$B \rightarrow K^{*} I^{+} I^{-}: S M$ or beyond?

Sebastian Jäger
US
University of Sussex

Aspen Winter 2014
22 January 2014
largely based on work with J Martin Camalich: arXiv:1212.2263, JHEP, and work to appear

Content

- Rare semileptonic B decays: BSM sensitivity and SM bugbears
- QCD anatomy of the decay amplitude
- BSM sensitivity at (very) low q^{2}
- LHCb anomaly: SM or beyond?

Why rare B decays

Solutions to the hierarchy problem must bring in particles to cut off the top contribution to the weak scale (Higgs mass parameter).

$$
\propto y_{t}^{2} \Lambda_{\mathrm{UV}}^{2}
$$

The new particles' couplings tend to break flavour (they do in all the major proposals for TeV physics)

At least they will have CKM-like flavour violations (minimal flavour violation), so will always affect rare decays

weak $\Delta \mathrm{B}=\Delta \mathrm{S}=1$ Hamiltonian

$=E F T$ for $\Delta B=\Delta S=1$ transitions (up to dimension six)

$$
\begin{gathered}
\mathcal{H}_{\mathrm{eff}}^{\mathrm{had}}=\frac{4 G_{F}}{\sqrt{2}} \sum_{p=u, c} \lambda_{p}\left[C_{1} Q_{1}^{p}+C_{2} Q_{2}^{p}+\sum_{i=3 . . .6} C_{i} P_{i}+C_{8 g} Q_{8 g}\right] \quad C_{i} \sim g_{\mathrm{NP}} \frac{m_{W}^{2}}{M_{\mathrm{NP}}^{2}} \\
\mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}}=-\frac{4 G_{F}}{\sqrt{2}} \lambda_{t}\left[C_{7} Q_{7 \gamma}+C_{7}^{\prime} Q_{7 \gamma}^{\prime}+C_{9} Q_{9 V}+C_{9}^{\prime} Q_{9 V}^{\prime}+C_{10} Q_{10 A}+C_{10}^{\prime} Q_{10 A}^{\prime}\right. \\
\left.+C_{S} Q_{S}+C_{S}^{\prime} Q_{S}^{\prime}+C_{P} Q_{P}+C_{P}^{\prime} Q_{P}^{\prime}+C_{T} Q_{T}+C_{T}^{\prime} Q_{T}^{\prime}\right] .
\end{gathered}
$$

$\mathcal{O}_{7}=\frac{e}{16 \pi^{2}} \hat{m}_{b} \bar{s} \sigma_{\mu \nu} P_{R} F^{\mu \nu} b$,
$\mathcal{O}_{8}=\frac{g_{s}}{16 \pi^{2}} \hat{m}_{b} \bar{s} \sigma_{\mu \nu} P_{R} G^{\mu \nu} b$,
$\mathcal{O}_{V}=\frac{\alpha_{\mathrm{em}}}{4 \pi}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{l} \gamma^{\mu} l\right)$,
$\mathcal{O}_{S}=\frac{\alpha_{\mathrm{em}}}{4 \pi} \hat{m}_{b}\left(\bar{s} P_{R} b\right)(\bar{l} l)$,
$\mathcal{O}_{A}=\frac{\alpha_{\mathrm{em}}}{4 \pi}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{l} \gamma^{\mu} \gamma^{5} l\right)_{A}{ }^{\alpha_{\mathrm{em}}}{ }_{b}{ }^{s}{ }^{\circ} \mathrm{m}_{\mathrm{s}} z$
$\mathcal{O}_{P}=\frac{\alpha_{\mathrm{em}}}{4 \pi} \hat{m}_{b}\left(\bar{s} P_{R} b\right)\left(\bar{l}{ }^{5} l\right)$,
$\mathcal{O}_{T}=\frac{\alpha_{\mathrm{em}}}{4 \pi} \hat{m}_{b}\left(\bar{s} \sigma_{\mu \nu} P_{R} b\right)\left(\bar{l} \sigma^{\mu \nu} P_{R} s\right)$,

look for observables sensitive to Ci's, specifically those that are suppressed in the SM

$\mathrm{B} \rightarrow \mathrm{K}^{*} \mathrm{I}$: angular distribution

θ_{K} in K^{*} rest frame
$\theta_{\text {I }}$ in dilepton cm frame
ϕ boost-invariant (w.r.t. z axis)

$$
\begin{aligned}
& \frac{d^{(4)} \Gamma}{d q^{2} d\left(\cos \theta_{l}\right) d\left(\cos \theta_{k}\right) d \phi}=\frac{9}{32 \pi} \\
& \times\left(I_{1}^{s} \sin ^{2} \theta_{k}+I_{1}^{c} \cos ^{2} \theta_{k}+\left(I_{2}^{s} \sin ^{2} \theta_{k}+I_{2}^{c} \cos ^{2} \theta_{k}\right) \cos 2 \theta_{l}\right. \\
& +I_{3} \sin ^{2} \theta_{k} \sin ^{2} \theta_{l} \cos 2 \phi+I_{4} \sin 2 \theta_{k} \sin 2 \theta_{l} \cos \phi \\
& +I_{5} \sin 2 \theta_{k} \sin \theta_{l} \cos \phi+\left(I_{6}^{s} \sin ^{2} \theta_{k}+I_{6}^{c} \cos ^{2} \theta_{K}\right) \cos \theta_{l} \\
& \left.+I_{7} \sin 2 \theta_{k} \sin \theta_{l} \sin \phi+I_{8} \sin 2 \theta_{k} \sin 2 \theta_{l} \sin \phi+I_{9} \sin ^{2} \theta_{k} \sin ^{2} \theta_{l} \sin 2 \phi\right)
\end{aligned}
$$

The angular coefficients are functions of the Wilson coefficients, and can be used to probe for new physics

B->K*|+ ${ }^{-}$decay amplitude

matrix elements of semileptonic/radiative Hamiltonian factorize "naively"

$$
\begin{aligned}
& \text { lepton current form factor lepton current form factor } \\
& \mathcal{A}\left(\bar{B} \rightarrow \boldsymbol{V} \ell^{-} \ell^{+}\right)=\sum_{i} C_{i}\left\langle\ell^{-} \ell^{+}\right| \overline{\mid} \Gamma_{i} /|0\rangle\langle V| \bar{s} \Gamma_{i}^{\prime} b|\bar{B}\rangle+C_{7}^{\left(^{\prime}\right.} \frac{e^{2}}{q^{2}}\left\langle\ell^{+} \ell^{-}\right| \bar{l} \gamma^{\mu} l|0\rangle\langle V| \bar{s} \sigma_{\mu \nu} P_{R(L)} b|\bar{B}\rangle \\
& \left.+\frac{e^{2}}{q^{2}}\left\langle\ell^{-} \ell^{+}\right| \bar{I} \gamma^{\mu}| | 0\right\rangle F . T .\langle V| T\left(j_{\mu, \text { em }}^{\text {had }}(x) \mathcal{H}_{W}^{\text {had }}(0)\right)|\bar{B}\rangle \\
& \text { nonlocal "quark loops" } \\
& \text { do not factorize naively } \\
& \text { correct to lowest order in electromagnetism } \\
& \text { exact in QCD - no assumptions (yet) } \\
& \text { three helicity states for } \mathrm{V}=\mathrm{K}^{*} \\
& \text { dilepton can have } \mathrm{J}=0 \text { or } \mathrm{J}=1 \\
& \text { several leptonic currents } \\
& \text { photon couples only to vector leptonic current. At } q^{2}=0 \text { photon pole }
\end{aligned}
$$

