the spectator quark momentum whenever this is permitted by power
counting. In practice this means keeping all terms that have one power of the spectator
quark momentum in the denominator. Such terms arise either from the gluon propagator
that connects to the spectator quark line or from the spectator quark propagator, when
the photon is emitted from the spectator quark line. We then find:

T (nf)
⊥, +(u, ω) = −

4ed C eff
8

u + ūq2/M2
B

+
MB

2mb

[

eut⊥(u, mc) (C̄2 + C̄4 − C̄6)

+ ed t⊥(u, mb) (C̄3 + C̄4 − C̄6 − 4mb/MB C̄5) + ed t⊥(u, 0) C̄3

]

(23)

T (nf)
⊥,−(u, ω) = 0 (24)

T (nf)
‖, + (u, ω) =

MB

mb

[

eut‖(u, mc) (C̄2 + C̄4 − C̄6) + ed t‖(u, mb) (C̄3 + C̄4 − C̄6)

+ ed t‖(u, 0) C̄3

]

(25)

T (nf)
‖,− (u, ω) = eq

MBω

MBω − q2 − iε

[

8 C eff
8

ū + uq2/M2
B

+
6MB

mb

(

h(ūM2
B + uq2, mc) (C̄2 + C̄4 + C̄6) + h(ūM2

B + uq2, mb) (C̄3 + C̄4 + C̄6)

7

possible photon 
attachments more significant for b ➔s transitions

small Wilson coefficients

The results of this paper are restricted to the kinematic region in which the energy
of the final state meson scales with the heavy quark mass in the heavy quark limit.
In practice we identify this with the region below the charm pair production threshold
q2 < 4m2

c ≈ 7 GeV2. The various form factors appearing in (7)-(9) are then related by
symmetries [5, 4]. Adopting the notation of [4], (7)-(9) simplify to

T1(q
2) ≡ T⊥(q2) = ξ⊥(q2)

[

C eff
7 δ1 +

q2

2mbMB
Y (q2)

]

, (12)

T2(q
2) =

2E

MB
T⊥(q2), (13)

T3(q
2) −

MB

2E
T2(q

2) ≡ T‖(q
2) = −ξ‖(q

2)
[

C eff
7 δ2 +

MB

2mb
Y (q2) δ3

]

, (14)

where E = (M2
B − q2)/(2MB) refers to the energy of the final state meson and ξ⊥,‖ refer

to the form factors in the heavy quark and high energy limit. The factors δi are defined
such that δi = 1 + O(αs). The αs-corrections have been computed in [4] and will be
incorporated into the next-to-leading order results later on. The appearance of only
two independent structures is a consequence of the chiral weak interactions and helicity
conservation, and hence holds also after including next-to-leading order corrections [4,
12]. We therefore present our results in terms of the invariant amplitudes T⊥, ‖(q2), which
refer to the decay into a transversely and longitudinally polarized vector meson (virtual
photon), respectively. At next-to-leading order we represent these quantities in the form

Ta = ξa

(

C(0)
a +

αsCF

4π
C(1)

a

)

+
π2

Nc

fBfK∗, a

MB
Ξa

∑

±

∫ dω

ω
ΦB,±(ω)

∫ 1

0
duΦK∗, a(u) Ta,±(u, ω), (15)

where CF = 4/3, Nc = 3, Ξ⊥ ≡ 1, Ξ‖ ≡ mK∗/E, and Ta,±(u, ω) is expanded as

Ta,±(u, ω) = T (0)
a,±(u, ω) +

αsCF

4π
T (1)

a,±(u, ω). (16)

fK∗, ‖ denotes the usual K∗ decay constant fK∗. fK∗,⊥ refers to the (scale-dependent)
transverse decay constant defined by the matrix element of the tensor current. The
leading-order coefficient C(0)

a follows by comparison with Eqs. (12) and (14) setting δi = 1.
To complete the leading-order result we have to compute the weak annihilation am-

plitude of Figure 1c, which has no analogue in the inclusive decay and generates the
hard-scattering term T (0)

a,±(u, ω) in (15). To compute this term we perform the projec-
tion of the amplitude on the B meson and K∗ meson distribution amplitude as explained
in [4]. The four diagrams in Figure 1c contribute at different powers in the 1/mb expan-
sion. It turns out that the leading contribution comes from the single diagram with the
photon emitted from the spectator quark in the B meson, because this allows the quark
propagator to be off-shell by an amount of order mbΛQCD, the off-shellness being of order
m2

b for the other three diagrams. With the convention that the K∗ meson momentum

5

light-cone wave functions

b

b

q

q

calculable

Non-factorizable charm-loop contribution

The LHS diagram and �s corrections are treated in QCDf (BFS’01)

Soft-gluon contributions: ⇥H� ⇥ 8%Ceff
7 (Khodjamirian et al.’10)

For the numerics, our NF charm-loop uncertainty is

⇥H� = (0.1 � Ceff
7 )ei�� , ⇥H+ = (0.1 � Ceff

7 � �/mb)ei�+

Recent discussion in Becirevic et al.’12

J. Martin Camalich (Brighton) B ⇤ K⇥`+`� at the low-q2 endpoint September 10, 2012 8 / 15



“Charm loop” (operators with charm)Non-factorizable charm-loop contribution

The LHS diagram and �s corrections are treated in QCDf (BFS’01)

Soft-gluon contributions: ⇥H� ⇥ 8%Ceff
7 (Khodjamirian et al.’10)

For the numerics, our NF charm-loop uncertainty is

⇥H� = (0.1 � Ceff
7 )ei�� , ⇥H+ = (0.1 � Ceff

7 � �/mb)ei�+

Recent discussion in Becirevic et al.’12

J. Martin Camalich (Brighton) B ⇤ K⇥`+`� at the low-q2 endpoint September 10, 2012 8 / 15

leading-power: factorises into 
perturbative kernels, form 
factors, LCDA’s (including 
hard/hard-collinear gluon 
corrections to all orders)

at subleading powers: 
breakdown of factorisation

parital estimates as end-point 
divergent convolutions with a 
cut-off

can perform light-cone OPE 
of charm loop & estimate 
resulting (nonlocal) operator 
matrix elements by light-cone 
QCD sum rules

one can show that the helicity 
suppression of HV+ survives 
long-distance corrections

Khodjamirian et al 2010

αs0 : C7➔C7eff

           C9➔C9eff(q2)
       + 1 annihilation diagram
αs1 : (convergent) convolutions of hard- 
       scattering kernels with meson light
       cone-distribution amplitudes

state-of-the-art in phenomenology

unambigous (save for parametric uncertainties)

Beneke, Feldmann, Seidel 2001

Feldmann, Matias

SJ, J Martin Camalich 2012



Light-quark contributions
Operators without charm have strong charm or CKM suppression; 
power corrections should be negligible.

However, they generate (mild) resonance structure even below the 
charm threshold, ie “duality violation”
Presumably ρ,ω,φ most important; use vector meson dominance
supplemented by heavy-quark limit B➔VK* amplitudes

estimate uncertainty from difference between VMD model and the 
subset of heavy-quark limit diagrams corresponding to 
intermediate V states.

Helicity hierarchies in hadronic B decays prevent large 
uncertainties in HV+ from this source, too.
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Figure 4. Graphical representation of the VMD model. The filled bulb represents the B̄ � V K̄�

decay vertex, as obtained in QCD factorization, the solid bulb fV , as obtained from experiment,
and the double lines resonance propagators, with the cross indicating the multi-particle dressing of
the respective pole.

In this paper we use a model to estimate the contribution of the light hadronic degrees

of freedom in the low-q2 region. We start by making a factorization approximation of the

correlation function eq. (3.30), using a basis of hadronic states |P (0)⌅ and |P ⌅(x)⌅,

ãhad, lqµ =

⇥
d4x e�iq·x

�

P,P ⇤

⇤0|jem,lq
µ (x)|P ⌅⌅⇤P ⌅(x)|P (0)⌅⇤K̄⇤P |Hhad

e� (0)|B̄⌅, (3.31)

where the sums include further integrations for multi-particle states. We next assume that

these sums are saturated by the lightest neutral vector resonances V = �(770), ⌅(782)

and ⇥(1020), i.e. vector meson dominance (VMD). This hypothesis has proven very fruit-

ful in modelling the electromagnetic structure of light hadrons at low energies. It finds

microscopic justification in the large Nc limit of QCD [105] and it has been successfully

implemented to connect the short-range part of the low-energy interactions of pions with

QCD [98, 99]. (For a compilation of phenomenological applications of the model in the

weak decays of mesons see ref. [106].) In the VMD, the first factor in the r.h.s. of eq. (3.31)

is a semileptonic decay constant, fV , the second the vector-meson propagator and the third

a B̄ � V K̄⇤ decay amplitude. Finally, we (partially) take into account the e�ect of the

continuum of multi-particle hadronic states by dressing the poles of the resonance by their

(o�-shell) width. All in all, the estimate for the hadronic contribution at low q2 can be

pictured as in figure 4.

In order to carry out the computation, it is convenient to use an e�ective Lagrangian

containing fields which serve as interpolators for the vector resonances. We choose the

anti-symmetric representation advocated in refs. [98, 99] for applications in ⇤PT. Other

Lagrangian formulations consistent with chiral symmetry and electromagnetic gauge in-

variance8 are equivalent to this one, once consistency with QCD asymptotic behavior of

2-point spectral functions is demanded [99]. We address the reader to appendix B for the

details and conventions used in the model.

As for the B̄ � V K̄⇤ decay amplitude, it is natural, in the present context, to use

the QCD factorization calculation reported in ref. [108]. In fact, as already discussed

in [23], there is a one-to-one correspondence between a subclass of diagrams in the QCDF

calculation of B̄ � K̄⇤↵+↵� and of the diagrams appearing in the QCDF calculation for

8Notice that in a previous VMD analysis [107] of the vector-meson contribution to the B � K⇥⇤+⇤�

decay, electromagnetic gauge and non-gauge invariant Lagrangians were considered in the same footing

and large di�erences between the two approaches have been reported at low q2. In this paper we work

exclusively with approaches consistent with electromagnetic gauge symmetry (and QCD, as stated in the

main text).
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Figure 4. Graphical representation of the VMD model. The filled bulb represents the B̄ � V K̄�

decay vertex, as obtained in QCD factorization, the solid bulb fV , as obtained from experiment,
and the double lines resonance propagators, with the cross indicating the multi-particle dressing of
the respective pole.

In this paper we use a model to estimate the contribution of the light hadronic degrees

of freedom in the low-q2 region. We start by making a factorization approximation of the

correlation function eq. (3.30), using a basis of hadronic states |P (0)⌅ and |P ⌅(x)⌅,

ãhad, lqµ =

⇥
d4x e�iq·x

�

P,P ⇤

⇤0|jem,lq
µ (x)|P ⌅⌅⇤P ⌅(x)|P (0)⌅⇤K̄⇤P |Hhad

e� (0)|B̄⌅, (3.31)

where the sums include further integrations for multi-particle states. We next assume that

these sums are saturated by the lightest neutral vector resonances V = �(770), ⌅(782)

and ⇥(1020), i.e. vector meson dominance (VMD). This hypothesis has proven very fruit-

ful in modelling the electromagnetic structure of light hadrons at low energies. It finds

microscopic justification in the large Nc limit of QCD [105] and it has been successfully

implemented to connect the short-range part of the low-energy interactions of pions with

QCD [98, 99]. (For a compilation of phenomenological applications of the model in the

weak decays of mesons see ref. [106].) In the VMD, the first factor in the r.h.s. of eq. (3.31)

is a semileptonic decay constant, fV , the second the vector-meson propagator and the third

a B̄ � V K̄⇤ decay amplitude. Finally, we (partially) take into account the e�ect of the

continuum of multi-particle hadronic states by dressing the poles of the resonance by their

(o�-shell) width. All in all, the estimate for the hadronic contribution at low q2 can be

pictured as in figure 4.

In order to carry out the computation, it is convenient to use an e�ective Lagrangian

containing fields which serve as interpolators for the vector resonances. We choose the

anti-symmetric representation advocated in refs. [98, 99] for applications in ⇤PT. Other

Lagrangian formulations consistent with chiral symmetry and electromagnetic gauge in-

variance8 are equivalent to this one, once consistency with QCD asymptotic behavior of

2-point spectral functions is demanded [99]. We address the reader to appendix B for the

details and conventions used in the model.

As for the B̄ � V K̄⇤ decay amplitude, it is natural, in the present context, to use

the QCD factorization calculation reported in ref. [108]. In fact, as already discussed

in [23], there is a one-to-one correspondence between a subclass of diagrams in the QCDF

calculation of B̄ � K̄⇤↵+↵� and of the diagrams appearing in the QCDF calculation for

8Notice that in a previous VMD analysis [107] of the vector-meson contribution to the B � K⇥⇤+⇤�

decay, electromagnetic gauge and non-gauge invariant Lagrangians were considered in the same footing

and large di�erences between the two approaches have been reported at low q2. In this paper we work

exclusively with approaches consistent with electromagnetic gauge symmetry (and QCD, as stated in the

main text).
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Phenomenology
Useful to consider functions of the angular coefficients for 
which form factors drop out in the heavy quark limit (ie 
neglecting power corrections) if perturbative QCD corrections 
are also neglected.

p
r
o
o
f
s
 
J
H
E
P
_
0
6
4
P
_
0
2
1
3

two more relations can be established,

3I1s = I2s, I1c = �I2c, (4.1)

leading to eight independent observables.

The analysis of the CP-partner decay B ⇥ K⇥↵+↵� gives a same amount of indepen-

dent observables as in the B̄ decay, the Īi’s. In this sense, it is useful to define the following

combinations of Ii’s and Īi’s,

⇥i =
Ii + Īi

2
, �i =

Ii � Īi
2

, (4.2)

which can be used to construct a variety of CP-averages and asymmetries [37, 39].

4.2 The B̄0 ⇥ K̄⇥0µ+µ� decay

In figure 6, we show the SM predictions for the eleven angular coe⇧cients available in

this case and normalized by the B̄0 decay rate at low q2. The solid (red) and the dashed

(green) lines correspond to the prediction including the light-quark contributions in the

hadronic model or in QCD factorization, respectively (see section 3). The inner (red) error

band is the uncertainty derived from the hadronic parameters (soft form factors, decay

constants,. . .), the CKM parameters and the renormalization scale. The intermediate (blue)

and outer (green) bands result from the addition in quadratures of the unknown factorizable

and charm-loop power corrections, subsequently. Factorizable corrections are estimated

using eq. (3.13), and the charm-loop uncertainty are modelled according to eqs. (3.34).

The main source of uncertainties in the Ii’s stem from the soft form factors and, in

some cases, from the charm-loop. In particular, for the coe⇧cients proportional to H+
V,A,

I3 and I9, the latter source is, by far, the most important. On the other hand, it is

remarkable that the uncertainties in the coe⇧cients arising from the unknown factorizable

power corrections are negligible at low q2. This e⇤ect is due to the constraints imposed by

the exact relations (3.1). Finally, notice that the vector-meson resonances alter significantly

the line shape of most of the Ii’s, except for those ⇤ H+
V,A due to the suppression of the

corresponding helicity amplitude in the B̄ ⇥ K̄⇥V decays (see section 3).