B->K*|+ ${ }^{-}$decay amplitude

matrix elements of semileptonic/radiative Hamiltonian factorize "naively"

$$
\begin{aligned}
& \text { lepton current form factor lepton current form factor } \\
& \left.\mathcal{A}\left(\bar{B} \rightarrow V \ell^{-} \ell^{+}\right)=\sum_{i} C_{i}\left\langle\ell^{-} \ell^{+}\right| \overline{\mid} \Gamma_{i} /|0\rangle\langle V| \bar{S} \Gamma_{i}^{\prime}| | \bar{B}\right\rangle+C_{7}^{()^{\prime}} \frac{e^{2}}{q^{2}}\left\langle\ell^{+} \ell^{-}\right| \bar{l} \gamma^{\mu} l|0\rangle\langle V| \bar{s} \sigma_{\mu \nu} P_{R(L)} b|\bar{B}\rangle \\
& +\frac{e^{2}}{q^{2}} \underbrace{\left.\ell^{-} \ell^{+}\left|\bar{I} \gamma^{\mu}\right| \mid 0\right) F . T .}\langle V| T\left(j_{\mu, e \mathrm{~m}}^{\text {had }}(x) \mathcal{H}_{W}^{\text {had }}(0)\right)|\bar{B}\rangle \\
& \text { nonlocal "quark loops" } \\
& \text { do not factorize naively } \\
& \text { correct to lowest order in electromagnetism } \\
& \text { exact in QCD - no assumptions (yet) } \\
& \text { three helicity states for } \mathrm{V}=\mathrm{K}^{*} \\
& \text { dilepton can have } \mathrm{J}=0 \text { or } \mathrm{J}=1 \\
& \text { several leptonic currents } \\
& \text { photon couples only to vector leptonic current. At } q^{2}=0 \text { photon pole }
\end{aligned}
$$

B->K*|+ ${ }^{-}$decay amplitude

matrix elements of semileptonic/radiative Hamiltonian factorize "naively"

$\left.\mathcal{A}\left(\bar{B} \rightarrow V \ell^{-} \ell^{+}\right)=\sum_{i} C_{i}\left\langle\ell^{-} \ell^{+}\right| \bar{I} \Gamma_{i}| | 0\right\rangle\langle V| \bar{s} \Gamma_{i}^{\prime} b|\bar{B}\rangle+C_{7}^{\prime^{\prime}} \left\lvert\, \frac{e^{2}}{q^{2}}\left\langle\ell^{\text {lepton current }} \begin{array}{c}\text { form factor } \\ \left.\ell^{+}\left|\bar{l} \gamma^{\mu} l\right| 0\right\rangle\langle V| \bar{s} \sigma_{\mu \nu} P_{R(L)} b|\bar{B}\rangle \\ B^{0}\end{array}\right.\right.$
$\left.+\frac{e^{2}}{q^{2}} \ell^{\ell^{-} \ell^{+}\left|\bar{I} \gamma^{\mu}\right||0\rangle}\right) F . T .\langle V| T\left(j_{\mu, \mathrm{em}}^{\mathrm{had}}(x) \mathcal{H}_{W}^{\mathrm{had}}(0)\right)|\bar{B}\rangle$
nonlocal "quark loops"
do not factorize naively
correct to lowest order in electromagnetism
exact in QCD - no assumptions (yet)
three helicity states for $\mathrm{V}=\mathrm{K}^{*}$
dilepton can have $\mathrm{J}=0$ or $\mathrm{J}=1$
several leptonic currents

B->K*|+ ${ }^{-}$decay amplitude

matrix elements of semileptonic/radiative Hamiltonian factorize "naively"

Phenomenology issues

Examples of theory predictions - intentionally dated ones! Here, forward-backward asymmetry

our original motivation

- critically (re)examine all theory uncertainties, specifically power corrections: separate parameterisation from estimation
- Should one cut at low q^{2} end? Costs sensitivity to $C_{7}{ }^{\prime}, C_{7}$ What is the residual error with a given set of cuts?

This is also (very) relevant to current "anomalies" in data $\left(P_{5}{ }^{\prime}\right)$!

Angular coefficients

$$
\begin{aligned}
& I_{1}^{c}=F\left\{\frac{1}{2}\left(\left|H_{V}^{0}\right|^{2}+\left|H_{A}^{0}\right|^{2}\right)+4\left|H_{P}\right|^{2}+\frac{2 m_{\ell}^{2}}{q^{2}}\left(\left|H_{V}^{0}\right|^{2}-\left|H_{A}^{0}\right|^{2}\right)+4 \beta^{2}\left|H_{S}\right|^{2}\right\}, \\
& I_{1}^{s}=F\left\{\frac{\beta^{2}+2}{8}\left(\left|H_{V}^{+}\right|^{2}+\left|H_{V}^{-}\right|^{2}+(V \rightarrow A)\right)+\frac{m_{\ell}^{2}}{q^{2}}\left(\left|H_{V}^{+}\right|^{2}+\left|H_{V}^{-}\right|^{2}-(V \rightarrow A)\right)\right\} \\
& I_{2}^{c}=-F \frac{\beta^{2}}{2}\left(\left|H_{V}^{0}\right|^{2}+\left|H_{A}^{0}\right|^{2}\right) \text {, } \\
& I_{2}^{s}=F \frac{\beta^{2}}{8}\left(\left|H_{V}^{+}\right|^{2}+\left|H_{V}^{-}\right|^{2}\right)+(V \rightarrow A), \quad \text { strongly suppressed in SM } \\
& I_{3}=-\frac{F}{2} \operatorname{Re}\left[H_{V}^{+}\left(H_{V}^{-}\right)^{*}\right]+(V \rightarrow A), \quad \text { good sensitivity to NP with } \\
& I_{4}=F \frac{\beta^{2}}{4} \operatorname{Re}\left[\left(H_{V}^{-}+H_{V}^{+}\right)\left(H_{V}^{0}\right)^{*}\right]+(V \rightarrow A) \text {, } \\
& \text { different chirality structure } \\
& \text { ("right-handed currents") } \\
& I_{5}=F\left\{\frac{\beta}{2} \operatorname{Re}\left[\left(H_{V}^{-}-H_{V}^{+}\right)\left(H_{A}^{0}\right)^{*}\right]+(V \leftrightarrow A)-\frac{2 \beta m_{\ell}}{\sqrt{q^{2}}} \operatorname{Re}\left[H_{S}^{*}\left(H_{V}^{+}+H_{V}^{-}\right)\right]\right\} \\
& I_{6}^{s}=F \beta \operatorname{Re}\left[H_{V}^{-}\left(H_{A}^{-}\right)^{*}-H_{V}^{+}\left(H_{A}^{+}\right)^{*}\right] \text {, } \\
& I_{6}^{c}=8 F \frac{\beta m_{\ell}}{\sqrt{q^{2}}} \operatorname{Re}\left[H_{S}^{*} H_{V}^{0}\right], \\
& I_{7}=F\left\{\frac{\beta}{2} \operatorname{Im}\left[\left(H_{A}^{+}+H_{A}^{-}\right)\left(H_{V}^{0}\right)^{*}+(V \leftrightarrow A)\right]-\frac{2 \beta m}{\frac{2}{q^{2}}} \operatorname{Im}\left[H_{S}^{*}\left(H_{V}^{-}-H_{V}^{+}\right)\right]\right\}, \\
& \begin{array}{l}
I_{8}=F \frac{\beta^{2}}{4} \operatorname{Im}\left[\left(H_{V}^{-}-H_{V}^{+}\right)\left(H_{V}^{0}\right)^{*}\right]+(V \\
I_{9}=F \frac{\beta^{2}}{2} \operatorname{Im}\left[H_{V}^{+}\left(H_{V}^{-}\right)^{*}\right]+(V \rightarrow A),
\end{array} \\
& \text { suppression of } I_{3}, I_{9} \text { due to } \\
& \text { suppression of +-amplitudes } \\
& \text { must(:quantify corrections }
\end{aligned}
$$

Heavy-quark limit and corrections

GeV^2 range -> ignore

Power corrections - parameterise $F^{\infty}\left(q^{2}\right)=F^{\infty}(0) /\left(1-q^{2} / m_{B}^{2}\right)^{p}+\Delta_{F}\left(\alpha_{s} ; q^{2}\right)$

For alpha_s=0, $q^{\wedge} 2$ dependence fixed in heavy-quark limit (argument relies on properties of vector light-cone DA)

$$
\begin{array}{ll}
\mathrm{V}_{+}{ }^{\infty}(0)=0 & \mathrm{~T}_{+}^{\infty}(0)=0 \\
\mathrm{~V}_{-}^{\infty}(0)=\mathrm{T}_{-}^{\infty}(0) & \text { from heavy-quark/ } \\
\mathrm{V}_{0}^{\infty}(0)=\mathrm{T}_{0}^{\infty}(0) & \text { large energy } \\
\text { symmetry alone }
\end{array}
$$

(Beneke, Feldmann)
Corrections are unambiguously calculable in terms of perturbation theory, decay constants, light cone distribution amplitudes
$\mathrm{V}_{+}{ }^{\infty}\left(\mathrm{q}^{2}\right)=0 \quad \mathrm{~T}_{+}{ }^{\infty}\left(\mathrm{q}^{2}\right)=0$
hence

$$
\begin{aligned}
T_{+}\left(q^{2}\right) & =\mathcal{O}\left(q^{2}\right) \times \mathcal{O}\left(\Lambda / m_{b}\right) \\
V_{+}\left(q^{2}\right) & =\mathcal{O}\left(\Lambda / m_{b}\right)
\end{aligned}
$$

- "naively factorizing" part of the helicity amplitudes $\mathrm{H}_{\mathrm{v}, \mathrm{A}}{ }^{+}$strongly suppressed as a consequence of chiral SM weak interactions (quark picture: Burdman,
- We see the suppression is particularly strong near low-q ${ }^{2}$ endpoint
- Form factor relations imply reduced uncertainties in suitable observables

Nonfactorizable contributions

no known way to treat charm resonance region to the necessary precision (would need $\ll 1 \%$ to see short-distance contribution)
"solution": cut out $6 \mathrm{GeV}^{2}<\mathrm{q}^{2}<14 \mathrm{GeV}^{2}$
above (high-q ${ }^{2}$) charm loops calculable in OPE
Grinstein, Pirjol 2004; Beylich, Buchalla, Feldmann 2011 phenomenological applications: Bobeth et al 2008-2013
at low q^{2}, long-distance charm effects also suppressed, but photon can now be emitted from spectator withouth power suppression systematic framework (QCD factorisation) based on $1 / m_{b}$ expansion

"Charm loop" (operators with charm)

leading-power: factorises into perturbative kernels, form factors, LCDA's (including hard/hard-collinear gluon corrections to all orders)
$\alpha_{s}{ }^{0}: \mathrm{C}_{7} \rightarrow \mathrm{C}_{7}$ eff
$\mathrm{C}_{9} \rightarrow \mathrm{C}_{9}{ }^{\text {eff }}\left(\mathrm{q}^{2}\right)$
+1 annihilation diagram
$\alpha_{s}{ }^{1}$: (convergent) convolutions of hardscattering kernels with meson light cone-distribution amplitudes

Beneke, Feldmann, Seidel 2001
state-of-the-art in phenomenology
unambigous (save for parametric uncertainties)

at subleading powers: breakdown of factorisation
parital estimates as end-point divergent convolutions with a cut-off Feldmann, Matias
can perform light-cone OPE of charm loop \& estimate resulting (nonlocal) operator matrix elements by light-cone QCD sum rules

Khodjamirian et al 2010
one can show that the helicity suppression of H^{+}survives long-distance corrections

Light-quark contributions

Operators without charm have strong charm or CKM suppression; power corrections should be negligible.

However, they generate (mild) resonance structure even below the charm threshold, ie "duality violation"
Presumably ρ, ω, φ most important; use vector meson dominance supplemented by heavy-quark limit $\mathrm{B} \rightarrow \mathrm{VK}^{*}$ amplitudes

estimate uncertainty from difference between VMD model and the subset of heavy-quark limit diagrams corresponding to intermediate V states.

Helicity hierarchies in hadronic B decays prevent large uncertainties in $\mathrm{H}{ }^{+}$from this source, too.

Phenomenology

Useful to consider functions of the angular coefficients for which form factors drop out in the heavy quark limit (ie neglecting power corrections) if perturbative QCD corrections are also neglected.

Becirevic, Schneider 2011
Matias, Mescia, Ramon, Virto 2012
Descotes-Genon et al 2012
(also Krueger,Matias 2005; Egede et al 2008,
Altmannshofer et al 2008)

$$
\begin{aligned}
P_{1} & =\frac{\Sigma_{3}}{2 \Sigma_{2 s}}, & P_{2}=\frac{\Sigma_{6}}{8 \Sigma_{2 s}} \\
P_{4}^{\prime} & =\frac{\Sigma_{4}}{\sqrt{-\Sigma_{2 s} \Sigma_{2 c}}}, & P_{5}^{\prime}=\frac{\Sigma_{5}}{2 \sqrt{-\Sigma_{2 s} \Sigma_{2 c}}} \\
\Sigma_{i} & =\frac{I_{i}+\bar{I}_{i}}{2}, & \Delta_{i}=\frac{I_{i}-\bar{I}_{i}}{2}
\end{aligned}
$$

$$
P_{3}=-\frac{\Sigma_{9}}{4 \Sigma_{2 s}}
$$

$$
P_{6}^{\prime}=-\frac{\Sigma_{7}}{2 \sqrt{-\Sigma_{2 s} \Sigma_{2 c}}}
$$

Matias, Mescia, Ramon, Virto 2012
(similar sets suitable at high q^{2} : Bobeth, Hiller, Van Dyk 2010, 2012; Matias et al 2012)

Observables with these properties are defined to be "clean" (Matias et al) or "form-factor independent" (LHCb title). Terms not used in their usual meaning! How do the observables fare in reality?