4.2.1 CP-averages: the branching fraction, FL and the P -basis

Each of the observables that can be constructed out of the CP combinations in eqs. (4.2)

has a di⇤erent sensitivity to the various standard and non-standard Wilson coe⇧cients. In

order to maximize these sensitivities, it is important to find a set observables with reduced

dependence to the uncertain hadronic parameters underpinning the theoretical predictions,

in particular the B ⇥ K⇥ form factors [32, 38]. Indeed, a proper set of “clean” observables

can be obtained using suitable ratios of angular coe⇧cients [53, 57, 66]. Following this

strategy, we use the following set of CP-averaged observables [66],

P1 =
⇥3

2⇥2s
, P2 =

⇥6

8⇥2s
, P3 = � ⇥9

4⇥2s
,

P ⇤
4 =

⇥4⌅
�⇥2s⇥2c

, P ⇤
5 =

⇥5

2
⌅
�⇥2s⇥2c

, P ⇤
6 = � ⇥7

2
⌅
�⇥2s⇥2c

.
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2

, (4.2)

which can be used to construct a variety of CP-averages and asymmetries [37, 39].

4.2 The B̄0 ⇥ K̄⇥0µ+µ� decay

In figure 6, we show the SM predictions for the eleven angular coe⇧cients available in

this case and normalized by the B̄0 decay rate at low q2. The solid (red) and the dashed

(green) lines correspond to the prediction including the light-quark contributions in the

hadronic model or in QCD factorization, respectively (see section 3). The inner (red) error

band is the uncertainty derived from the hadronic parameters (soft form factors, decay

constants,. . .), the CKM parameters and the renormalization scale. The intermediate (blue)

and outer (green) bands result from the addition in quadratures of the unknown factorizable

and charm-loop power corrections, subsequently. Factorizable corrections are estimated

using eq. (3.13), and the charm-loop uncertainty are modelled according to eqs. (3.34).

The main source of uncertainties in the Ii’s stem from the soft form factors and, in

some cases, from the charm-loop. In particular, for the coe⇧cients proportional to H+
V,A,

I3 and I9, the latter source is, by far, the most important. On the other hand, it is

remarkable that the uncertainties in the coe⇧cients arising from the unknown factorizable

power corrections are negligible at low q2. This e⇤ect is due to the constraints imposed by

the exact relations (3.1). Finally, notice that the vector-meson resonances alter significantly

the line shape of most of the Ii’s, except for those ⇤ H+
V,A due to the suppression of the

corresponding helicity amplitude in the B̄ ⇥ K̄⇥V decays (see section 3).

4.2.1 CP-averages: the branching fraction, FL and the P -basis

Each of the observables that can be constructed out of the CP combinations in eqs. (4.2)

has a di⇤erent sensitivity to the various standard and non-standard Wilson coe⇧cients. In

order to maximize these sensitivities, it is important to find a set observables with reduced

dependence to the uncertain hadronic parameters underpinning the theoretical predictions,

in particular the B ⇥ K⇥ form factors [32, 38]. Indeed, a proper set of “clean” observables

can be obtained using suitable ratios of angular coe⇧cients [53, 57, 66]. Following this

strategy, we use the following set of CP-averaged observables [66],

P1 =
⇥3

2⇥2s
, P2 =

⇥6

8⇥2s
, P3 = � ⇥9

4⇥2s
,

P ⇤
4 =

⇥4⌅
�⇥2s⇥2c

, P ⇤
5 =

⇥5

2
⌅
�⇥2s⇥2c

, P ⇤
6 = � ⇥7

2
⌅
�⇥2s⇥2c

.

– 28 –

Becirevic, Schneider 2011
Matias, Mescia, Ramon, Virto 2012
Descotes-Genon et al 2012
(also Krueger,Matias 2005; Egede et al 2008,
Altmannshofer et al 2008)

(similar sets suitable at high q2: Bobeth, 
Hiller, Van Dyk 2010, 2012; Matias et al 
2012)
     

Matias, Mescia, Ramon, Virto 2012

Observables with these properties are defined to be “clean” (Matias et al) or 
“form-factor independent” (LHCb title). Terms not used in their usual meaning!
How do the observables fare in reality?



Predictions

• As expected, P1 and P3 remain very cleanly zero in the SM. 
The other “clean” observables are more sensitive to long-
distance effects (power corrections / duality violations)

SJ, Martin Camalich 2012
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Figure 7: Di�erential branching fraction, FL and the “clean” observables P (�)
i

around the low-q2 end-point. We show in black the experimental results for the
two first observables in the bins [0.05, 2] GeV2 and [2, 4.3] GeV2 [6]. The color
code is as in Fig. 6.
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Table 3: Results and error budget on the binned CP-averaged observables of the
muonic mode.

Obs. [q2min, q
2
max] Result Hadronic Fact. c-quark Light-quark

[0.1, 1] 0.81+0.23
�0.20

+0.20
�0.17

+0.03
�0.03

+0.10
�0.10 ±0.00

[0.1, 2] 1.13+0.39
�0.38

+0.36
�0.24

+0.08
�0.07

+0.13
�0.12 ±0.02

107 ⇥ ⌅ dB
dq2 ⇧ [2, 4.3] 0.62+0.33

�0.26
+0.27
�0.21

+0.19
�0.15

+0.02
�0.01 ±0.00

[1, 6] 1.5+0.8
�0.6

+0.6
�0.5

+0.46
�0.37

+0.05
�0.05 ±0.02

[0.1, 1] 0.20+0.11
�0.10

+0.10
�0.09

+0.02
�0.02

+0.03
�0.02 ±0.01

[0.1, 2] 0.31+0.16
�0.12

+0.15
�0.11

+0.04
�0.04

+0.04
�0.03 ±0.01

⌅FL⇧ [2, 4.3] 0.75+0.11
�0.16

+0.09
�0.13

+0.07
�0.9

+0.02
�0.02 ±0.00

[1, 6] 0.70+0.14
�0.17

+0.11
�0.13

+0.09
�0.11

+0.02
�0.02 ±0.00

[0.1, 1] 2.9+3.2
�3.1

+0.8
�0.1

+1.2
�1.3

+2.9
�2.8 ±0.0

[0.1, 2] 3.0+3.5
�3.4

+0.8
�0.2

+1.7
�1.7

+2.9
�2.9 ±0.1

102 ⇥ ⌅P1⇧ [2, 4.3] �1.0+7
�5

+1.6
�0.8

+7
�5

+1.8
�1.6 ±0.0

[1, 6] �2+8
�6

+1.3
�0.8

+8
�6

+1.6
�1.4 ±0.0

[0.1, 1] 1.02+0.15
�0.17

+0.08
�0.13

+0.10
�0.09

+0.08
�0.07 ±0.00

[0.1, 2] 1.57+0.19
�0.26

+0.08
�0.20

+0.13
�0.13

+0.11
�0.10 ±0.04

10⇥ ⌅P2⇧ [2, 4.3] �3.1+1.4
�1.6

+0.8
�0.8

+1.0
�1.2

+0.5
�0.7 ±0.0

[1, 6] �1.4+1.5
�1.5

+0.8
�0.7

+1.2
�1.1

+0.5
�0.6 ±0.0

[0.1, 1] �0.1+1.5
�1.2

+0.0
�0.2

+0.1
�0.1

+1.5
�1.2 ±0.0

[0.1, 2] �0.2+1.6
�1.3

+0.0
�0.2

+0.1
�0.1

+1.6
�1.2 ±0.0

102 ⇥ ⌅P3⇧ [2, 4.3] �0.3+1.2
�1.2

+0.1
�0.3

+0.7
�0.8

+1.0
�0.9 ±0.0

[1, 6] �0.3+1.0
�1.0

+0.1
�0.3

+0.6
�0.6

+0.8
�0.7 ±0.0

[0.1, 1] �5.1+0.9
�0.4

+0.8
�0.0

+0.2
�0.2

+0.3
�0.2 ±0.3

[0.1, 2] �3.8+1.4
�0.6

+1.2
�0.0

+0.3
�0.3

+0.4
�0.4 ±0.4

10⇥ ⌅P ⇥
4⇧ [2, 4.3] 4.6+1.8

�2.2
+0.9
�1.4

+1.3
�1.4

+1.
�0.9 ±0.0

[1, 6] 4.6+1.6
�1.9

+0.9
�1.2

+1.1
�1.2

+0.8
�0.8 ±0.0

[0.1, 1] 6.9+0.8
�0.5

+0.6
�0.1

+0.3
�0.3

+0.2
�0.2 ±0.3

[0.1, 2] 5.5+0.7
�1.1

+0.1
�0.8

+0.6
�0.6

+0.3
�0.3 ±0.2

10⇥ ⌅P ⇥
5⇧ [2, 4.3] �2.5+3.1

�2.7
+1.5
�1.1

+2.5
�2.3

+0.9
�1.0 ±0.0

[1, 6] �2.8+3.0
�2.6

+1.3
�1.1

+2.5
�2.2

+0.8
�0.9 ±0.0

[0.1, 1] �0.8+0.7
�0.8

+0.3
�0.4

+0.0
�0.0

+0.7
�0.7 ±0.0

[0.1, 2] �0.8+0.7
�0.8

+0.2
�0.5

+0.0
�0.0

+0.7
�0.7 ±0.0

10⇥ ⌅P ⇥
6⇧ [2, 4.3] �0.9+1.0

�1.0
+0.3
�0.5

+0.1
�0.1

+0.9
�0.9 ±0.0

[1, 6] �0.7+0.8
�1.0

+0.2
�0.5

+0.1
�0.1

+0.8
�0.8 ±0.0
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Table 3: Results and error budget on the binned CP-averaged observables of the
muonic mode.

Obs. [q2min, q
2
max] Result Hadronic Fact. c-quark Light-quark
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Table 3: Results and error budget on the binned CP-averaged observables of the
muonic mode.

Obs. [q2min, q
2
max] Result Hadronic Fact. c-quark Light-quark
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Long-distance effects (charm loop) dominate remaining (very 
small) error on P1, P3 and are important in all observables.



Sensitivity to C7’(muonic mode)

• (theoretical limit on) sensitivity to Re C7’ at <10% (C7SM) 
level, to Im C7’ at <1% 

• sensitivity stems from q2 ∈ [0.1, 2] GeV2.  There is no need 
to discard the data below 1 GeV2, theory is perfectly fine!

• other observables’ cleanness reduced by LD effects

SJ, Martin Camalich 2012
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Figure 11: Study of the sensitivity of the observables P1 and PCP
3 to the a purely

real or purely imaginary NPs contribution through C ⇤
7 (dashed line, blue bands).

These are confronted with the SM expectation (solid line, red band).

4.4 Sensitivity to C ⌅
7

The analysis of the low q2 region of the B̄ ⇥ K̄⇥↵+↵� can provide tight constraints
on NPs scenarios with right-handed flavour-changing neutral currents, specially
those giving contributions to the chirally-flipped magnetic penguin operator O⇤

7.
This is due to the fact that the angular coe⌃cients I3 and I9, at low-q2, are

I3 ⇤ Re
�
H�

V H
+⇥
V

⇥
, I9 ⇤ Im

�
H�

V H
+⇥
V

⇥
, (91)

where H+
V ⇤ C ⇤

7/q
2, so, approximately, they vanish unless C ⇤

7 ⇧= 0. (Corrections
involving H+

A are also suppressed by the smallness of C ⇤
9 and C ⇤

10 in the Stan-
dard Model, but any BSM e⇤ects generating H+

A are suppressed at q2 � 0 due
to the absence of a photon pole.) In the SM, small contributions to these ob-
servables are generated by the strange-quark mass and other e⇤ects quantified
in this work as contributions to the H+

V helicity amplitude. Other decays and
observables provide valuable and independent constraints on the C7 and the C ⇤

7

planes, in particular the inclusive B ⇥ Xs� decay and the isospin and the time-
dependent CP-asymmetries in the exclusive B ⇥ K⇥� decay (see e.g. [56]). The
interest of the radiative decays onto higher-mass K⇥ resonances has been also
recently pointed out [40]. In this work we focus on studying the sensitivity of
the vicinity of low-q2 end-point to the chirally-flipped Wilson coe⌃cient C ⇤

7. A
more comprehensive analysis should also consider studying new-physics e⇤ects in
C7 [56, 57, 55], although I3 and I9 can be used to e⌃ciently constrain also this
Wilson coe⌃cient only if C ⇤

7 is far from zero.
In the context of CP-combinations, one can construct 4 independent observ-

ables with these angular coe⌃cients and their CP-conjugates. However, I3 and I9
are a CP-odd and a CP-even observable, respectively, and the combinations �3

and ⇥9 become not very sensitive to the chirality of dilepton pair. Therefore, only
1 CP-average and 1 CP-asymmetry, constructed from ⇥3 and �9, in order, are

41
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Electronic mode

• P1 and P3CP clean null test of SM down to end point

• Statistical advantage over muonic mode from closeness to 
photon pole - offsets in part experimental difficulty

SJ, Martin Camalich 2012
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Figure 10: Di�erential branching fraction and P1 for the electronic mode at low
q2. The color code is as in Fig. 6.

Table 4: Results and error budget of the integrated branching fraction and P1

observable in the [0.0009, 1] GeV2 bin for the electronic mode.
Obs. Result Hadronic Fact. c-quark Light-quark

107 ⇥ ⌥ dB
dq2 � 2.43+0.66

�0.47
+0.50
�0.39

+0.10
�0.05

+0.42
�0.25 ±0.03

102 ⇥ ⌥P1� 2.7+3.0
�2.7

+0.8
�0.1

+1.0
�1.2

+2.7
�2.3 ±0.0

enhanced sensitivity to the physics associated to the photon pole becoming a
golden mode for probing possible BSM e�ects related to the magnetic penguins
operator Q(⇤)

7 [14]. On the experimental side, B�factories have observed the elec-
tronic mode [5], and prospects at LHCb are discussed in [103]. This will also be
an interesting target for super flavour factories. Our detailed error assessment of
the low-q2 region in the muonic mode revealed that the low-q2 end-point is actu-
ally the least prone to form factors uncertainties due to the constraints (44), at
the same time as the hadronic contributions, for CP-averaged observables, come
out to be of negligible size. Consequently, the B̄0 ⇧ K̄⇥0e+e� decay emerges as
highly relevant.

In Fig. 10 we show the SM predictions for the di�erential branching fraction
and the P1 observable, which is especially sensitive to NPs e�ects in the magnetic
penguin operators [24, 49]. In Table 4 we show the integrated results for the bin
[0.0009, 1] GeV2, that is the one proposed in [103]. As one can see, the integrated
branching fraction is larger than the one for the muonic case in its lowest bin.
Interestingly enough, our result agrees with the estimate B ⌅ 2.2⇥ 10�7 that is
obtained assuming that the decay is entirely driven by the photon pole [14, 103].
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the same time as the hadronic contributions, for CP-averaged observables, come
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3 to the a purely

real or purely imaginary NPs contribution through C ⇤
7 (dashed line, blue bands).

These are confronted with the SM expectation (solid line, red band).