Predictions

SJ, Martin Camalich 2012

- As expected, P_{1} and P_{3} remain very cleanly zero in the $S M$. The other "clean" observables are more sensitive to longdistance effects (power corrections / duality violations)

Error budget

Obs.	$\left[q_{\text {min }}^{2}, q_{\text {max }}^{2}\right]$	Result	Hadronic	Fact.	c-quark	Light-quark
$10^{7} \times\left\langle\frac{d \mathcal{B}}{d q^{2}}\right\rangle$	$\begin{gathered} \hline[0.1,1] \\ {[0.1,2]} \\ {[2,4.3]} \\ {[1,6]} \\ \hline \end{gathered}$	$\begin{gathered} 0.81_{-0.20}^{+0.23} \\ 1.13_{-0.38}^{+0.39} \\ 0.62_{-0.26}^{+0.33} \\ 1.5_{-0.6}^{+0.8} \\ \hline \end{gathered}$	$\begin{aligned} & +{ }_{-0.17}^{+0.20} \\ & { }_{-0.17}^{+0.36} \\ & { }_{-0.24}^{+0.27} \\ & -0.21 \\ & { }_{0}^{+0.21} \\ & { }_{-0.5}^{+0.6} \end{aligned}$	$\begin{aligned} & +{ }_{-0.03}^{+0.03} \\ & { }_{-0.03}^{+0.08} \\ & { }_{-0.07}^{+0.19} \\ & { }_{-0.15}^{+0.15} \\ & +0.46 \\ & { }_{-0.37} \end{aligned}$	$\begin{aligned} & +0.10 \\ & { }_{-0.10}^{+0.10} \\ & { }_{-0.13}^{+0.12} \\ & +0.02 \\ & -0.02 \\ & -0.01 \\ & +0.05 \\ & -0.05 \end{aligned}$	$\begin{aligned} & \pm 0.00 \\ & \pm 0.02 \\ & \pm 0.00 \\ & \pm 0.02 \end{aligned}$
$\left\langle F_{L}\right\rangle$	$\begin{gathered} {[0.1,1]} \\ {[0.1,2]} \\ {[2,4.3]} \\ {[1,6]} \end{gathered}$	$\begin{aligned} & 0.20_{-0.10}^{+0.11} \\ & 0.31_{-0.12}^{+0.16} \\ & 0.75_{-0.16}^{+0.11} \\ & 0.70_{-0.17}^{+0.14} \end{aligned}$	$\begin{aligned} & \hline{ }_{-0.09}^{+0.10} \\ & \text { +0.15 } \\ & -0.11 \\ & +0.09 \\ & -0.09 \\ & { }_{-0.13}^{+0.11} \\ & -0.13 \end{aligned}$	$\begin{aligned} & \hline{ }_{-0.02}^{+0.02} \\ & { }_{-0.02}^{+0.04} \\ & { }_{-0.04}^{+0.07} \\ & +0.9 \\ & +0.9 \\ & { }_{-0.11}^{+0.09} \end{aligned}$	$\begin{aligned} & +0.03 \\ & { }_{-0.02}^{+0.02} \\ & { }_{-0.04}^{+0.03} \\ & +0.02 \\ & { }_{-0.02}^{+0.02} \\ & { }_{-0.02}^{+0.02} \end{aligned}$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.01 \\ & \pm 0.00 \\ & \pm 0.00 \end{aligned}$
$10^{2} \times\left\langle P_{1}\right\rangle$	$\begin{gathered} {[0.1,1]} \\ {[0.1,2]} \\ {[2,4.3]} \\ {[1,6]} \end{gathered}$	$\begin{gathered} 2.9_{-3.1}^{+3.2} \\ 3.0_{-3.4}^{+3.5} \\ -1.0_{-5}^{+7} \\ -2_{-6}^{+8} \end{gathered}$	$\begin{aligned} & { }_{-0.1}^{+0.8} \\ & { }_{-0.8}^{+0.8} \\ & { }^{+0.2} \\ & { }_{-0.8}^{1+6.8} \\ & { }_{-0.8}^{+1.3} \end{aligned}$	$\begin{gathered} +1.2 \\ -1.3 \\ -1.7 \\ { }_{-1.7}^{+1.7} \\ +{ }_{-5}^{+7} \\ { }^{+5} \\ -6 \end{gathered}$	$\begin{aligned} & { }^{+2.9} \\ & -2.8 \\ & { }_{-2.9}^{+2.9} \\ & +1.8 \\ & { }_{-1.6}^{1+1.6} \\ & { }_{-1.4}^{+1.6} \end{aligned}$	$\begin{aligned} & \pm 0.0 \\ & \pm 0.1 \\ & \pm 0.0 \\ & \pm 0.0 \end{aligned}$
$10 \times\left\langle P_{2}\right\rangle$	$\begin{gathered} {[0.1,1]} \\ {[0.1,2]} \\ {[2,4.3]} \\ {[1,6]} \end{gathered}$	$\begin{aligned} & 1.02_{-0.17}^{+0.15} \\ & 1.57_{-0.26}^{+0.19} \\ & -3.1_{-1.4}^{+1.4} \\ & -1.4_{-1.5}^{+1.5} \end{aligned}$	$\begin{gathered} +0.08 \\ { }_{-0.13} \\ { }_{-0.20}^{+0.00} \\ +{ }_{-0.8}^{+0.8} \\ { }_{-0.8}^{+0.8} \\ -0.7 \end{gathered}$	$\begin{aligned} & +0.10 \\ & { }_{-0.09}^{+0.09} \\ & { }_{-0.13}^{+0.13} \\ & +1.0 \\ & { }^{+1.0} \\ & { }_{-1.2}^{+1.2} \end{aligned}$	$\begin{aligned} & +0.08 \\ & { }_{-0.07} \\ & { }_{-0.10}^{+0.11} \\ & +0.5 \\ & { }_{-0.7}^{+0.5} \\ & { }_{-0.6}^{+0.5} \end{aligned}$	$\begin{gathered} \pm 0.00 \\ \pm 0.04 \\ \pm 0.0 \\ \pm 0.0 \end{gathered}$
$10^{2} \times\left\langle P_{3}\right\rangle$	$\begin{gathered} {[0.1,1]} \\ {[0.1,2]} \\ {[2,4.3]} \\ {[1,6]} \end{gathered}$	$\begin{aligned} & -0.1_{-1.2}^{+1.5} \\ & -0.2_{-1.3}^{+1.6} \\ & -0.3_{-1.2}^{+1.2} \\ & -0.3_{-1.0}^{+1.0} \end{aligned}$	$\begin{aligned} & { }_{-0.2}^{+0.0} \\ & { }_{-0.2}^{+0.0} \\ & -0.2 \\ & +0.1 \\ & -0.3 \\ & { }^{+0.3 .1} \\ & { }_{-0.3}^{+0.1} \end{aligned}$	$\begin{aligned} & { }_{-0.1}^{+0.1} \\ & { }_{-0.1}^{+0.1} \\ & -0.1 \\ & +0.7 \\ & -0.8 \\ & { }^{+0.8} \\ & { }_{-0.6}^{+0.6} \end{aligned}$	$\begin{aligned} & +1.5 \\ & { }_{-1.2}^{+1.5} \\ & { }_{-1.6}^{+1.6} \\ & +1.0 \\ & { }_{-0.9}^{1+0.9} \\ & { }_{-0.7}^{+0.8} \end{aligned}$	$\begin{aligned} & \pm 0.0 \\ & \pm 0.0 \\ & \pm 0.0 \\ & \pm 0.0 \end{aligned}$