4.4 Sensitivity to C ⌅
7

The analysis of the low q2 region of the B̄ ⇥ K̄⇥↵+↵� can provide tight constraints
on NPs scenarios with right-handed flavour-changing neutral currents, specially
those giving contributions to the chirally-flipped magnetic penguin operator O⇤

7.
This is due to the fact that the angular coe⌃cients I3 and I9, at low-q2, are

I3 ⇤ Re
�
H�

V H
+⇥
V

⇥
, I9 ⇤ Im

�
H�

V H
+⇥
V

⇥
, (91)

where H+
V ⇤ C ⇤

7/q
2, so, approximately, they vanish unless C ⇤

7 ⇧= 0. (Corrections
involving H+

A are also suppressed by the smallness of C ⇤
9 and C ⇤

10 in the Stan-
dard Model, but any BSM e⇤ects generating H+

A are suppressed at q2 � 0 due
to the absence of a photon pole.) In the SM, small contributions to these ob-
servables are generated by the strange-quark mass and other e⇤ects quantified
in this work as contributions to the H+

V helicity amplitude. Other decays and
observables provide valuable and independent constraints on the C7 and the C ⇤

7

planes, in particular the inclusive B ⇥ Xs� decay and the isospin and the time-
dependent CP-asymmetries in the exclusive B ⇥ K⇥� decay (see e.g. [56]). The
interest of the radiative decays onto higher-mass K⇥ resonances has been also
recently pointed out [40]. In this work we focus on studying the sensitivity of
the vicinity of low-q2 end-point to the chirally-flipped Wilson coe⌃cient C ⇤

7. A
more comprehensive analysis should also consider studying new-physics e⇤ects in
C7 [56, 57, 55], although I3 and I9 can be used to e⌃ciently constrain also this
Wilson coe⌃cient only if C ⇤

7 is far from zero.
In the context of CP-combinations, one can construct 4 independent observ-

ables with these angular coe⌃cients and their CP-conjugates. However, I3 and I9
are a CP-odd and a CP-even observable, respectively, and the combinations �3

and ⇥9 become not very sensitive to the chirality of dilepton pair. Therefore, only
1 CP-average and 1 CP-asymmetry, constructed from ⇥3 and �9, in order, are
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dependent CP-asymmetries in the exclusive B ⇥ K⇥� decay (see e.g. [56]). The
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We present a measurement of form-factor-independent angular observables in the decay

B0 ! K!ð892Þ0!þ!%. The analysis is based on a data sample corresponding to an integrated luminosity

of 1:0 fb%1, collected by the LHCb experiment in pp collisions at a center-of-mass energy of 7 TeV.

Four observables are measured in six bins of the dimuon invariant mass squared q2 in the range

0:1< q2 < 19:0 GeV2=c4. Agreement with recent theoretical predictions of the standard model is found

for 23 of the 24 measurements. A local discrepancy, corresponding to 3.7 Gaussian standard deviations is

observed in one q2 bin for one of the observables. Considering the 24 measurements as independent, the

probability to observe such a discrepancy, or larger, in one is 0.5%.

DOI: 10.1103/PhysRevLett.111.191801 PACS numbers: 13.20.He, 11.30.Rd, 12.60.%i

The rare decay B0 ! K!0!þ!%, where K!0 indicates
the K!ð892Þ0 ! Kþ"% decay, is a flavor-changing neu-
tral current process that proceeds via loop and box ampli-
tudes in the standard model (SM). In extensions of the
SM, contributions from new particles can enter in com-
peting amplitudes and modify the angular distributions of
the decay products. This decay has been widely studied
from both theoretical [1–4] and experimental [5–8] per-
spectives. Its angular distribution is described by three
angles (#‘, #K, and $) and the dimuon invariant mass

squared q2, #‘ is the angle between the flight direction of
the !þ (!%) and the B0 ( !B0) meson in the dimuon rest
frame, #K is the angle between the flight direction of the
charged kaon and the B0 ( !B0) meson in the K!0 ( !K!0)
rest frame, and $ is the angle between the decay planes of
the K!0 ( !K!0) and the dimuon system in the B0 ( !B0)
meson rest frame. A formal definition of the angles can
be found in Ref. [8]. Using the definitions of Ref. [2] and
summing over B0 and !B0 mesons, the differential angular
distribution can be written as

1

d"=dq2
d4"

d cos#‘d cos#Kd$dq2
¼ 9

32"

!
3

4
ð1% FLÞsin2#K þ FLcos

2#K þ 1

4
ð1% FLÞsin2#K cos2#‘

% FLcos
2#K cos2#‘ þ S3sin

2#Ksin
2#‘ cos2$þ S4 sin2#K sin2#‘ cos$

þ S5 sin2#K sin#‘ cos$þ S6sin
2#K cos#‘ þ S7 sin2#K sin#‘ sin$

þ S8 sin2#K sin2#‘ sin$þ S9sin
2#Ksin

2#‘ sin2$
"
; (1)

where the q2 dependent observables FL and Si are bilinear
combinations of the K!0 decay amplitudes. These in turn
are functions of the Wilson coefficients, which contain
information about short distance effects and are sensitive
to physics beyond the SM, and form factors, which depend
on long distance effects. Combinations of FL and Si with
reduced form-factor uncertainties have been proposed
independently by several authors [3,4,9–11]. In particular,
in the large recoil limit (low-q2) the observables denoted as
P0
4, P

0
5, P

0
6, and P0

8 [12] are largely free from form-factor
uncertainties. These observables are defined as

P0
i¼4;5;6;8 ¼

Sj¼4;5;7;8ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FLð1% FLÞ

p : (2)

This Letter presents the measurement of the observables
Sj¼4;5;7;8 and the respective observables P0

i¼4;5;6;8. This is

the first measurement of these quantities by any experi-
ment. Moreover, these observables provide complemen-
tary information about physics beyond the SMwith respect
to the angular observables previously measured in this
decay [5–8]. The data sample analyzed corresponds to an
integrated luminosity of 1:0 fb%1 of pp collisions at a
center-of-mass energy of 7 TeV collected by the LHCb
experiment in 2011. Charge conjugation is implied
throughout this Letter, unless otherwise stated.
The LHCb detector [13] is a single-arm forward spec-

trometer covering the pseudorapidity range 2< %< 5,
designed for the study of particles containing b or c quarks.

*Full author list given at end of the article.
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the published article’s title, journal citation, and DOI.
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SM, contributions from new particles can enter in com-
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8 [12] are largely free from form-factor
uncertainties. These observables are defined as

P0
i¼4;5;6;8 ¼

Sj¼4;5;7;8ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FLð1% FLÞ

p : (2)

This Letter presents the measurement of the observables
Sj¼4;5;7;8 and the respective observables P0

i¼4;5;6;8. This is

the first measurement of these quantities by any experi-
ment. Moreover, these observables provide complemen-
tary information about physics beyond the SMwith respect
to the angular observables previously measured in this
decay [5–8]. The data sample analyzed corresponds to an
integrated luminosity of 1:0 fb%1 of pp collisions at a
center-of-mass energy of 7 TeV collected by the LHCb
experiment in 2011. Charge conjugation is implied
throughout this Letter, unless otherwise stated.
The LHCb detector [13] is a single-arm forward spec-

trometer covering the pseudorapidity range 2< %< 5,
designed for the study of particles containing b or c quarks.

*Full author list given at end of the article.
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P5’ “anomaly”

nonfactorizable QCD a�ects only 3, not 6 amplitudes. On the other hand, the fact that C9

always appears in linear combination with h� makes clear that particular care is needed in

attributing the data to a BSM value of this coe⇤cient, as was done in [? ].

The q2-dependent angular distribution (summed over lepton spins) is quadratic in the

helicity amplitudes and has been given in [1]. In practice, certain ratios of angular coe⇤cients

are favoured because of their reduced sensitity to form factors. Our main purpose is to

critically reexamine the residual uncertainties on those observables, and how they are a�ected

by di�erent assumptions made. To illustrate our point, we will focus on two observables,

called P1 and P ⇤
5 in [12, 13]. In terms of the helicity amplitudes, they read:

⌅P1⇧ = �2
⌅Re(H+

V H
�⇥
V +H+

AH
�⇥
A )⇧

⌅⇥2(|H+
V |2 + |H�

V |2 + |H+
A |2 + |H�

A |2)⇧
, (3)

⌅P ⇤
5⇧ =

⌅⇥(Re[(H�
V �H+

V )H
0⇥
A + (H�

A �H+
A )H

0⇥
V )⇧

�
⌅⇥2|H0

V |2 + |H0
A|2)⇧⌅⇥2(|H+

V |2 + |H�
V |2 + |H+

A |2 + |H�
A |2)⇧

(4)

where the notation ⌅· · ·⇧ denotes CP -averaging and binning over some q2 range, and ⇥ =
�
1� 4m2

µ/q
2 is the speed of the muon in the dilepton centre-of-mass frame.

In certain approximations P1 and P ⇤
5 become free of nonperturbative uncertainties. First,

in the heavy-quark limit and neglecting �s(mb) as well as the contributions h� from the

hadronic weak Hamiltonian, the ⇤ = + helicity amplitudes vanish and V�(q2) = T�(q2). As

a result,

⌅P1⇧ = 0, (5)

⌅P ⇤
5⇧ = 2C10

⌅⇥f1C̃9⇧�
⌅⇥2f2(C̃2

9 + C2
10)⇧⌅⇥̃2f3(C̃2

9 + C2
10)

, (6)

where C̃9 = C9 +
2mbmB

q2 C7, and

f1 = (1� q2/m2
B)

�5, f2 = (1� q2/m2
B)

�6, f3 = (1� q2/m2
B)

�4 (7)

encapsulate the simple form factor q2-dependence in the heavy quark, �s ⇤ limit [3], become

independent of form factors. Second, if the requirement on the form factors is relaxed to

V�(q2) = T�(q2), without fixing the q2-dependence to the heavy-quark limit, �s = 0 one,

equations (5) and (6) hold with the replacements

f1 ⇤ Ṽ�(q
2)Ṽ0(q

2), f2 ⇤ Ṽ 2
0 , f3 ⇤ Ṽ 2

� (8)

In this case, form factor uncertainties cancel out only for su⇤ciently small bin sizes, where

the q2-dependence of the form factors can be neglected. Taken together, this shows that the
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Whence the big difference in error estimate?



Differences in treatment
- DMV employ ad hoc 10% (multiplicative) power correction at 
amplitude level, not per form factor [less conservative]

- DMV (essentially) add in quadrature, we scan over theory ranges 
for 3 groups of inputs, final error in quadrature

The pros and cons of different statistical treatments are discussed 
elsewhere.

Instead, I will simply illustrate the strong sensitivity of P5’  to small 
power corrections, which is irrespective of a statistical treatment.

Moreover, I will not consider the [4.3 .. 8.68] GeV2 bin in the 
following, which extends above the perturbative charm threshold into 
the resonance region. LD charm treatment is totally unreliable there. 
Consider published 1..6 GeV2 data instead.



P5’ parametric dependence

~ +/- 0.03 for either power correction parameter corresponds 
to a 10% power correction

Drawing conclusions based on this observable requires a high 
degree of trust in one’s modelling of power corrections... or 
accuracy of widely employed LCSR estimates
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Analytic approximations
IF
- neglecting power corrections
- neglecting perturbative QCD corrections in heavy-quark limit
- neglecting the helicity-+ amplitudes [given the other two
  assumptions, this just means neglecting ms on top]

THEN

nonfactorizable QCD a�ects only 3, not 6 amplitudes. On the other hand, the fact that C9

always appears in linear combination with h� makes clear that particular care is needed in

attributing the data to a BSM value of this coe⇤cient, as was done in [? ].

The q2-dependent angular distribution (summed over lepton spins) is quadratic in the

helicity amplitudes and has been given in [1]. In practice, certain ratios of angular coe⇤cients

are favoured because of their reduced sensitity to form factors. Our main purpose is to

critically reexamine the residual uncertainties on those observables, and how they are a�ected

by di�erent assumptions made. To illustrate our point, we will focus on two observables,

called P1 and P ⇤
5 in [12, 13]. In terms of the helicity amplitudes, they read:
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where the notation ⌅· · ·⇧ denotes CP -averaging and binning over some q2 range, and ⇥ =
�
1� 4m2

µ/q
2 is the speed of the muon in the dilepton centre-of-mass frame.

In certain approximations P1 and P ⇤
5 become free of nonperturbative uncertainties. First,

in the heavy-quark limit and neglecting �s(mb) as well as the contributions h� from the

hadronic weak Hamiltonian, the ⇤ = + helicity amplitudes vanish and V�(q2) = T�(q2). As

a result,

⌅P1⇧ = 0, (5)

⌅P ⇤
5⇧ = 2C10

⌅⇥f1C̃9⇧�
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, (6)
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q2 C7, and

f1 = (1� q2/m2
B)

�5, f2 = (1� q2/m2
B)

�6, f3 = (1� q2/m2
B)

�4 (7)

encapsulate the simple form factor q2-dependence in the heavy quark, �s ⇤ limit [3], become

independent of form factors. Second, if the requirement on the form factors is relaxed to

V�(q2) = T�(q2), without fixing the q2-dependence to the heavy-quark limit, �s = 0 one,

equations (5) and (6) hold with the replacements

f1 ⇤ Ṽ�(q
2)Ṽ0(q

2), f2 ⇤ Ṽ 2
0 , f3 ⇤ Ṽ 2

� (8)

In this case, form factor uncertainties cancel out only for su⇤ciently small bin sizes, where

the q2-dependence of the form factors can be neglected. Taken together, this shows that the
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C7 and C9 have opposite sign
destructive interference enhances vulnerability to anything that 
violates the large-energy form factor relations

nonfactorizable QCD a�ects only 3, not 6 amplitudes. On the other hand, the fact that C9

always appears in linear combination with h� makes clear that particular care is needed in

attributing the data to a BSM value of this coe⇤cient, as was done in [? ].

The q2-dependent angular distribution (summed over lepton spins) is quadratic in the

helicity amplitudes and has been given in [1]. In practice, certain ratios of angular coe⇤cients

are favoured because of their reduced sensitity to form factors. Our main purpose is to

critically reexamine the residual uncertainties on those observables, and how they are a�ected
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called P1 and P ⌅
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where the notation ⌅· · ·⇧ denotes CP -averaging and binning over some q2 range, and ⇥ =
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1� 4m2

µ/q
2 is the speed of the muon in the dilepton centre-of-mass frame.

In certain approximations P1 and P ⌅
5 become free of nonperturbative uncertainties. First,

in the heavy-quark limit and neglecting �s(mb) as well as the contributions h� from the

hadronic weak Hamiltonian, the ⇤ = + helicity amplitudes vanish and V�(q2) = T�(q2). As

a result,
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encapsulate the simple form factor q2-dependence in the heavy quark, �s ⇤ limit [3], become

independent of form factors. Second, if the requirement on the form factors is relaxed to

V�(q2) = T�(q2), without fixing the q2-dependence to the heavy-quark limit, �s = 0 one,

equations (5) and (6) hold with the replacements
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nonfactorizable QCD a�ects only 3, not 6 amplitudes. On the other hand, the fact that C9

always appears in linear combination with h� makes clear that particular care is needed in

attributing the data to a BSM value of this coe⇤cient, as was done in [? ].