Error budget

Obs.	$\left[q_{\min }^{2}, q_{\max }^{2}\right]$	Result	Hadronic	Fact.	c-quark	Light-quark
$10^{7} \times\left\langle\frac{d \mathcal{B}}{d q^{2}}\right\rangle$	$\begin{gathered} {[0.1,1]} \\ {[0.1,2]} \\ {[2,4.3]} \\ {[1,6]} \end{gathered}$	$\begin{gathered} \hline 0.81_{-0.20}^{+0.23} \\ 1.13_{-0.38}^{+0.39} \\ 0.62_{-0.26}^{+0.33} \\ 1.5_{-0.6}^{+0.8} \\ \hline \end{gathered}$	$\begin{aligned} & +{ }_{-0.17}^{+0.20} \\ & { }_{-0.17}^{+0.36} \\ & { }^{+0.24} \\ & -0.27 \\ & -0.21 \\ & { }_{-0.6}^{+0.6} \\ & \hline \end{aligned}$	$\begin{aligned} & +0.03 \\ & { }_{-0.03}^{+0.03} \\ & \hline-0.08 \\ & { }_{-0.07}^{+0.19} \\ & { }_{-0.15}^{+0.15} \\ & { }_{-0.47}^{+0.46} \\ & \hline \end{aligned}$	+0.10 ${ }_{-0.10}^{+0}$ ${ }_{-0.13}^{+0.12}$ ${ }^{+0.02}$ ${ }_{-0.01}^{+0.05}$ ${ }_{-0.05}^{+0.05}$	$\begin{gathered} \pm 0.00 \\ \pm 0.02 \\ \pm 0.00 \\ \pm 0.02 \end{gathered}$
$\left\langle F_{L}\right\rangle$	$\begin{gathered} {[0.1,1]} \\ {[0.1,2]} \\ {[2,4.3]} \\ {[1,6]} \end{gathered}$	$\begin{aligned} & 0.20_{-0.10}^{+0.11} \\ & 0.31_{-0.12}^{+0.16} \\ & 0.75_{-0.16}^{+0.11} \\ & 0.70_{-0.14}^{+0.14} \end{aligned}$	+0.10 +0.09 -0.09 -0.15 +0.11 +0.09 -0.13 +0.11 -0.13	$\begin{aligned} & +0.02 \\ & { }_{-0.02}^{+0.02} \\ & +{ }_{-0.04}^{+0.04} \\ & +0.07 \\ & -0.9 \\ & { }_{-0.9}^{+0.09} \\ & -0.11 \end{aligned}$	$\begin{aligned} & +0.03 \\ & { }_{-0.02}^{+0.02} \\ & { }_{-0.04}^{+0.03} \\ & +0.02 \\ & { }_{-0.02}^{+0.02} \\ & { }_{-0.02}^{+0.02} \end{aligned}$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.01 \\ & \pm 0.00 \\ & \pm 0.00 \end{aligned}$
$10^{2} \times\left\langle P_{1}\right\rangle$	$\begin{gathered} {[0.1,1]} \\ {[0.1,2]} \\ {[2,4.3]} \\ {[1,6]} \end{gathered}$	$\begin{gathered} 2.9_{-3.1}^{+3.2} \\ 3.0_{-3.4}^{+3.5} \\ -1.0_{-5}^{+7} \\ -2_{-6}^{+8} \end{gathered}$	$\begin{aligned} & +0.8 \\ & { }_{-0.1}^{+0.8} \\ & { }_{-0.2}^{+0.8} \\ & +1.6 \\ & { }_{-0.8}^{1+.8} \\ & { }_{-0.8}^{+1.3} \end{aligned}$	$\begin{gathered} +1.2 \\ -1.3 \\ -1.7 \\ { }_{-1.7}^{+1.7} \\ { }_{-5}^{+7} \\ { }_{-5}^{+8} \\ -6 \end{gathered}$	$\begin{aligned} & +2.9 \\ & -2.8 \\ & { }_{-2.9}^{+2.9} \\ & { }_{-2.9}^{+1.8} \\ & { }_{-1.6}^{+1.6} \\ & { }_{-1.4}^{+1.6} \end{aligned}$	$\begin{aligned} & \pm 0.0 \\ & \pm 0.1 \\ & \pm 0.0 \\ & \pm 0.0 \end{aligned}$
$10 \times\left\langle P_{2}\right\rangle$	$\begin{gathered} {[0.1,1]} \\ {[0.1,2]} \\ {[2,4.3]} \\ {[1,6]} \\ \hline \end{gathered}$	$\begin{aligned} & 1.02_{-0.17}^{+0.15} \\ & 1.57_{-0.26}^{+0.19} \\ & -3.1_{-1.6}^{+1.4}+4 \\ & -1.4_{-1.5}^{+1.5} \end{aligned}$	$\begin{aligned} & { }_{-0.13}^{+0.08} \\ & { }^{2}+0.08 \\ & -0.20 \\ & +0.8 \\ & { }_{-0.8}^{+0.8} \\ & { }_{-0.7}^{+0.8} \end{aligned}$	$\begin{aligned} & +\begin{array}{l} +0.10 \\ -0.09 \\ \hline \end{array}{ }_{-0.13}^{+0.13} \\ & +1.0 \\ & { }^{+1.0} \\ & { }_{-1.2}^{+1.2} \end{aligned}$	$\begin{aligned} & +{ }_{-0.07}^{+0.08} \\ & { }_{-0.11}^{+0.10} \\ & { }^{+0.10} \\ & { }_{-0.7}^{+0.5} \\ & { }_{-0.6}^{+0.5} \end{aligned}$	$\begin{gathered} \pm 0.00 \\ \pm 0.04 \\ \pm 0.0 \\ \pm 0.0 \end{gathered}$
$10^{2} \times\left\langle P_{3}\right\rangle$	$\begin{gathered} {[0.1,1]} \\ {[0.1,2]} \\ {[2,4.3]} \\ {[1,6]} \end{gathered}$	$\begin{array}{r} -0.1_{-1.2}^{+1.5} \\ -0.2_{-1.3}^{+1.6} \\ -0.3_{-1.2}^{+1.2}+2 \\ -0.3_{-1.0}^{+1.0} \end{array}$	$\begin{aligned} & { }_{-0.2}^{+0.0} \\ & { }_{-0.2}^{+0.0} \\ & -0.2 \\ & +0.1 \\ & -0.3 \\ & { }^{+0.3} \\ & { }_{-0.3}^{+0.1} \end{aligned}$	$\begin{aligned} & { }_{-0.1}^{+0.1} \\ & { }_{-0.1}^{+0.1} \\ & { }_{-0.1}^{+0.7} \\ & -0.7 \\ & -0.8 \\ & { }_{-0.6}^{+0.6} \end{aligned}$	$\begin{aligned} & +1.5 \\ & { }_{-1.2}^{+1.5} \\ & -1.6 \\ & -1.2 \\ & +1.0 \\ & -0.9 \\ & { }^{+1.9} \\ & { }_{-0.7}^{+0.8} \end{aligned}$	$\begin{aligned} & \pm 0.0 \\ & \pm 0.0 \\ & \pm 0.0 \\ & \pm 0.0 \end{aligned}$

SJ, Martin Camalich 2012
($\mathrm{P}_{1}, \mathrm{P}_{3}$ helicity-suppressed in SM)