The q2-dependent angular distribution (summed over lepton spins) is quadratic in the

helicity amplitudes and has been given in [1]. In practice, certain ratios of angular coe⇤cients

are favoured because of their reduced sensitity to form factors. Our main purpose is to

critically reexamine the residual uncertainties on those observables, and how they are a�ected
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called P1 and P ⌅
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where the notation ⌅· · ·⇧ denotes CP -averaging and binning over some q2 range, and ⇥ =
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2 is the speed of the muon in the dilepton centre-of-mass frame.

In certain approximations P1 and P ⌅
5 become free of nonperturbative uncertainties. First,

in the heavy-quark limit and neglecting �s(mb) as well as the contributions h� from the
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Conclusion
Rare semileptonic B➔V l l is a rich probe of BSM physics.

It is also complex from a SM QCD point of view, involving many 
hierarchies and nonperturbative parameters

Excellent sensitivity to “magnetic” photon-induced effects 
remains upon taking into account all theory uncertainties if one 
goes to the very low end of the dilepton invariant mass 
distribution; there is no case for cutting at 1 GeV2

The P5’ (and similar) SM predictions are very sensitive to even 
small-size power corrections. 
Need to take into account properly in phenomenology, or in 
calculating p-values!



Helicity amplitudes 
decompose amplitude in lepton currents & “dilepton helicity”

2.2 Helicity amplitudes and helicity form factors

We now carry out the decomposition of the leptonic currents in spins and he-
licities. The resulting coe⇥cients give the well-known “helicity amplitudes” [9].
This is easily achieved [31] through the completeness relation (see Appendix A.1
for our conventions)

⇥µ⇤ = �t,µ�
�
t,⇤ �

�

�=±1,0

�µ(1,⇤)�
�
⇤(1,⇤). (12)

Here �(1,⇤), ⇤ = ±1, 0, denotes a (spin-1) helicity triplet of polarisation 4-vectors
for a vector particle of four-momentum qµ and mass

⇥
q2, and �µt = qµ/

⇥
q2. We

may picture the latter as the “time-like” polarization four-vector of an auxiliary
virtual gauge boson of mass

⇥
q2, but the decomposition works independently

of the origin of the weak Hamiltonian, and also for the tensorial currents. The
result is

A = �
�

�=±1,0

LV (⇤)HV (⇤)�
�

�=±1,0

LA(⇤)HA(⇤) + LSHS + LPHP

�
�

�=±1,0

LTL(⇤)HTL(⇤)�
�

�=±1,0

LTR(⇤)HTR(⇤),
(13)

where
LV (⇤) = �µ(⇤)L

µ
V ,

LA(⇤) = �µ(⇤)L
µ
A ,

LTL(⇤) = �µ(⇤)L
µ
TL ,

LTR(⇤) = �µ(⇤)L
µ
TR ,

LS = LS ,

LP = LP ,

HV (⇤) = ��µ(⇤)a
µ
V ,

HA(⇤) = ��µ(⇤)a
µ
A ,

HTL(⇤) = ��µ(⇤)a
µ
TL ,

HTR(⇤) = ��µ(⇤)a
µ
TR ,

HS = aS

HP = aP +
2ml

q2
qµa

µ
A .

(14)

We have made use of the fact that all leptonic currents except for Lµ
A are con-

served, so �tµ contracts to zero with them. Moreover, the axial current obeys
qµL

µ
A = 2mlLP , which allowed us to absorb the spin-zero axial vector amplitude

into HP [31].
The helicity amplitudes HV , HA, HP , HS are related to the “standard” helicity

amplitudes [11, 31] as follows,

H�L/R =
⇥
f
1

2
(HV (⇤)⇤HA(⇤)), At = �

⇥
q2

ml

⇥
f HP , AS = 2

⇥
f HS,

(15)
where f is a normalization factor, which for M = K� and the conventions of [31]
is equal to F defined in Section 2.3 below. The helicity amplitudes H±1,L(R) are

7

with

Hhad
e� =

4GF�
2

⇤

p=u,c

⇤p

�
C1Q

p
1 + C2Q

p
2 +

⇤

i=3...6

CiPi + C8gQ8g

⇥
, (5)

Hsl
e� = �4GF�

2
⇤t

⌅
C7Q7� + C ⇥

7Q
⇥
7� + C9Q9V + C ⇥

9Q
⇥
9V + C10Q10A + C ⇥

10Q
⇥
10A

+CSQS + C ⇥
SQ

⇥
S + CPQP + C ⇥

PQ
⇥
P + CTQT + C ⇥

TQ
⇥
T

⇧
.
(6)

The operators Pi are given in [65], the Qi are defined as

Q7� =
e

16⌅2
m̂b s̄⇧µ⇤PRF

µ⇤b ,

Q9V =
�em

4⌅
(s̄⇥µPLb)(l̄⇥

µl) ,

QS =
�em

4⌅

m̂b

mW
(s̄PRb)(l̄l) ,

QT =
�em

4⌅

m̂b

mW
(s̄⇧µ⇤PRb)(l̄⇧

µ⇤PRl) ,

Q8g =
gs

16⌅2
m̂b s̄⇧µ⇤PRG

µ⇤b ,

Q10A =
�em

4⌅
(s̄⇥µPLb)(l̄⇥

µ⇥5l)A ,

QP =
�em

4⌅

m̂b

mW
(s̄PRb)(l̄⇥

5l) ,

(7)
and the primed operators Q⇥

i are obtained from these by PR ⇥ PL, PL ⇥ PR in
the quark bilinears. gs (e) denotes the strong (electromagnetic) coupling constant
coming from the covariant derivative Dµ =  µ+ ieQfAµ+ igsTAAA

µ (Qf = �1 for

the leptons), �em = e2/(4⌅) and m̂b the b-quark mass defined in the MS scheme.
The contribution of the semileptonic Hamiltonian Hsl

e� to the decay amplitude
factorizes (in the “naive” sense) into a sum of products of hadronic and leptonic
currents,

Asl = ⇧M�+��|Hsl
e� |B̄⌃ = Lµ

V aV µ+Lµ
A aAµ+LS aS+LP aP+Lµ

TL aTL,µ+Lµ
TR aTR,µ,

(8)
where

Lµ
V = ⇧�+��|l̄⇥µl|0⌃,

LS = ⇧�+��|l̄l|0⌃,

Lµ
TL =

i⌃
q2
⇧�+��|q⇤ l̄⇧µ⇤PLl|0⌃,

Lµ
A = ⇧�+��|l̄⇥µ⇥5l|0⌃,

LP = ⇧�+��|l̄⇥5l|0⌃,

Lµ
TR =

i⌃
q2
⇧�+��|q⇤ l̄⇧µ⇤PRl|0⌃,

(9)

and we have made use of the relation

(s̄⇧µ⇤PR(L)b)(l̄⇧
µ⇤PR(L)s) =

4

q2
(s̄q⇤⇧

µ⇤PR(L)b)(l̄q⌅⇧
µ⌅PR(L)l), (10)

where q = p�k is the dilepton four-momentum.1 The hadronic currents aV µ, . . .
are expressed in terms of form factors and Wilson coe⇥cients, and enter the
helicity amplitudes given below.

1Equation (10) holds for arbitrary time-like four-vector qµ.
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• We work to leading order in the electromagnetic coupling, but all formulae so far are

exact in the strong coupling, with non-factorizable e�ects confined to ahadµ .

• The leptonic currents can be decomposed into spin-0 and spin-1 terms (Lµ
V , L

µ
A) or

are pure spin-1 objects (Lµ
TL, L

µ
TR). It follows that the dilepton can only be created

in a spin-0 or spin-1 state. Angular momentum conservation then implies that ⇤ is

also the helicity of M , which is thus constrained to the values ±1 or 0 even if M has

spin greater than one.2

2.2 Helicity amplitudes and helicity form factors

We now carry out the decomposition of the leptonic currents in spins and helicities.

The resulting coe⇤cients give the well-known “helicity amplitudes” [16]. This is easily

achieved [39] through the completeness relation (see appendix A.1 for our conventions)

⇥µ⇤ = �t,µ�
�
t,⇤ �

�

�=±1,0

�µ(1,⇤)�
�
⇤(1,⇤). (2.10)

Here �(1,⇤), ⇤ = ±1, 0, denotes a (spin-1) helicity triplet of polarisation 4-vectors for a

vector particle of four-momentum qµ and mass
⇥
q2, and �µt = qµ/

⇥
q2. We may picture the

latter as the “time-like” polarization four-vector of an auxiliary virtual gauge boson of mass⇥
q2, but the decomposition works independently of the origin of the weak Hamiltonian,

and also for the tensorial currents. The result is

A = �
�

�=±1,0

LV (⇤)HV (⇤)�
�

�=±1,0

LA(⇤)HA(⇤) + LSHS + LPHP

�
�

�=±1,0

LTL(⇤)HTL(⇤)�
�

�=±1,0

LTR(⇤)HTR(⇤),
(2.11)

where
LV (⇤) = �µ(⇤)L

µ
V ,

LA(⇤) = �µ(⇤)L
µ
A ,

LTL(⇤) = �µ(⇤)L
µ
TL ,

LTR(⇤) = �µ(⇤)L
µ
TR ,

LS = LS ,

LP = LP ,

HV (⇤) = ��µ(⇤)a
µ
V ,

HA(⇤) = ��µ(⇤)a
µ
A ,

HTL(⇤) = ��µ(⇤)a
µ
TL ,

HTR(⇤) = ��µ(⇤)a
µ
TR ,

HS = aS

HP = aP +
2m�

q2
qµa

µ
A .

(2.12)

We have made use of the fact that all leptonic currents except for Lµ
A are conserved, so

�t,µ contracts to zero with them. Moreover, the axial current obeys qµL
µ
A = 2m�LP , which

allowed us to absorb the spin-zero axial vector amplitude into HP [39].3

2This statement is exact, rather than a consequence of naive factorization, following from the well-known

fact that a particle’s orbital angular momentum does not contribute to its helicity. If M is a multiparticle

state, e.g. K�, we mean by “spin” the total angular momentum of M in its cm frame and by “helicity” the

projection of the M angular momentum onto the total M momentum in the B̄ rest frame.
3We do not distinguish between the lepton mass m� and the lepton field mass parameter, as we will

work to leading order in the electromagnetic coupling.
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The helicity amplitudes HV , HA, HP , HS are related to the “standard” helicity ampli-

tudes [18, 39] as follows,

H�L/R = i
⌥
f
1

2
(HV (⇥)⇥HA(⇥)), At = i

⌥
q2

2m⇣

⌥
f HP , AS = �i

⌥
f HS , (2.13)

where f is a normalization factor, which for M = K⇥ and the conventions of [39] is equal

to F defined in section 2.3 below. The helicity amplitudes H±1,L(R) are often expressed in

terms of transversity amplitudes,

A⌃L(R) =
1⌥
2
(H+1,L(R) +H�1,L(R)), A⇧L(R) =

1⌥
2
(H+1,L(R) �H�1,L(R)). (2.14)

However, we will work with helicity amplitudes throughout this paper, for reasons to

become clear below. Explicitly, we have

HV (⇥) = �iN

⇧
C9ṼL� + C ⌅

9ṼR� +
m2

B

q2

⇤
2 m̂b

mB
(C7T̃L� + C ⌅

7T̃R�)� 16⇤2h�

⌅⌃
, (2.15)

HA(⇥) = �iN(C10ṼL� + C ⌅
10ṼR�), (2.16)

HTR(⇥) = �iN
4 m̂bmB

mW

⌥
q2

CT T̃L�, (2.17)

HTL(⇥) = �iN
4 m̂bmB

mW

⌥
q2

C ⌅
T T̃R�, (2.18)

HS = iN
m̂b

mW
(CSS̃L + C ⌅

SS̃R), (2.19)

HP = iN

⇧
m̂b

mW
(CP S̃L + C ⌅

P S̃R)

+
2m⇣m̂b

q2

⇤
C10

�
S̃L � ms

mb
S̃R

⇥
+ C ⌅

10

�
S̃R � ms

mb
S̃L

⇥⌅⌃
, (2.20)

where

N = �4GFmB⌥
2

e2

16⇤2
⇥t

is a normalisation factor,

h� ⇤ i

m2
B

�µ⇥(⇥)ahadµ (2.21)

contains the contribution from the hadronic hamiltonian, i.e. all non-factorizable e�ects,

and we have defined helicity form factors

� imBṼL(R)�(q
2) = ⌅M(⇥)|s̄�/⇥(⇥)PL(R)b|B̄⇧, (2.22)

m2
BT̃L(R)�(q

2) = �⇥µ(⇥)q⇤⌅M(⇥)|s̄⌅µ⇤PR(L)b|B̄⇧, (2.23)

imBS̃L(R)(q
2) = ⌅M(⇥ = 0)|s̄PR(L)b|B̄⇧. (2.24)

These expressions are still general enough to describe an arbitrary charmless final state

M . Concretely, for a two-spinless-meson final state, not necessarily originating from a

resonance, the form factors will carry dependence on the dimeson invariant mass k2 and

its angular momentum L, in addition to the dilepton invariant mass q2.
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�imBṼL(R)⇥(q
2) = ⇤M(⇥)|s̄�/⇥(⇥)PL(R)b|B̄⌅, (24)

m2
BT̃L(R)⇥(q

2) = �⇥µ(⇥)q⌅⇤M(⇥)|s̄⌅µ⌅PR(L)b|B̄⌅, (25)

imBS̃L(R)(q
2) = ⇤M(⇥ = 0)|s̄PR(L)b|B̄⌅. (26)

These expressions are still general enough to describe an arbitrary charmless final
state M . Concretely, for a two-spinless-meson final state, not necessarily origi-
nating from a resonance, the form factors will carry dependence on the dimeson
invariant mass k2 and its angular momentum L, in addition to the dilepton in-
variant mass q2.

8

The hadronic Hamiltonian He� requires in addition two insertions of the elec-
tromagnetic current (one hadronic and one leptonic) to mediate the semileptonic
decay,

A(had) = �i
e2

q2

⇥
d4xe�iq·x⌥ + �|jem,lept

µ (x)|0�
⇥

d4y eiq·y⌥M |jem,had,µ(y)Hhad
e� (0)|B̄�

⌅ e2

q2
Lµ
V a

had
µ ,

(11)
where jem,had,µ =

�
q eq q̄�

µq. Hence, while this contribution does not naively
factorize, it can be absorbed into aV µ in (8). Before discussing the amplitudes
in more detail, we comment on the approximations implicit in and some conse-
quences of (8), (11)

• The semileptonic weak Hamiltonian is the most general one up to dimen-
sion six and can accomodate arbitrary new physics with a heavy mass scale.
This includes all the standard scenarios, such as supersymmetry, extra di-
mensions and little Higgs. In the Standard Model, C7, C9 and C10 are
sizable, C ⇤

7 is suppressed by ms/mb, and the remaining Wilson coe⇤cients
are negligible.

• The hadronic weak Hamiltonian is the Standard Model one, neglecting the
small electroweak penguin terms. Beyond the Standard Model, there is
a large number of extra operators; however unless new physics e�ects are
dramatic their impact (through ahadµ ) will be very small and we will ignore
them below. Such scenarios are also constrained by hadronic B decay data.

• We work to leading order in the electromagnetic coupling, but all formulae
so far are exact in the strong coupling, with non-factorizable e�ects confined
to ahadµ . (COLLINEAR/SOFT PHOTON)

• The leptonic currents can be decomposed into spin-0 and spin-1 terms (Lµ
V ,

Lµ
A) or are pure spin-1 objects (Lµ

TL, L
µ
TR). It follows that the dilepton can

only be created in a spin-0 or spin-1 state. Angular momentum conservation
then implies that ⇥ is also the helicity of M , which is thus constrained to
the values ±1 or 0 even if M has spin greater than one.2

2This statement is exact, rather than a consequence of naive factorization, following from the
well-known fact that a particle’s orbital angular momentum does not contribute to its helicity.
If M is a multiparticle state, eg K�, we mean by “spin” the total angular momentum of M in
its cm frame and by “helicity” the projection of the M angular momentum onto the total M
momentum in the B̄ rest frame.
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dramatic their impact (through ahadµ ) will be very small and we will ignore
them below. Such scenarios are also constrained by hadronic B decay data.

• We work to leading order in the electromagnetic coupling, but all formulae
so far are exact in the strong coupling, with non-factorizable e�ects confined
to ahadµ . (COLLINEAR/SOFT PHOTON)

• The leptonic currents can be decomposed into spin-0 and spin-1 terms (Lµ
V ,

Lµ
A) or are pure spin-1 objects (Lµ

TL, L
µ
TR). It follows that the dilepton can

only be created in a spin-0 or spin-1 state. Angular momentum conservation
then implies that ⇥ is also the helicity of M , which is thus constrained to
the values ±1 or 0 even if M has spin greater than one.2

2This statement is exact, rather than a consequence of naive factorization, following from the
well-known fact that a particle’s orbital angular momentum does not contribute to its helicity.
If M is a multiparticle state, eg K�, we mean by “spin” the total angular momentum of M in
its cm frame and by “helicity” the projection of the M angular momentum onto the total M
momentum in the B̄ rest frame.

6

11 helicity amplitudes factorize naively (into 
form factors and Wilson coefficients)

only 3 helicity amplitudes are 
sensitive to non-(naively-)factorizing 
long-distance physics

form factors and non-factorizable contributions control theory errors

(drop tensor amplitudes HTL, HTR in the following)

nb - often transversity amplitudes are used, e.g. HV(+) ∝ A∣∣,L + A∣∣,R + AT,L + AT,R    (all LD sensitive)



Form factors
Helicity amplitudes naturally involve helicity form factors

(& rescale λ=0 form factors by kinematic factor.)
Can be expressed in terms of traditional “transversity” FFs

The form factors satisfy two exact relations:

note - M can be multiparticle state. Eg for a two-pseudoscalar state

~ Bharucha et al 2010
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The helicity amplitudes HV , HA, HP , HS are related to the “standard” helicity ampli-

tudes [18, 39] as follows,

H�L/R = i
⌥
f
1

2
(HV (⇥)⇥HA(⇥)), At = i

⌥
q2

2m⇣

⌥
f HP , AS = �i

⌥
f HS , (2.13)

where f is a normalization factor, which for M = K⇥ and the conventions of [39] is equal

to F defined in section 2.3 below. The helicity amplitudes H±1,L(R) are often expressed in

terms of transversity amplitudes,

A⌃L(R) =
1⌥
2
(H+1,L(R) +H�1,L(R)), A⇧L(R) =

1⌥
2
(H+1,L(R) �H�1,L(R)). (2.14)

However, we will work with helicity amplitudes throughout this paper, for reasons to

become clear below. Explicitly, we have

HV (⇥) = �iN

⇧
C9ṼL� + C ⌅

9ṼR� +
m2

B

q2

⇤
2 m̂b

mB
(C7T̃L� + C ⌅

7T̃R�)� 16⇤2h�

⌅⌃
, (2.15)

HA(⇥) = �iN(C10ṼL� + C ⌅
10ṼR�), (2.16)

HTR(⇥) = �iN
4 m̂bmB

mW

⌥
q2

CT T̃L�, (2.17)

HTL(⇥) = �iN
4 m̂bmB

mW

⌥
q2

C ⌅
T T̃R�, (2.18)

HS = iN
m̂b

mW
(CSS̃L + C ⌅

SS̃R), (2.19)

HP = iN

⇧
m̂b

mW
(CP S̃L + C ⌅

P S̃R)

+
2m⇣m̂b

q2

⇤
C10

�
S̃L � ms

mb
S̃R

⇥
+ C ⌅

10

�
S̃R � ms

mb
S̃L

⇥⌅⌃
, (2.20)

where

N = �4GFmB⌥
2

e2

16⇤2
⇥t

is a normalisation factor,

h� ⇤ i

m2
B

�µ⇥(⇥)ahadµ (2.21)

contains the contribution from the hadronic hamiltonian, i.e. all non-factorizable e�ects,

and we have defined helicity form factors

� imBṼL(R)�(q
2) = ⌅M(⇥)|s̄�/⇥(⇥)PL(R)b|B̄⇧, (2.22)

m2
BT̃L(R)�(q

2) = �⇥µ(⇥)q⇤⌅M(⇥)|s̄⌅µ⇤PR(L)b|B̄⇧, (2.23)

imBS̃L(R)(q
2) = ⌅M(⇥ = 0)|s̄PR(L)b|B̄⇧. (2.24)

These expressions are still general enough to describe an arbitrary charmless final state

M . Concretely, for a two-spinless-meson final state, not necessarily originating from a

resonance, the form factors will carry dependence on the dimeson invariant mass k2 and

its angular momentum L, in addition to the dilepton invariant mass q2.

– 7 –
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Note that parity invariance of strong interactions implies the relations

ṼL� = ��(�1)LṼR,�� ⇤ Ṽ�, (2.25)

T̃L� = ��(�1)LT̃R,�� ⇤ T̃�, (2.26)

S̃L = ��(�1)LS̃R ⇤ S̃, (2.27)

where s and � are (respectively) the angular momentum and intrinsic parity of M . For a

resonance, its spin s replaces L. Hence there are seven independent helicity form factors for

spin ⌅ 1 and three for spin 0 (when ⇥ = 0). Helicity form factors have previously been used

in the literature as a technical vehicle in constraining form factors from unitarity [74]. As

we will explain in detail below, helicity form factors are also preferable over the standard

basis for form factors in weak decays: not only do they simplify the expressions, but some of

them are systematically suppressed, which can and should be exploited to reduce important

sources of uncertainty.

We also find it convenient to define rescaled helicity-0 form factors as

V0(q
2) =

2mB

⌥
q2

⇥1/2
Ṽ0(q

2),

T0(q
2) =

2m3
B⌥

q2⇥1/2
T̃0(q

2),

S(q2) = �2mB(mb +ms)

⇥1/2
S̃(q2), (2.28)

where ⇥ = 4m2
B|✓k|2 (✓k is the 3-momentum of the recoiling meson in the B̄ rest frame),

and also define V±1(q2) ⇤ Ṽ±1(q2), T±1(q2) ⇤ T̃±1(q2). The helicity form factors can be

expressed in terms of the traditional form factors. For a vector, we then have (conventions

for polarisation vectors and form factors in appendix A)

V±(q
2) =

1

2

⇧⇤
1 +

mV

mB

⌅
A1(q

2)⇥ ⇥1/2

mB(mB +mV )
V (q2)

⌃
,

V0(q
2) =

1

2mV ⇥1/2(mB +mV )

�
(mB +mV )

2(m2
B � q2 �m2

V )A1(q
2)� ⇥A2(q

2)
⇥
,

T±(q
2) =

m2
B �m2

V

2m2
B

T2(q
2)⇥ ⇥1/2

2m2
B

T1(q
2),

T0(q
2) =

mB

2mV ⇥1/2

⇧
(m2

B + 3m2
V � q2)T2(q

2)� ⇥

(m2
B �m2

V )
T3(q

2)

⌃
,

S(q2) = A0(q
2), (2.29)

We also have VR� = �V��, TR� = �T��, SR = �SL.

For a pseudoscalar, we have

V0(q
2) = if+(q

2), (2.30)

T0(q
2) = i

2mB

(mB +mP )
fT (q

2), (2.31)

S(q2) =
1 + ms

mb

1� ms
mb

m2
B �m2

M

⇥1/2
f0(q

2). (2.32)

In this case, VR0 = V0, TR0 = T0, SR = S.

– 8 –
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Note that parity invariance of strong interactions implies the relations

ṼL� = ��(�1)LṼR,�� ⇤ Ṽ�, (2.25)

T̃L� = ��(�1)LT̃R,�� ⇤ T̃�, (2.26)

S̃L = ��(�1)LS̃R ⇤ S̃, (2.27)

where s and � are (respectively) the angular momentum and intrinsic parity of M . For a

resonance, its spin s replaces L. Hence there are seven independent helicity form factors for

spin ⌅ 1 and three for spin 0 (when ⇥ = 0). Helicity form factors have previously been used

in the literature as a technical vehicle in constraining form factors from unitarity [74]. As

we will explain in detail below, helicity form factors are also preferable over the standard

basis for form factors in weak decays: not only do they simplify the expressions, but some of

them are systematically suppressed, which can and should be exploited to reduce important

sources of uncertainty.

We also find it convenient to define rescaled helicity-0 form factors as

V0(q
2) =

2mB

⌥
q2

⇥1/2
Ṽ0(q

2),

T0(q
2) =

2m3
B⌥

q2⇥1/2
T̃0(q

2),

S(q2) = �2mB(mb +ms)

⇥1/2
S̃(q2), (2.28)

where ⇥ = 4m2
B|✓k|2 (✓k is the 3-momentum of the recoiling meson in the B̄ rest frame),

and also define V±1(q2) ⇤ Ṽ±1(q2), T±1(q2) ⇤ T̃±1(q2). The helicity form factors can be

expressed in terms of the traditional form factors. For a vector, we then have (conventions

for polarisation vectors and form factors in appendix A)

V±(q
2) =

1

2

⇧⇤
1 +

mV

mB

⌅
A1(q

2)⇥ ⇥1/2

mB(mB +mV )
V (q2)

⌃
,

V0(q
2) =

1

2mV ⇥1/2(mB +mV )

�
(mB +mV )

2(m2
B � q2 �m2

V )A1(q
2)� ⇥A2(q

2)
⇥
,

T±(q
2) =

m2
B �m2

V

2m2
B

T2(q
2)⇥ ⇥1/2

2m2
B

T1(q
2),

T0(q
2) =

mB

2mV ⇥1/2

⇧
(m2

B + 3m2
V � q2)T2(q

2)� ⇥

(m2
B �m2

V )
T3(q

2)

⌃
,

S(q2) = A0(q
2), (2.29)

We also have VR� = �V��, TR� = �T��, SR = �SL.

For a pseudoscalar, we have

V0(q
2) = if+(q

2), (2.30)

T0(q
2) = i

2mB

(mB +mP )
fT (q

2), (2.31)

S(q2) =
1 + ms

mb

1� ms
mb

m2
B �m2

M

⇥1/2
f0(q

2). (2.32)

In this case, VR0 = V0, TR0 = T0, SR = S.
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L = angular momentum
η = intrinsic parity  
+ invariant mass dependence                
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3 Helicity amplitudes: anatomy, hierarchies, and hadronic uncertainties

The helicity amplitudes governing the observables involve form factors and the nonlocal ob-

jects h�, all of which carry hadronic uncertainties, limiting the sensitivity of rareB decays to

new physics. However, hadronic uncertainties can be constrained by means of the equations

of motion, the V �A structure of the weak hamiltonian, and an expansion in �/mb (QCD

factorization). Our main point is that this results in the suppression of entire helicity am-

plitudes, including non-factorizable e⇥ects, such that the discussion is indeed best framed

in terms of helicity (rather than transversity) amplitudes and helicity form factors. We first

translate what is known about the form factors to the helicity basis, including the fact that

the heavy-quark limit implies the suppression of two of them [20]. We next survey how this

bears out in various theoretical approaches to form factor determinations, concluding with

a brief argument for the suppression of the positive-helicity form factors in the framework

of light-cone sum rules, at the level of the correlation function. We then show that the

V �A structure also implies suppression of the “charm-loop” contribution to the nonlocal

positive-helicity amplitude h+1, building on a method introduced in [46]. In addition, we

show that the same conclusion applies to hadronic resonance models for the “light-quark”

contributions to h�, once known experimental facts about the helicity structure of B̄ ⇤ V V

are incorporated (which can be theoretically understood on the same basis).

3.1 Form factors

The B̄ ⇤ M form factors are nonperturbative objects. In the following, we restrict our-

selves to the B̄ ⇤ V case. First-principles lattice-QCD computations are becoming avail-

able [75, 76], although they will be restricted for the foreseeable future to the region of

slow-moving V (high q2). A state-of-the-art method of obtaining form factors at low q2

is given by QCD sum rules on the light cone (see [69, 77]). This involves, unfortunately,

certain irreducible systematic uncertainties which are di⌅cult to quantify. Sum rules are

also useful in guiding extrapolations of high-q2 lattice-QCD results [74].

3.1.1 Theoretical constraints on form factors at low q2

The form factors fulfil two exact relations that in the helicity basis take the form

T+(q
2 = 0) = 0, (3.1)

S(q2 = 0) = V0(0). (3.2)

At large recoil, i.e. small q2, one has further relations which hold up to corrections of

O(�/mb) but to all orders in �s. As a result, the seven form factors are given, at leading

power in �/mb and �/E (where E ⇥ EV is itself of order mb for low q2), in terms of only

two independent soft form factors [70], ⇥� and ⇥⇥, with radiative corrections systematically

calculable in QCDF [71] as a perturbative expansion in �s. These corrections also involve

nonperturbative objects such as decay constants and light-cone distribution amplitudes

(LCDAs) of the initial and final mesons. The factorization properties and calculation of

radiative corrections become particularly transparent when formulated as a matching of

– 12 –



Large-energy relations
• At small q2 (energetic hadronic final state) one has, up to 

corrections O(1/mb), the relations

• The “soft” form factors              are ambiguous at O(1/mb)

We define  ts  such that the first equation holds exactly, and  
in   in terms of the “full-QCD” form factor A0.