Error budget

Obs.	$\left[q_{\text {min }}^{2}, q_{\text {max }}^{2}\right]$	Result	Hadronic	Fact.	c-quark	Light-quark
$10^{7} \times\left\langle\frac{d \mathcal{B}}{d q^{2}}\right\rangle$	$\begin{gathered} {[0.1,1]} \\ {[0.1,2]} \\ {[2,4.3]} \\ {[1,6]} \end{gathered}$	$\begin{gathered} 0.81_{-0.20}^{+0.23} \\ 1.13_{-0.38}^{+0.39} \\ 0.62_{-0.26}^{+0.36} \\ 1.5_{-0.6}^{+0.8} \end{gathered}$	${ }_{-0.17}^{+0.20}$ ${ }^{+0.36}$ ${ }_{-0.24}^{+0.27}$ ${ }_{-0.21}^{+0.27}$ ${ }_{-0.5}^{+0.6}$ -0.0		$\begin{aligned} & +{ }_{-0.10}^{+0.10} \\ & { }^{+0.10} \\ & { }_{0}^{0.12} \\ & { }_{-0.01}^{0.02} \\ & { }_{-0.01}^{+0.05} \\ & \hline-0.05 \end{aligned}$	$\begin{aligned} & \pm 0.00 \\ & \pm 0.02 \\ & \pm 0.00 \\ & \pm 0.02 \end{aligned}$
$\left\langle F_{L}\right\rangle$	$\begin{gathered} {[0.1,1]} \\ {[0.1,2]} \\ {[2,4.3]} \\ {[1,6]} \end{gathered}$	$\begin{aligned} & 0.20_{-0.10}^{+0.11} \\ & 0.31_{-0.12}^{+0.16} \\ & 0.75_{-0.16}^{+0.11} \\ & 0.70_{-0.17}^{+0.14} \end{aligned}$	$\begin{aligned} & +{ }_{-0.09}^{+0.09} \\ & { }_{-0.11}^{+0.15} \\ & { }^{+0.010} \\ & { }_{0}^{0.13} \\ & +0.11 \\ & \hline-0.13 \end{aligned}$	$\begin{aligned} & \hline \hline-0.02 \\ & { }_{-0.02}^{+0.0} \\ & { }_{-0.04}^{+0.04} \\ & { }_{-0.9}^{+0.07} \\ & +0.09 \\ & -0.011 \end{aligned}$	$\begin{aligned} & \hline \hline{ }_{-0.02}^{+0.03} \\ & { }_{-0.03}^{+0.04} \\ & { }_{-0.02}^{+0.02} \\ & { }_{-0.02}^{+0.02} \\ & -0.02 \end{aligned}$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.01 \\ & \pm 0.00 \\ & \pm 0.00 \end{aligned}$
	$\begin{gathered} {[0.1,1]} \\ {[0.1,2]} \\ {[2,4.3]} \\ {[1,6]} \\ \hline \end{gathered}$	$\begin{gathered} 2.9_{-3.1}^{+3.2} \\ 3.0_{-3.4}^{+3.5} \\ -1.0_{-5}^{+7} \\ -2_{-6}^{+8} \\ \hline \end{gathered}$	$+{ }_{-0.1}^{+0.8}$ ${ }_{-0.2}^{+0.8}$ ${ }_{-0.6}^{+1.6}$ ${ }_{-0.8}^{+1.3}$ -0.8	$\begin{aligned} & -1.2 \\ & -1.3 \\ & \hline-1.7 \\ & -1.7 \\ & +{ }_{-7}^{7} \\ & +{ }_{-6}^{8} \\ & \hline-6 \end{aligned}$	$\begin{array}{\|c} +2.98 \\ \hline-2.9 \\ \hline-2.9 \\ \hline-1.9 \\ \hline 1.1 .6 \\ \hline \end{array}$	$\begin{aligned} & \pm 0.0 \\ & \pm 0.1 \\ & \pm 0.0 \\ & \pm 0.0 \end{aligned}$
$10 \times\left\langle P_{2}\right\rangle$	$\begin{gathered} {[0.1,1]} \\ {[0.1,2]} \\ {[2,4.3]} \\ {[1,6]} \end{gathered}$	$\begin{aligned} & 1.02_{-0.17}^{+0.15} \\ & 1.57_{-0.26}^{+0.19} \\ & -3.1-1.1 .4 \\ & -1.4_{-1.5}^{+1+1.5} \\ & \hline \end{aligned}$	$\begin{aligned} & +0.08 \\ & { }_{-0.13}^{+0.13} \\ & { }_{-0.20}^{+0.08} \\ & \hline{ }_{-0.8}^{+0.8} \\ & { }_{-0.7}^{+0.8} \\ & \hline-0.7 \end{aligned}$	$\begin{aligned} & { }_{-0.09}^{+0.10} \\ & { }_{-0.13}^{+0.13} \\ & { }^{+0.1 .0} \\ & { }_{-1.2}^{+1.2} \\ & +1.2 \\ & { }_{-1.1}^{1+2} \end{aligned}$	$\begin{aligned} & +0.08 \\ & { }_{-0.07}^{+0.07} \\ & { }_{-0.10}^{+0.10} \\ & { }_{-0.7}^{+0.5} \\ & +{ }_{-0.6}^{+0.5} \\ & \hline \end{aligned}$	$\begin{gathered} \pm 0.00 \\ \pm 0.04 \\ \pm 0.0 \\ \pm 0.0 \end{gathered}$
	$\begin{gathered} {[0.1,1]} \\ {[0.1,2]} \\ {[2,4.3]} \\ {[1,6]} \end{gathered}$	$\begin{gathered} -0.1_{-1.2}^{+1.5} \\ -0.2_{-1.3}^{+1.6} \\ -0.3_{-1.2}^{+1.2} \\ -0.3_{-1.0}^{+1.0} \\ \hline 1.0 \end{gathered}$	$\begin{gathered} { }_{-0.2}^{0.0} \\ \hline-0.0 \\ \hline 0.0 .0 \\ \hline \end{gathered}$		$\begin{aligned} & -1.5 \\ & -1.2 \\ & \hline-1.6 \\ & -1.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 0.0 \\ & \pm 0.0 \\ & \pm 0.0 \\ & \pm 0.0 \end{aligned}$

($\mathrm{P}_{1}, \mathrm{P}_{3}$ helicity-suppressed in SM)

Long-distance effects (charm loop) dominate remaining (very small) error on $\mathrm{P}_{1}, \mathrm{P}_{3}$ and are important in all observables.