• T+=V+=0 at leading power, to all orders (V-A structure)

• Calculable higher-order corrections to eqns 3, 4, and 6

formulated as a matching of QCD to soft-collinear e⇤ective theory (SCET) [4],
The soft form factors can be chosen to coincide with two “physical”, ie full-QCD
form factors, which makes them well-defined to all orders in ⇥/mB. Appropriate
choices are V and A0, for ⇤⇥ and ⇤⇤ respectively [6], given that they are free from
renormalization scale ambiguities as matrix elements of conserved currents. For
⇤⇥, we find it convenient to use T1 instead, since this form factor plays a dominant
role in the low-q2 phenomenology. In this case, however, the transversal soft form
factor depends on the factorization scale µ as (to LL accuracy)

T1(q
2, µ) ⇥ ⇤⇥(q

2, µ) = ⇤⇥(q
2,mb)

�
�s(µ)

�s(mb)

⇥4/23

, (51)

where we have indicated the µ dependence on the tensor form that was implicit
in the definitions Eqs. (100). Setting

T1(q
2, µ) ⇥ ⇤⇥(q

2, µ),

A0(q
2) ⇥ E

mK�
⇤⇤(q

2),

with E ⇤ (m2
B � q2)/(2mB), the symmetry relations in Ref. [6] can be expressed

in the helicity basis as

T� =
2E

mB
⇤⇥,

T+ = 0,

T0 =
E

mK�
⇤⇤

�
1 +

�s CF

4⌅

⇤
ln

m2
b

µ2
� 2 + 4L

⌅⇥
+

�s CF

4⌅
�T0,

V� =
2E

mB
⇤⇥

�
1 +

�s CF

4⌅

⇤
ln

µ2

m2
b

+ L

⌅⇥
+

2E

mB +mK�

�s CF

4⌅
�V,

V+ = 0,

V0 =
E

mK�
⇤⇤

�
1 +

�s CF

4⌅
[�2 + 2L]

⇥
+

�s CF

4⌅
�V0, (52)

with CF = 4/3 and L = �2E/(mB � 2E) ln(2E/mB). These expressions hold up
to higher-order corrections in �s and power corrections.

The �s-contributions multiplying the soft form factors come from the hard-
vertex correction shown in Fig. 1. The remaining ones originate from hard scat-
tering with the spectator quark shown in Fig. 2, and are given as

�T0 = �m2
B

4E2
�F⇤, (53)

�V0 = � q2

4E2
�F⇤, (54)

�V = �mB +mK�

4E
�F⇥, (55)
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Comparison of FF predictions
• parameterize form factor power corrections as
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Figure 1: Form factors T1 and S in the large-recoil region used in this work
as a reference for the symmetry relations (thick red line) with the error bands
produced by the uncertainties on ⇥⇤(0) and ⇥⌅(0). These are compared with the
re-scaled (see in the main text) central values of the results obtained in the LCSRs
(blue dot-dashed [74] and black dotted [43]), in QCDSRs [84] (green short-dashed)
and DSEs [85] (purple long-dashed).

3.1.3 Power corrections to the large-recoil form factor relations

The main factor limiting the utility of QCD factorization for the form factors
(and elsewhere) are unknown power corrections O(�/mb). Although one might
naively expect such power corrections to be ⇤ (5�10)%, the possibility of having
larger corrections cannot be dismissed. Let us refer to e⇥ects breaking the (QCD-
corrected) symmetry relations in Eqs. (47) as power corrections, even though
these also include the numerically unimportant perturbative �n

s , n ⇥ 2 contribu-
tions. They govern the so-called factorizable power corrections in B ⌅ K⇥⌦+⌦�

decay. As they do not cancel out in the “clean” observables defined in [54], es-
timating them is important to assess hadronic uncertainties. The conventional
procedure in phenomenological analyses is to use the results of some technique
that automatically includes power corrections (most commonly LCSR). However,
in doing so, the systematic errors coming from the assumptions and approxima-
tions implied by the particular approach are not transparent. A related issue is
that the q2-dependence of the form factors is often “hard-coded” and not treated
as an uncertainty.

Instead, in this paper we parameterize power corrections to the form factors
in a model-independent fashion. The uncertain parameters can then be estimated
by various methods. For a given (helicity) form factor F , we parameterize the
corrections to (47) as

F p.c. = aF + bF
q2

m2
B

+O
⇤�

q2

m2
B

⇥2

;�2/m2
b

⌅
, (56)

where aF and bF are dimensionless numbers of order O(�/mb). Importantly,
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observed behaviour consistent with expectations

for phenomenology, will take aF, bF = spread of th. predictions
(in absence of dedicated calculations!)
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Charm loop
•

right-handed currents beyond the SM. We have seen above that the form factor
T+ is doubly suppressed by q2/m2

B and �/mb, and V+ suppressed by �/mb, which
translates to a suppression of the positive-helicity amplitudes in the factorisable
approximation and in the absence of right-handed currents, i.e. neglecting the
hadronic weak Hamiltonian and primed operators. QCD factorisation clearly
predicts that this continues to hold true in the presence of nonfactorisable terms.
However, this involves models of power corrections which are not very accurate.

3.2.3 Charm loop helicity hierarchy

Within the context of LCSR, a study of charm loop e⇥ects at low q2 has been
given recently by Khodjamirian et al [20], and the analogous contributions to
B ⇧ K⇤� have been considered earlier in []. In [20], long-distance charm-loop
e⇥ects are estimated to be sizable (and with a large uncertainties); these e⇥ects
correspond in part to power corrections in QCDF. Unfortunately, the results are
only presented in numerical form and only for transversity, not helicity ampli-
tudes. Nevertheless, central values and uncertainties on these,

A⇧|cc̄(1GeV2) = . . . , A⌅|cc̄(1GeV2) = . . . , (57)

are suggestive of a suppression h+ ⌅ h�. The computation in [25] provides
directly a result for h+ at q2 = 0, which (adjusting for our normalisation conven-
tions) reads

h+(0) = . . . . (58)

The aim of this section is to argue that a hierarchy h+ ⌅ h�, h0 results, as
far as the charm loop goes, from the light-cone dominance of the amplitude at
q2 ⌅ m2

B. To this end, let us recast the strategy of [20] in terms of helicity
amplitudes, picking out the charm loop in h⇤,

h⇤|cc̄ =
1

m2
B

2

3
⇤µ⇤(⌅)

⌅
d4y eiq·y⌥M |T [(c̄�µc)(y)(Cc

1Q
c
1 + Cc

2Q
c
2)(0)]|B̄�. (59)

Next, [20] shows that the Fourier integral is dominated by the light-cone y2 ⇤ 0.
A light-cone OPE is then performed, which at the one-gluon level results in the
expression

h⇤|cc̄ = ⇤µ⇤(⌅)⌥M(k,⌅)|Õµ|B̄�, (60)

where

Õµ =

⌅
d⇧Iµ⇧�⇥(q,⇧)s̄L�

⇧⇥
⇥
⇧ � in+ ·D

2

⇤
G̃�⇥bL, (61)

with D the covariant derivative and Iµ⇧�⇥ given in [20]. The nonlocal operator
(61) is the leading term in an expansion in �2

QCD/(4m
2
c�q2), with terms involving

two and more gluon fields contributing only at higher orders [20]. It can be further
expanded in local operators,

Õ(n)
µ =

1

n!

dn

d⇧n
Iµ⇧�⇥(q,⇧)

���
⌃=0

s̄L�
⇧
⇥in+ ·D

2

⇤n

G̃�⇥bL. (62)
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Non-factorizable charm-loop contribution

The LHS diagram and �s corrections are treated in QCDf (BFS’01)

Soft-gluon contributions: ⇥H� ⇥ 8%Ceff
7 (Khodjamirian et al.’10)

For the numerics, our NF charm-loop uncertainty is

⇥H� = (0.1 � Ceff
7 )ei�� , ⇥H+ = (0.1 � Ceff

7 � �/mb)ei�+

Recent discussion in Becirevic et al.’12
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perform a “light-cone OPE”
(This is equivalent to expanding the charm 
loop, treating Λ2/(4 mc2) ~ Λ/mb )

obtain
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(a nonlocal, light-cone operator)
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Õ(n)
µ =

1

n!

dn

d⇧n
Iµ⇧�⇥(q,⇧)

���
⌃=0

s̄L�
⇧
⇥in+ ·D

2

⇤n

G̃�⇥bL. (62)

21

(which goes into hλ)

A light-cone OPE is then performed. To leading order, this results in a local op-
erator whose matrix elements can be identified with the charm-loop contribution
to the form factor term in QCDF (ie those charm-loop e⇤ects that do not involve
the spectator quark). At the one-gluon level, one has the expression

h⇤|cc̄,LD = ⇤µ⇤(⌅) M(k,⌅)|Õµ|B̄⌦, (60)

where

Õµ =

⌅
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2
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with D the covariant derivative and Iµ⌃�⇥ given in [39]. The nonlocal operator
(61) is the first subleading term in an expansion in ⇥2/(4m2

c � q2), with terms in-
volving two and more gluon fields contributing only at higher orders [39]. Eq. (60)
hence provides an approximation to the long-distance charm-loop contributions.
It can be further expanded in local operators,

Õ(n)
µ =

1
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d⇧n
Iµ⌃�⇥(q,⇧)

���
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The result of [27] corresponds to keeping only the n = 0 term, and evaluating its
matrix element by means of a LCSR for a correlation function

i

⌅
d4y e�ip·y K⇤|[Õ(0)

µ (q)](0) j†B(y)|0⌦. (63)

Ref. [27] argued the suppression of higher terms in the local OPE by a larger
expansion parameter of order mB⇥/(4m2

c), which has been taken as (20 � 40)%
and used to justify truncating the OPE after the leading term. This numerical
value corresponds to taking ⇥ ⇤ 300�650 GeV (for MS quark masses), and should
hold up to an O(1) factor, which if large could in principle spoil the convergence
of the OPE. More seriously, the power counting itself was obtained by appealing
to inclusive B ⇧ Xs� decay, where similar matrix elements  B|b̄(q ·D)nG�⇥�b|B⌦
occur as part of power corrections to the charm loop [85,86]. (� denotes a Dirac
structure which is irrelevant to the present discussion.) There, the softness of
the B meson constituents provides one power of ⇥ in the numerator, which can
be seen via q · D ⌅ �iq · kG ⇤ mb⇥, where kG is the gluon momentum [85].
(The resulting ‘suppression’ factor is estimated as 0.6 in [86].) However, with an
energetic K⇤ in the final state as in (63) the constituents have energies O(mb),
so n+ · D ⌅ n+ · kG ⇤ mb and a scaling m2

b/(4m
2
c) of the putative expansion

parameter seems appropriate; at least, establishing a suppression requires a new
argument. We therefore will not rely on the estimate of [27] in this paper. Ref. [39]
estimates instead the full nonlocal operator matrix element from a LCSR for a
di⇤erent correlation function

 0|T{jK�

⇧ (y)Õµ(0)}|B⌦, (64)
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consider soft gluon (in B rest frame)

From collinear factorisation viewpoint 
this is part of the endpoint region



LCSR for          
to estimate the matrix element, use light-cone QCD sum rules

right-handed currents beyond the SM. We have seen above that the form factor
T+ is doubly suppressed by q2/m2

B and �/mb, and V+ suppressed by �/mb, which
translates to a suppression of the positive-helicity amplitudes in the factorisable
approximation and in the absence of right-handed currents, i.e. neglecting the
hadronic weak Hamiltonian and primed operators. QCD factorisation clearly
predicts that this continues to hold true in the presence of nonfactorisable terms.
However, this involves models of power corrections which are not very accurate.

3.2.3 Charm loop helicity hierarchy

Within the context of LCSR, a study of charm loop e⇥ects at low q2 has been
given recently by Khodjamirian et al [20], and the analogous contributions to
B ⇧ K⇤� have been considered earlier in []. In [20], long-distance charm-loop
e⇥ects are estimated to be sizable (and with a large uncertainties); these e⇥ects
correspond in part to power corrections in QCDF. Unfortunately, the results are
only presented in numerical form and only for transversity, not helicity ampli-
tudes. Nevertheless, central values and uncertainties on these,

A⇧|cc̄(1GeV2) = . . . , A⌅|cc̄(1GeV2) = . . . , (57)

are suggestive of a suppression h+ ⌅ h�. The computation in [25] provides
directly a result for h+ at q2 = 0, which (adjusting for our normalisation conven-
tions) reads

h+(0) = . . . . (58)
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far as the charm loop goes, from the light-cone dominance of the amplitude at
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Figure 2: The correlation function used to calculate the B → K(∗) matrix element of the soft-gluon
emission from the charm loop. The oval denotes the B-meson quark-antiquark-gluon distribution
amplitudes. The c-quark loop with the emitted gluon generates the nonlocal effective operator Õµ.
The cross indicates the point of gluon emission in the second diagram.

4. LCSR for hadronic matrix elements

The B → K(∗) transition matrix elements (2.2) determining the charm-loop effect can now

be represented as a sum of the hadronic matrix elements of the effective operators Oµ and

Õµ, containing the factorizable and (soft) nonfactorizable contributions, respectively.

Let us first consider the B → K transition. Adding (3.1) and (3.13) together, we

obtain:

H(B→K)
µ (p, q) =

(
C1

3
+ C2

)
〈K(p)|Oµ(q)|B(p + q)〉+ 2C1〈K(p)|Õµ(q)|B(p+ q)〉

=
[
(p · q)qµ − q2pµ

]
H(B→K)(q2) , (4.1)

where the e.m. current conservation is taken into account and

H(B→K)(q2) =

(
C1

3
+ C2

)
A(q2) + 2C1Ã(q2) (4.2)

contains two invariant amplitudes parameterizing the two hadronic matrix elements in

(4.1).

In the adopted approximation, the amplitude A is factorized:

A(q2) =
9

32π2
g(m2

c , q
2)f+

BK(q2) , (4.3)

if one uses (3.2) and the standard definition of the B → K form factor:

〈K(p)|s̄LγρbL|B(p+ q)〉 = f+
BK(q2)pρ + ... (4.4)

– 10 –
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represented in terms of 

interpolating current with 
quantum numbers of K (K*)

The result (58) corresponds to keeping only the n = 0 term, and evaluating its
matrix element [25] by means of a LCSR for a correlation function

i

�
d4y e�ip·y⌦K⇤|[Õ(0)

µ (q)](0) j†B(y)|0↵. (63)

Ref. [25] argued the suppression of higher terms in the local OPE by a larger
expansion parameter of order mB⇥/(4m2

c), which has been taken as (20 � 40)%
and used to justify truncating the OPE after the leading term. This numerical
value corresponds to taking ⇥ ⌅ 300�650 GeV (for MS quark masses), and should
hold up to an O(1) factor, which if large could in principle spoil the convergence
of the OPE. More seriously, the power counting itself was obtained by appealing
to inclusive B ⌃ Xs� decay, where similar matrix elements ⌦B|b̄(q ·D)nG�⇥�b|B↵
occur as part of power corrections to the charm loop [26, 27, ?]. (� denotes a
Dirac structure which is irrelevant to the present discussion.) There, the softness
of the B meson constituents provides one power of ⇥ in the numerator, which
can be seen via q ·D ⇧ �iq · kG ⌅ mb⇥, where kG is the gluon momentum [26].
(The resulting ‘suppression’ factor is estimated as 0.6 in [27].) However, with an
energetic K⇤ in the final state as in (63) the constituents have energies O(mb),
so n+ · D ⇧ n+ · kG ⌅ mb and a scaling m2

b/(4m
2
c) of the putative expansion

parameter seems appropriate; at least, establishing a suppression requires a new
argument. We therefore will not rely on the estimate of [25] in this paper.