Sensitivity to $\mathrm{Cl}_{7}^{\prime}($ muonic mode)

- (theoretical limit on) sensitivity to $\mathrm{Re}_{7}{ }^{\prime}$ at $<10 \%\left(\mathrm{C}_{7}{ }^{\mathrm{SM}}\right)$ level, to $\mathrm{Im} \mathrm{C}_{7}$ ' at $<1 \%$
- sensitivity stems from $\mathrm{q}^{2} \in[0.1,2] \mathrm{GeV}^{2}$. There is no need to discard the data below $1 \mathrm{GeV}^{2}$, theory is perfectly fine!
- other observables' cleanness reduced by LD effects

Electronic mode

- P_{1} and $P_{3}{ }^{C P}$ clean null test of $S M$ down to end point

Obs.	Result	Hadronic	Fact.	c-quark	Light-quark
$10^{7} \times\left\langle\frac{d \mathcal{B}}{d q^{2}}\right\rangle$	$2.43_{-0.47}^{+0.66}$	${ }_{-0.39}^{+0.50}$	${ }_{-0.05}^{+0.10}$	${ }_{-0.25}^{+0.42}$	± 0.03
$10^{2} \times\left\langle P_{1}\right\rangle$	$2.7_{-2.7}^{+3.0}$	${ }_{-0.1}^{+0.8}$	${ }_{-1.2}^{+1.0}$	${ }_{-2.3}^{+2.7}$	± 0.0

- Statistical advantage over muonic mode from closeness to photon pole - offsets in part experimental difficulty

Electronic mode

- P_{1} and $P_{3}{ }^{C P}$ clean null test of $S M$ down to end point

Obs.	Result	Hadronic	Fact.	c-quark	ont-qua	
$10^{7} \times\left\langle\frac{d \mathcal{B}}{d q^{2}}\right\rangle$	$2.43_{-0.47}^{+0.66}$	${ }_{-0.39}^{+0.50}$	$\begin{aligned} & { }_{-0.05}^{+0.10} \end{aligned}$	$\begin{aligned} & { }_{-0.25}^{+0.42} \end{aligned}$	± 0.03	
$\mathcal{B}\left(B^{0} \rightarrow K^{* 0} e^{+} e^{-}\right)^{30-1000 ~ M e V / c^{2}}=\left(3.1_{-0.8}^{+0.9}{ }_{-0.3}^{+0.2} \pm 0.2\right) \times 10^{-7}$ LHCb, Moriond 2013						

- Statistical advantage over muonic mode from closeness to photon pole - offsets in part experimental difficulty

LHCb anomaly

Measurement of Form-Factor-Independent Observables in the Decay $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$

R. Aaij et al. *
(LHCb Collaboration)
(Received 9 August 2013; published 4 November 2013)

We present a measurement of form-factor-independent angular observables in the decay $B^{0} \rightarrow K^{*}(892)^{0} \mu^{+} \mu^{-}$. The analysis is based on a data sample corresponding to an integrated luminosity of $1.0 \mathrm{fb}^{-1}$, collected by the LHCb experiment in $p p$ collisions at a center-of-mass energy of 7 TeV . Four observables are measured in six bins of the dimuon invariant mass squared q^{2} in the range $0.1<q^{2}<19.0 \mathrm{GeV}^{2} / c^{4}$. Agreement with recent theoretical predictions of the standard model is found for 23 of the 24 measurements. A local discrepancy, corresponding to 3.7 Gaussian standard deviations is observed in one q^{2} bin for one of the observables. Considering the 24 measurements as independent, the probability to observe such a discrepancy, or larger, in one is 0.5%.

DOI: 10.1103/PhysRevLett.111.191801 PACS numbers: 13.20.He, 11.30.Rd, 12.60.-i

Descotes-Genon, Matias, Virto e PRD 88,074002 claim 3.9 global
further model-independent fits: Altmannshofer\&Straub; Beaujean, Bobeth, van Dyk
interpretation in NP models: Altmannshofer\&Straub, Gauld,Goertz,Haisch; Buras\&Girrbach; Buras, DeFazio, Girrbach
(see talk W Altmannshofer)

LHCb anomaly

Measurement of Form-Factor-Independent Observables in the Decay $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$

R. Aaij et al. ${ }^{*}$
(LHCb Collaboration)
(Received 9 August 2013; published 4 November 2013)

We present a measurement of form-factor-independent angular observables in the decay $B^{0} \rightarrow K^{*}(892)^{0} \mu^{+} \mu^{-}$. The analysis is based on a data sample corresponding to an integrated luminosity of $1.0 \mathrm{fb}^{-1}$, collected by the LHCb experiment in $p p$ collisions at a center-of-mass energy of 7 TeV . Four observables are measured in six bins of the dimuon invariant mass squared q^{2} in the range $0.1<q^{2}<19.0 \mathrm{GeV}^{2} / c^{4}$. Agreement with recent theoretical predictions of the standard model is found for 23 of the 24 measurements. A local discrepancy, corresponding to 3.7 Gaussian standard deviations is observed in one q^{2} bin for one of the observables. Considering the 24 measurements as independent, the probability to observe such a discrepancy, or larger, in one is 0.5%.

DOI: 10.1103/PhysRevLett.111.191801 PACS numbers: 13.20.He, 11.30.Rd, 12.60.-i

Descotes-Genon, Matias, Virto e PRD 88,074002 claim 3.9 global
further model-independent fits: Altmannshofer\&Straub; Beaujean, Bobeth, van Dyk
interpretation in NP models: Altmannshofer\&Straub, Gauld,Goertz,Haisch; Buras\&Girrbach; Buras, DeFazio, Girrbach

LHCb anomaly

Measurement of Form-Factor-Independent Observables in the Decay $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$

R. Aaij et al. *
(LHCb Collaboration)
(Received 9 August 2013; published 4 November 2013)

We present a measurement of form-factor-independent angular observables in the decay $B^{0} \rightarrow K^{*}(892)^{0} \mu^{+} \mu^{-}$. The analysis is based on a data sample corresponding to an integrated luminosity of $1.0 \mathrm{fb}^{-1}$, collected by the LHCb experiment in $p p$ collisions at a center-of-mass energy of 7 TeV . Four observables are measured in six bins of the dimuon invariant mass squared q^{2} in the range $0.1<q^{2}<19.0 \mathrm{GeV}^{2} / c^{4}$. Agreement with recent theoretical predictions of the standard model is found for 23 of the 24 measurements. A local discrepancy, corresponding to 3.7 Gaussian standard deviations is observed in one q^{2} bin for one of the observables. Considering the 24 measurements as independent, the probability to observe such a discrepancy, or larger, in one is 0.5%.

DOI: 10.1103/PhysRevLett.111.191801 PACS numbers: 13.20.He, 11.30.Rd, 12.60.-i

Descotes-Genon, Matias, Virto e PRD 88,074002 claim 3.9 global
further model-independent fits: Altmannshofer\&Straub; Beaujean, Bobeth, van Dyk
interpretation in NP models: Altmannshofer\&Straub, Gauld,Goertz,Haisch; Buras\&Girrbach; Buras, DeFazio, Girrbach

BSM physics?
(see talk W Altmannshofer)
Let's check.

P_{5} ' "anomaly"

$$
\left\langle P_{5}^{\prime}\right\rangle=\frac{\left\langle\beta\left(\operatorname{Re}\left[\left(H_{V}^{-}-H_{V}^{+}\right) H_{A}^{0 *}+\left(H_{A}^{-}-H_{A}^{+}\right) H_{V}^{0 *}\right)\right\rangle\right.}{\sqrt{\left.\left.\left.\left\langle\beta^{2}\right| H_{V}^{0}\right|^{2}+\left|H_{A}^{0}\right|^{2}\right)\right\rangle\left\langle\beta^{2}\left(\left|H_{V}^{+}\right|^{2}+\left|H_{V}^{-}\right|^{2}+\left|H_{A}^{+}\right|^{2}+\left|H_{A}^{-}\right|^{2}\right)\right\rangle}}
$$

CERN Courier, December 2013

Whence the big difference in error estimate?