Ref. [20] estimates instead the full nonlocal operator matrix element from a
LCSR for a di⇤erent correlation function

⌦0|T{jK�

⇧ (y)Õµ(0)}|B↵, (64)

where jK
�

⇧ = d̄�⇧s, which yields the matrix element in terms of B-meson LCDAs.
This results in the values in (57). To show the suppression of h+, note that h±
can be obtained directly from

Gh⇤(q
2; k2) = �i

�
d4yeiky⌦0|T{⇥⇧⇤(ẑ;⇤)jK�

⇧ (y)⇥µ⇤(�ẑ;⇤)Õµ(0)}|B↵. (65)

To be precise, we take k = (k0, 0, 0, |k|), as well as q, in the (tz) plane. Note that
for ⇤ = ± the polarisation 4-vectors are (with these conventions) independent of
k, hence the rhs indeed defines a Lorentz-invariant function of k2 and q2. (The
formalism could, with appropriate care, be extended to ⇤ = 0.) The hadronic
representation contains the desired matrix element,

Gh⇤(q
2; k2) =

fK�⇧ mK�

m2
K� � k2

⌦K⇤(k̃;⇤)|⇥µ⇤(�ẑ;⇤)Õµ(0)}|B↵ +continuum contributions.

Here k̃ = (
⇥
m2

K� + k2, 0, 0, |k|) is the physical (on-shell) 4-momentum of the
K⇤ corresponding to the given q2. To obtain a LCSR, following [20] we take
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Our main task is to calculate the amplitude Ã determining the soft-gluon emission

from the charm-loop. To this end, we employ LCSR with the B-meson DA’s and, following

[10, 11], introduce the correlation function:

F (B→K)
νµ (p, q) = i

∫
d4yeip·y〈0|T{jKν (y)Õµ(q)}|B(p + q)〉 , (4.5)

where jKν = d̄γνγ5s is the K-meson interpolating current and B meson is taken on shell, as

a HQET state: |B(p+ q)〉 # |B(v)〉. Inserting the full set of states with the kaon quantum

numbers between the current jKν and Õµ in (4.5) we obtain the hadronic dispersion relation:

F (B→K)
νµ (p, q) =

ifKpν
m2

K − p2
[(p · q)qµ − q2pµ]Ã(q2) +

∫ ∞

sh

ds
ρ̃νµ(s, q2)

s− p2
, (4.6)

where fK is the kaon decay constant defined as 〈0|d̄γνγ5s|K(p)〉 = ifKpν and the spec-

tral density ρ̃νµ(s, q2) accumulates excited and continuum states with the kaon quantum

numbers, located above the threshold sh.

Two comments are in order. First, in the approach we are using, hadronic matrix

elements are related to the correlation function via dispersion relation. Hence, the “full”

hadronic matrix element of B → K transition with the soft-gluon emission enters the

residue of the kaon pole in (4.6). In other words, although we have chosen a particular

correlation function with B-meson DA’s, there is no need to add a contribution where a soft

gluon emitted from the charm loop enters the final-state kaon “wave function”. Secondly,

at very large timelike p2 there are also “parasitic” charm-anticharm states contributing

to the hadronic spectral density in (4.6), but they are heavily suppressed after the Borel

transformation in p2. This circumstance allows one to avoid introducing an auxiliary 4-

momentum in the effective-operator vertex, as suggested in [24].

In [11] the form factor f+
BK(q2) was calculated from the correlation function similar to

(4.5), where, instead of the complicated effective operator, the b → s, vector current was in-

serted. LCSR was obtained including the contributions of two-particle (quark-antiquark)

and three-particle (quark-antiquark-gluon) B-meson DA’s. Here the leading-order dia-

grams shown in Fig. 2 involve only the three-particle DA’s of B meson. We calculate these

diagrams contracting the s-quark fields. The result reduces to the vacuum-to-B matrix

element of the d̄Gb nonlocal operator. It is decomposed in HQET in four three-particle

B-meson DA’s [26]:

〈0|d̄α(y)δ[ω − (in+D)

2
]Gστ (0)bβ(0)|B̄(v)〉 (4.7)

=
fBmB

2

∫ ∞

0
dλ e−iλy·v

[
(1+ & v)

{
(vσγτ − vτγσ)

[
ΨA(λ, 2ω) −ΨV (λ, 2ω)

]

−iσστΨV (λ, 2ω) −
yσvτ − yτvσ

v · y
XA(λ, 2ω) +

yσγτ − yτγσ
v · y

YA(λ, 2ω)

}
γ5

]

βα

,

where fB and mB are the B-meson decay constant and mass, respectively. Further details

can be found in [11].
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F (B→K)
νµ (p, q) = i

∫
d4yeip·y〈0|T{jKν (y)Õµ(q)}|B(p + q)〉 , (4.5)

where jKν = d̄γνγ5s is the K-meson interpolating current and B meson is taken on shell, as

a HQET state: |B(p+ q)〉 # |B(v)〉. Inserting the full set of states with the kaon quantum

numbers between the current jKν and Õµ in (4.5) we obtain the hadronic dispersion relation:

F (B→K)
νµ (p, q) =

ifKpν
m2

K − p2
[(p · q)qµ − q2pµ]Ã(q2) +

∫ ∞

sh

ds
ρ̃νµ(s, q2)

s− p2
, (4.6)

where fK is the kaon decay constant defined as 〈0|d̄γνγ5s|K(p)〉 = ifKpν and the spec-

tral density ρ̃νµ(s, q2) accumulates excited and continuum states with the kaon quantum

numbers, located above the threshold sh.

Two comments are in order. First, in the approach we are using, hadronic matrix

elements are related to the correlation function via dispersion relation. Hence, the “full”

hadronic matrix element of B → K transition with the soft-gluon emission enters the

residue of the kaon pole in (4.6). In other words, although we have chosen a particular

correlation function with B-meson DA’s, there is no need to add a contribution where a soft

gluon emitted from the charm loop enters the final-state kaon “wave function”. Secondly,

at very large timelike p2 there are also “parasitic” charm-anticharm states contributing

to the hadronic spectral density in (4.6), but they are heavily suppressed after the Borel

transformation in p2. This circumstance allows one to avoid introducing an auxiliary 4-

momentum in the effective-operator vertex, as suggested in [24].

In [11] the form factor f+
BK(q2) was calculated from the correlation function similar to

(4.5), where, instead of the complicated effective operator, the b → s, vector current was in-

serted. LCSR was obtained including the contributions of two-particle (quark-antiquark)

and three-particle (quark-antiquark-gluon) B-meson DA’s. Here the leading-order dia-

grams shown in Fig. 2 involve only the three-particle DA’s of B meson. We calculate these

diagrams contracting the s-quark fields. The result reduces to the vacuum-to-B matrix

element of the d̄Gb nonlocal operator. It is decomposed in HQET in four three-particle

B-meson DA’s [26]:

〈0|d̄α(y)δ[ω − (in+D)

2
]Gστ (0)bβ(0)|B̄(v)〉 (4.7)

=
fBmB

2

∫ ∞

0
dλ e−iλy·v

[
(1+ & v)

{
(vσγτ − vτγσ)

[
ΨA(λ, 2ω) −ΨV (λ, 2ω)

]

−iσστΨV (λ, 2ω) −
yσvτ − yτvσ

v · y
XA(λ, 2ω) +

yσγτ − yτγσ
v · y

YA(λ, 2ω)

}
γ5

]

βα

,

where fB and mB are the B-meson decay constant and mass, respectively. Further details

can be found in [11].
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evaluate perturbatively as 
light-cone expansion
(p2  ~ - 1 GeV2  Euclidean,
far below K* threshold)

insert   complete set of hadronic states

Lorentz expansion coefficient 
contatining matrix element



• Only numerical results given in
expressed in terms of effective shift of C9 

LCSR for          

right-handed currents beyond the SM. We have seen above that the form factor
T+ is doubly suppressed by q2/m2

B and �/mb, and V+ suppressed by �/mb, which
translates to a suppression of the positive-helicity amplitudes in the factorisable
approximation and in the absence of right-handed currents, i.e. neglecting the
hadronic weak Hamiltonian and primed operators. QCD factorisation clearly
predicts that this continues to hold true in the presence of nonfactorisable terms.
However, this involves models of power corrections which are not very accurate.

3.2.3 Charm loop helicity hierarchy

Within the context of LCSR, a study of charm loop e⇥ects at low q2 has been
given recently by Khodjamirian et al [20], and the analogous contributions to
B ⇧ K⇤� have been considered earlier in []. In [20], long-distance charm-loop
e⇥ects are estimated to be sizable (and with a large uncertainties); these e⇥ects
correspond in part to power corrections in QCDF. Unfortunately, the results are
only presented in numerical form and only for transversity, not helicity ampli-
tudes. Nevertheless, central values and uncertainties on these,

A⇧|cc̄(1GeV2) = . . . , A⌅|cc̄(1GeV2) = . . . , (57)

are suggestive of a suppression h+ ⌅ h�. The computation in [25] provides
directly a result for h+ at q2 = 0, which (adjusting for our normalisation conven-
tions) reads

h+(0) = . . . . (58)

The aim of this section is to argue that a hierarchy h+ ⌅ h�, h0 results, as
far as the charm loop goes, from the light-cone dominance of the amplitude at
q2 ⌅ m2

B. To this end, let us recast the strategy of [20] in terms of helicity
amplitudes, picking out the charm loop in h⇤,

h⇤|cc̄ =
1

m2
B

2

3
⇤µ⇤(⌅)

⌅
d4y eiq·y⌥M |T [(c̄�µc)(y)(Cc

1Q
c
1 + Cc

2Q
c
2)(0)]|B̄�. (59)

Next, [20] shows that the Fourier integral is dominated by the light-cone y2 ⇤ 0.
A light-cone OPE is then performed, which at the one-gluon level results in the
expression

h⇤|cc̄ = ⇤µ⇤(⌅)⌥M(k,⌅)|Õµ|B̄�, (60)

where

Õµ =

⌅
d⇧Iµ⇧�⇥(q,⇧)s̄L�

⇧⇥
⇥
⇧ � in+ ·D

2

⇤
G̃�⇥bL, (61)

with D the covariant derivative and Iµ⇧�⇥ given in [20]. The nonlocal operator
(61) is the leading term in an expansion in �2

QCD/(4m
2
c�q2), with terms involving

two and more gluon fields contributing only at higher orders [20]. It can be further
expanded in local operators,

Õ(n)
µ =

1

n!

dn

d⇧n
Iµ⇧�⇥(q,⇧)

���
⌃=0

s̄L�
⇧
⇥in+ ·D

2

⇤n

G̃�⇥bL. (62)
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Substituting (4.1),(4.2) and (4.3) to (2.1) and comparing the result with the contribution

of O9 to the B → K!+!− amplitude given in Appendix A, we obtain:

∆C(c̄c,B→K)
9 (q2) =

32π2

3

H(B→K)(q2)

f+
BK(q2)

= (C1 + 3C2) g(m
2
c , q

2) + 2C1g̃
(c̄c,B→K)(q2) , (5.4)

where the function

g̃(c̄c,B→K)(q2) =
32π2

3

Ã(q2)

f+
BK(q2)

(5.5)

determines the new soft-gluon nonfactorizable part of ∆C(c̄c,B→K)
9 and represents our main

result. Here only the ratio of the calculated hadronic matrix elements enter and they both

are calculated within one and the same LCSR approach. The correction ∆C(c̄c,B→K)
9

and its factorizable and nonfactorizable parts are plotted in Fig. 4 where the uncertainties

stemming from our calculation of g̃(c̄c,B→K)(q2) are indicated. We vary all input parameters

within their adopted intervals and add individual variations in the quadrature. In Table 1

we display the value and the estimated uncertainties of g̃(c̄c,B→K) at q2 = 1 GeV2, except

the variation due to uncertainty of ms which is negligibly small.

Note that substantial uncertainties are caused by the shift of mc and rather broad

interval of the inverse moment λB of the B-meson DA.

To parameterize the charm-loop effect for the B → K∗!+!− decay amplitude we use

its decomposition in the three invariant amplitudes Mi presented in Appendix B and the

corresponding decompositions (4.10) and (4.11). As a result the terms proportional to C9

in the amplitudes M1,2,3, have to be modified in the following way:

∆C(c̄c,B→K∗,Mi)
9 (q2) = (C1 + 3C2) g(m

2
c , q

2) + 2C1g̃
(c̄c,B→K∗,Mi)(q2) , (5.6)

function g̃(c̄c,B→K) g̃(c̄c,B→K∗,M1) g̃(c̄c,B→K∗,M2) g̃(c̄c,B→K∗,M3)

centr.value −0.041 0.26 0.27 0.46

∆mc +0.014 -0.08 -0.09 -0.15

∆M2
+0.00
−0.001

−0.04
+0.07

−0.04
+0.08

−0.07
+0.12

∆λB
−0.016
+0.017

+0.30
−0.17

+0.36
−0.18

+0.75
−0.33

∆tot
+0.022
−0.016

+0.31
−0.19

+0.37
−0.21

+0.76
−0.37

Table 1: The functions determining the soft-gluon correction to C9, calculated from LCSR, central
values at q2 = 1GeV2, and the uncertainties ∆a caused by the variations of the input parameters
(δmc

= +0.25GeV, δM2 =+0.25
−0.25 GeV, δλB

=+110
−110 MeV).
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contributing to transversity 
amplitudes (H+ +/- H-)

numerical results contibution to H+ , 
H- at O(8-10%) of leading-power 
contribution to H-, significantly 
contaminating “clean”observables.

However, coincidence of central 
values and error ranges suggest 
possibility of cancellations

dedicated consideration of helicity amplitudes needed
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right-handed currents beyond the SM. We have seen above that the form factor
T+ is doubly suppressed by q2/m2

B and �/mb, and V+ suppressed by �/mb, which
translates to a suppression of the positive-helicity amplitudes in the factorisable
approximation and in the absence of right-handed currents, i.e. neglecting the
hadronic weak Hamiltonian and primed operators. QCD factorisation clearly
predicts that this continues to hold true in the presence of nonfactorisable terms.
However, this involves models of power corrections which are not very accurate.

3.2.3 Charm loop helicity hierarchy

Within the context of LCSR, a study of charm loop e⇥ects at low q2 has been
given recently by Khodjamirian et al [20], and the analogous contributions to
B ⇧ K⇤� have been considered earlier in []. In [20], long-distance charm-loop
e⇥ects are estimated to be sizable (and with a large uncertainties); these e⇥ects
correspond in part to power corrections in QCDF. Unfortunately, the results are
only presented in numerical form and only for transversity, not helicity ampli-
tudes. Nevertheless, central values and uncertainties on these,

A⇧|cc̄(1GeV2) = . . . , A⌅|cc̄(1GeV2) = . . . , (57)

are suggestive of a suppression h+ ⌅ h�. The computation in [25] provides
directly a result for h+ at q2 = 0, which (adjusting for our normalisation conven-
tions) reads

h+(0) = . . . . (58)

The aim of this section is to argue that a hierarchy h+ ⌅ h�, h0 results, as
far as the charm loop goes, from the light-cone dominance of the amplitude at
q2 ⌅ m2

B. To this end, let us recast the strategy of [20] in terms of helicity
amplitudes, picking out the charm loop in h⇤,

h⇤|cc̄ =
1

m2
B

2

3
⇤µ⇤(⌅)

⌅
d4y eiq·y⌥M |T [(c̄�µc)(y)(Cc

1Q
c
1 + Cc

2Q
c
2)(0)]|B̄�. (59)

Next, [20] shows that the Fourier integral is dominated by the light-cone y2 ⇤ 0.
A light-cone OPE is then performed, which at the one-gluon level results in the
expression

h⇤|cc̄ = ⇤µ⇤(⌅)⌥M(k,⌅)|Õµ|B̄�, (60)

where

Õµ =

⌅
d⇧Iµ⇧�⇥(q,⇧)s̄L�

⇧⇥
⇥
⇧ � in+ ·D

2

⇤
G̃�⇥bL, (61)

with D the covariant derivative and Iµ⇧�⇥ given in [20]. The nonlocal operator
(61) is the leading term in an expansion in �2

QCD/(4m
2
c�q2), with terms involving

two and more gluon fields contributing only at higher orders [20]. It can be further
expanded in local operators,

Õ(n)
µ =

1

n!

dn

d⇧n
Iµ⇧�⇥(q,⇧)

���
⌃=0

s̄L�
⇧
⇥in+ ·D

2

⇤n

G̃�⇥bL. (62)
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The result (58) corresponds to keeping only the n = 0 term, and evaluating its
matrix element [25] by means of a LCSR for a correlation function

i

�
d4y e�ip·y⌦K⇤|[Õ(0)

µ (q)](0) j†B(y)|0↵. (63)

Ref. [25] argued the suppression of higher terms in the local OPE by a larger
expansion parameter of order mB⇥/(4m2

c), which has been taken as (20 � 40)%
and used to justify truncating the OPE after the leading term. This numerical
value corresponds to taking ⇥ ⌅ 300�650 GeV (for MS quark masses), and should
hold up to an O(1) factor, which if large could in principle spoil the convergence
of the OPE. More seriously, the power counting itself was obtained by appealing
to inclusive B ⌃ Xs� decay, where similar matrix elements ⌦B|b̄(q ·D)nG�⇥�b|B↵
occur as part of power corrections to the charm loop [26, 27, ?]. (� denotes a
Dirac structure which is irrelevant to the present discussion.) There, the softness
of the B meson constituents provides one power of ⇥ in the numerator, which
can be seen via q ·D ⇧ �iq · kG ⌅ mb⇥, where kG is the gluon momentum [26].
(The resulting ‘suppression’ factor is estimated as 0.6 in [27].) However, with an
energetic K⇤ in the final state as in (63) the constituents have energies O(mb),
so n+ · D ⇧ n+ · kG ⌅ mb and a scaling m2

b/(4m
2
c) of the putative expansion

parameter seems appropriate; at least, establishing a suppression requires a new
argument. We therefore will not rely on the estimate of [25] in this paper.

Ref. [20] estimates instead the full nonlocal operator matrix element from a
LCSR for a di⇤erent correlation function

⌦0|T{jK�

⇧ (y)Õµ(0)}|B↵, (64)

where jK
�

⇧ = d̄�⇧s, which yields the matrix element in terms of B-meson LCDAs.
This results in the values in (57). To show the suppression of h+, note that h±
can be obtained directly from

Gh⇤(q
2; k2) = �i

�
d4yeiky⌦0|T{⇥⇧⇤(ẑ;⇤)jK�

⇧ (y)⇥µ⇤(�ẑ;⇤)Õµ(0)}|B↵. (65)

To be precise, we take k = (k0, 0, 0, |k|), as well as q, in the (tz) plane. Note that
for ⇤ = ± the polarisation 4-vectors are (with these conventions) independent of
k, hence the rhs indeed defines a Lorentz-invariant function of k2 and q2. (The
formalism could, with appropriate care, be extended to ⇤ = 0.) The hadronic
representation contains the desired matrix element,

Gh⇤(q
2; k2) =

fK�⇧ mK�

m2
K� � k2

⌦K⇤(k̃;⇤)|⇥µ⇤(�ẑ;⇤)Õµ(0)}|B↵ +continuum contributions.

Here k̃ = (
⇥
m2

K� + k2, 0, 0, |k|) is the physical (on-shell) 4-momentum of the
K⇤ corresponding to the given q2. To obtain a LCSR, following [20] we take
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(also for helicity-+ form factors!)

light-cone OPE

operator defining 3-particle 
B-meson LCDA

cf Khodjamirian et al 2006, 
2007, 2010

key: project out helicities 
through interpolating current



Prior art - B->K*γ

(only λ=+/- 1)

N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
H
E
P
_
0
6
4
P
_
0
2
1
3
 
v
1

reasons, P1, q20, and similar observables are often termed “clean”. An optimized
set has been recently defined in [54] and will be studied in the phenomenological
part below.

A second point is that P1 actually vanishes under the stated approximations,
as a consequence of all terms being proportional to either V+ or T+. Hence, it is
an approximate null-test of the Standard Model, and a probe of any new physics
that generates the Wilson coe⌅cients C ⇤

7, C
⇤
9, or C

⇤
10. The same is true of I9 and

certain combinations constructed from it.
Clearly, the actual theoretical cleanness of the observables will depend on

the size of the radiative and power corrections and non-factorizable e⇥ects. The
following section is devoted to a thorough study of these e⇥ects, and their impact
on the “wrong-helicity” amplitudes H+

V and H+
A in particular. We will show that,

under very conservative assumptions, H+
V and H+

A remain suppressed, such that
the clean character of I3 and I9 as null tests, but not of other observables, is
preserved by non-factorizable and power corrections.

Finally, let us recall that the radiative decay B̄ ⇤ V � is described in terms
of a subset of the amplitudes for B̄ ⇤ V ✏+✏�. The precise relation is (⇥ = ±1)

A(B̄ ⇤ V (⇥)�(⇥)) = lim
q2⇥0

q2

e
HV (q

2 = 0;⇥)

=
iNm2

B

e

�
2m̂b

mB
(C7T̃�(0)� C ⇤

7T̃��)(0)� 16⇤2h�(q
2 = 0)

⇥
.

(43)

3 Helicity amplitudes: anatomy, hierarchies, and
hadronic uncertainties

The helicity amplitudes governing the observables involve form factors and the
nonlocal objects h�, all of which carry hadronic uncertainties, limiting the sensi-
tivity of rare B decays to new physics. However, hadronic uncertainties can be
constrained by means of the equations of motion, the V �A structure of the weak
hamiltonian, and an expansion in �/mb (QCD factorization). Our main point is
that this results in the suppression of entire helicity amplitudes, including non-
factorizable e⇥ects, such that the discussion is indeed best framed in terms of
helicity (rather than transversity) amplitudes and helicity form factors. We first
translate what is known about the form factors to the helicity basis, including
the fact that the heavy-quark limit implies the suppression of two of them [17].
We next survey how this bears out in various theoretical approaches to form fac-
tor determinations, concluding with a brief argument for the suppression of the
positive-helicity form factors in the framework of light-cone sum rules, at the level
of the correlation function. We then show that the V � A structure also implies

13

earlier estimates of hλ(0)
numerically small effect for both helicities

First ref employs expansion of           in local operators, truncated 
after leading term.

Õµ

Ball, Jones, Zwicky 2006

However, neglected higher-dimensional operator matrix elements 
scale like mB2/(4 mc2) . This is different from a somewhat analogous 
expansion in B -> Xs gamma where the scaling is like mB Λ/(4 mc2) 
giving a reasonable expansion parameter

also Muheim, Xie, Zwicky 2008

Second ref only gives numerical result, which  relies on 
unpublished result - cannot assess.



CP asymmetries
• LHCb has reported a large value of the (angular-integrated) 

CP asymmetry, particularly in the [0.1, 2] GeV2 bin

• Large direct CP asymmetries cannot arise in a partonic 
description (small strong phases, strong CKM hierarchy)

• Resonance model provides large strong phases. Cannot 
explain the central value, but shows ACP long-distance 
sensitive. Improved models? Eg 

• Conversely the CP-asymmetric angular observable P3CP is 
another clean null test of the SM.

Khodjamirian et al 2012
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Figure 8: Di�erential ACP and PCP
3 at low q2. For ACP we show the experimental

data point at the low-q2 bin [0.05, 2] GeV2. The charm-loop uncertainty and
factorizable power corrections are negligible in this case.

see in Sec. 4.4, low-q2 bins are also important for their sensitivity to the Wilson
coe⇤cients C7 and C ⇤

7.

4.2.2 CP asymmetries: ACP and PCP
3

The CP asymmetries are observables suitable for searching for sources of CP-
violation beyond the CKM mechanism. In B̄ ⌅ K̄⇥�+��, a weak phase arises
from the interference between the contributions weighed by VtbV ⇥

ts and VubV ⇥
us,

so all the CP-asymmetries for this decay in the SM are suppressed by a factor
⇤ut = VubV ⇥

us/VtbV ⇥
ts, which imaginary part is of order ⇥ ⇥̄⇤2 ⇥ 10�2 [11]. Another

important observation is that the sensitivity to a CP-violating phase is modulated
by a factor sin �s sin �w or cos �s sin �w depending on whether the asymmetry is
T-even or T-odd (i.e odd under the transformation ⌅ ⌅ �⌅). In this sense, QCD
factorization predicts the strong phases, �s, to be very small [16, 21] and, conse-
quently, the latter asymmetries have been specifically singled out as interesting
observables for the detection of new CP-violating phases beyond the SM [29].

Nonetheless, a hadronic, rather than a partonic treatment, is suited for the
description of the contribution of the light-quarks at low-q2 (see Sec. 3). In the
context of the VDM that is developed in this work, we have concluded that the
overall contribution to the CP-averaged observables is negligible and consistent
with the intrinsic suppression induced by small Wilson coe⇤cients or by the CKM
factor ⇤ut. For the CP-asymmetries, though, large di�erences between the two
approaches can be expected since the leading contribution is given by the latter
pieces. To be more precise, large strong phases can be obtained in the hadronic
picture as they naturally arise from rescattering and “dressing” of the resonance
poles. Therefore, at low q2 a suppression ⇧ sin �s ⇤ 0 of the T-even asymmetries
cannot be expected and sensitivity to the weak phase(s) in these observables can
be generated by long-distance e�ects. Conversely, a factor cos �s close to 1 is not
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right-handed currents beyond the SM. We have seen above that the form factor
T+ is doubly suppressed by q2/m2

B and �/mb, and V+ suppressed by �/mb, which
translates to a suppression of the positive-helicity amplitudes in the factorisable
approximation and in the absence of right-handed currents, i.e. neglecting the
hadronic weak Hamiltonian and primed operators. QCD factorisation clearly
predicts that this continues to hold true in the presence of nonfactorisable terms.
However, this involves models of power corrections which are not very accurate.

3.2.3 Charm loop helicity hierarchy

Within the context of LCSR, a study of charm loop e⇥ects at low q2 has been
given recently by Khodjamirian et al [20], and the analogous contributions to
B ⇧ K⇤� have been considered earlier in []. In [20], long-distance charm-loop
e⇥ects are estimated to be sizable (and with a large uncertainties); these e⇥ects
correspond in part to power corrections in QCDF. Unfortunately, the results are
only presented in numerical form and only for transversity, not helicity ampli-
tudes. Nevertheless, central values and uncertainties on these,

A⇧|cc̄(1GeV2) = . . . , A⌅|cc̄(1GeV2) = . . . , (57)

are suggestive of a suppression h+ ⌅ h�. The computation in [25] provides
directly a result for h+ at q2 = 0, which (adjusting for our normalisation conven-
tions) reads

h+(0) = . . . . (58)

The aim of this section is to argue that a hierarchy h+ ⌅ h�, h0 results, as
far as the charm loop goes, from the light-cone dominance of the amplitude at
q2 ⌅ m2

B. To this end, let us recast the strategy of [20] in terms of helicity
amplitudes, picking out the charm loop in h⇤,
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Next, [20] shows that the Fourier integral is dominated by the light-cone y2 ⇤ 0.
A light-cone OPE is then performed, which at the one-gluon level results in the
expression

h⇤|cc̄ = ⇤µ⇤(⌅)⌥M(k,⌅)|Õµ|B̄�, (60)

where
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d⇧Iµ⇧�⇥(q,⇧)s̄L�

⇧⇥
⇥
⇧ � in+ ·D

2

⇤
G̃�⇥bL, (61)

with D the covariant derivative and Iµ⇧�⇥ given in [20]. The nonlocal operator
(61) is the leading term in an expansion in �2

QCD/(4m
2
c�q2), with terms involving

two and more gluon fields contributing only at higher orders [20]. It can be further
expanded in local operators,

Õ(n)
µ =

1

n!

dn

d⇧n
Iµ⇧�⇥(q,⇧)

���
⌃=0

s̄L�
⇧
⇥in+ ·D

2

⇤n

G̃�⇥bL. (62)
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hard-collinear line

k2 ⌅ �1GeV2 mb� (corresponding to a Borel parameter ⌅
⌥
mb�) and consider

the light-cone OPE of Gh�. The leading (tree) diagram is shown in Fig. ref-
fig:ccsumrule. Defining n+ · q ⇤ mB + l, and taking the b-quark momentum to
be pb = mb/2(n+ + n�) + r1, we have l ⌅ � > 0 and

q = mb
n�

2
+

q2

mb + l

n+

2
, (66)

k = mb
n+

2
+O(�), (67)

Q = mb
n+

2
+O(�), (68)

such that Q2 ⌅ mb�, and the internal propagator is, in QCDF/SCET terminol-
ogy, a hard-collinear line. The operator product, to tree level, becomes

�⇥⇤(ẑ,⇥)j
⇤(k)

Q/ +ms

Q2 �m2
s

PR�
µ⇥(�ẑ;⇥)Õµ(q), (69)

where PR has been inserted for convenience [note that Õµ(q) contains a chiral
projector]. Neglecting terms O(�,ms) in the propagator, this vanishes for ⇥ = +.
Hence the nonlocal charm loop contribution to h+ is O(�/mb)-suppressed relative
to h�, and altogether

h+|cc̄,LD = O
�

�3

4m2
cmb

⇥
(70)

and should be at the 1-percent level or below of the leading-power charm loop
e⇥ect in H�

V . Nevertheless, we will see below that it constitutes the dominant
remaining source of theoretical uncertainty on several “clean” observables, thanks
to the strong suppression of the helicity form factor T+. This shows at the
same time the importance of taking it into account, and motivates further, more
quantitative work on the nonlocal power-corrections to (mainly) the positive-
helicity amplitudes.

Unlike in the form factor case, the more traditional LCSR of Ref. [25] (in-
volving an on-shell K⇥ rather than a B) does not lend itself to an analogous
argument. Essentially, the reason is that that sum rule is given in terms of (most
importantly) chiral-even twist-3 3-particle LCDAs, where, loosely speaking, the
helicity of the meson is determined by that of the gluon field-strength tensor,
whereas the helicities of the quark and antiquark fields cancel out (such that a
chiral projector has no direct impact on the helicity of the K⇥). Of course the
suppression should still be seen in the numerical result for the full (rather than
lowest-order local OPE) result. However, higher-order terms in the local OPE
are not known, nor do they seem to be suppressed.

END OF REDRAFTED TEXT - MIGHT DISCARD/SHORTEN
THE BELOW

In summary,
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vanishes for + helicity to 
leading power

reduce estimate for long-distance charm-loop 10% -> 2%
in HV+ SJ, Martin Camalich 2012

phenomenological implementation via shifts of C9eff(q)2    [helicity-dependent]
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(also for helicity-+ form factors!)