Differences in treatment

- DMV employ ad hoc 10\% (multiplicative) power correction at amplitude level, not per form factor [less conservative]
- DMV (essentially) add in quadrature, we scan over theory ranges for 3 groups of inputs, final error in quadrature

The pros and cons of different statistical treatments are discussed elsewhere.

Instead, I will simply illustrate the strong sensitivity of P_{5} ' to small power corrections, which is irrespective of a statistical treatment.

Moreover, I will not consider the [4.3 .. 8.68] GeV² bin in the following, which extends above the perturbative charm threshold into the resonance region. LD charm treatment is totally unreliable there. Consider published $1 . .6 \mathrm{GeV}^{2}$ data instead.

$P_{5}{ }^{\prime}$ parametric dependence

plot in plane of two of the power correction parameters
relating to V_{+}and $\mathrm{V}_{\text {-, }}$ respectively
(there are 10 power-

~ +/- 0.03 for either power correction parameter corresponds to a 10% power correction

Drawing conclusions based on this observable requires a high degree of trust in one's modelling of power corrections... or accuracy of widely employed LCSR estimates

Analytic approximations

IF

- neglecting power corrections
- neglecting perturbative QCD corrections in heavy-quark limit
- neglecting the helicity-+ amplitudes [given the other two assumptions, this just means neglecting m_{s} on top]

THEN

binned $\longrightarrow\left\langle P_{5}^{\prime}\right\rangle=C_{10} \frac{\left\langle\beta f_{1}\left[\tilde{C}_{9}^{-}+\tilde{C}_{9}^{0}\right]\right\rangle}{\sqrt{\left\langle\beta^{2} f_{2}\left(\left[\tilde{C}_{9}^{0}\right]^{2}+C_{10}^{2}\right)\right\rangle\left\langle\tilde{\beta}^{2} f_{3}\left(\left[\tilde{C}_{9}^{-}\right]^{2}+C_{10}^{2}\right)\right\rangle}}$

$$
\begin{aligned}
& f_{1}=\left(1-q^{2} / m_{B}^{2}\right)^{-5}, \quad f_{2}=\left(1-q^{2} / m_{B}^{2}\right)^{-6}, \quad f_{3}=\left(1-q^{2} / m_{B}^{2}\right)^{-4} \\
& \tilde{C}_{9}^{ \pm}=C_{9}^{\mathrm{eff}}\left(q^{2}\right)+\frac{2 m_{b} m_{B}}{q^{2}} C_{7}^{\mathrm{eff}}, \quad \tilde{C}_{9}^{0}=C_{9}^{\mathrm{eff}}\left(q^{2}\right)+\frac{m_{b} \sqrt{\lambda\left(m_{B}^{2}, m_{\left.K^{*}, q^{2}\right)}^{2}\right.}}{m_{B}^{2} q^{2}} C_{7}^{\mathrm{eff}}
\end{aligned}
$$

C_{7} and C_{9} have opposite sign destructive interference enhances vulnerability to anything that violates the large-energy form factor relations

Conciusion

Rare semileptonic $\mathrm{B} \rightarrow \mathrm{V}$ II is a rich probe of BSM physics.
It is also complex from a SM QCD point of view, involving many hierarchies and nonperturbative parameters

Excellent sensitivity to "magnetic" photon-induced effects remains upon taking into account all theory uncertainties if one goes to the very low end of the dilepton invariant mass distribution; there is no case for cutting at $1 \mathrm{GeV}^{2}$

The P_{5} ' (and similar) SM predictions are very sensitive to even small-size power corrections.
Need to take into account properly in phenomenology, or in calculating p-values!

Helicity amplitudes

decompose amplitude in lepton currents \& "dilepton helicity"

$$
\begin{aligned}
\mathcal{A}= & -\sum_{\lambda= \pm 1,0} \mathcal{L}_{V}(\lambda) H_{V}(\lambda)-\sum_{\lambda= \pm 1,0} \mathcal{L}_{A}(\lambda) H_{A}(\lambda)+L_{S} H_{S}+L_{P} H_{P} \\
& -\sum_{\lambda= \pm 1,0} \mathcal{L}_{T L}(\lambda) H_{T L}(\lambda)-\sum_{\lambda= \pm 1,0} \mathcal{L}_{T R}(\lambda) H_{T R}(\lambda),
\end{aligned}
$$

$\mathcal{L}_{V}(\lambda)=\epsilon_{\mu}(\lambda) \bar{L}_{V}^{\mu}$,		
$\mathcal{L}_{A}(\lambda)=\epsilon_{\mu}(\lambda) L_{A}^{\mu}$,		
$\mathcal{L}_{T L}(\lambda)=\epsilon_{\mu}(\lambda) L_{T L}^{\mu}$,	$L_{V}^{\mu}=\left\langle\ell^{+} \ell^{-}\right\| \bar{l} \gamma^{\mu} l\|0\rangle$,	$L_{A}^{\mu}=\left\langle\ell^{+} \ell^{-}\right\| \bar{l} \gamma^{\mu} \gamma^{5} l\|0\rangle$,
$\mathcal{L}_{T R}(\lambda)=\epsilon_{\mu}(\lambda) L_{T R}^{\mu}$,	$\left.L_{S}=\left\langle\ell^{+} \ell^{-}\right\| \bar{l}\| \| 0\right\rangle$,	$L_{P}=\left\langle\ell^{+} \ell^{-}\right\| \bar{l} \gamma^{5} l\|0\rangle$,
$\mathcal{L}_{S}=L_{S}$	$L_{T L}^{\mu}=\frac{i}{\sqrt{q^{2}}}\left\langle\ell^{+} \ell^{-}\right\| q_{\nu} \bar{l}^{\mu \nu} P_{L} l\|0\rangle,$	$L_{T R}^{\mu}=\frac{i}{\sqrt{q^{2}}}\left\langle\ell^{+} \ell^{-}\right\| q_{\nu} \bar{l} \sigma^{\mu \nu} P_{R} l\|0\rangle$
$\mathcal{L}_{P}=L_{P}$		

most of the literature employs transversity amplitudes

$$
\begin{aligned}
& A_{\| L(R)}=\frac{1}{\sqrt{2}}\left(H_{+1, L(R)}+H_{-1, L(R)}\right), \quad A_{\perp L(R)}=\frac{1}{\sqrt{2}}\left(H_{+1, L(R)}-H_{-1, L(R)}\right) \\
& H_{\lambda L / R}=i \sqrt{f} \frac{1}{2}\left(H_{V}(\lambda) \mp H_{A}(\lambda)\right), \quad A_{t}=i \frac{\sqrt{q^{2}}}{2 m_{\ell}} \sqrt{f} H_{P}, \quad A_{S}=-i \sqrt{f} H_{S}
\end{aligned}
$$

Helicity amplitudes

express in terms of Wilson coefficients, form-factors and a nonlocal operator product

$$
\begin{aligned}
& H_{A}(\lambda)=N\left(C_{10 A} \tilde{V}_{L \lambda}+C_{10 A}^{\prime} \tilde{V}_{R \lambda}\right), \\
& H_{T R}(\lambda)=N \frac{4 \hat{m}_{b} m_{B}}{m_{W} \sqrt{q^{2}}} C_{T} \tilde{T}_{L \lambda}, \\
& H_{T L}(\lambda)=N \frac{4 \hat{m}_{b} m_{B}}{m_{W} \sqrt{q^{2}}} C_{T}^{\prime} \tilde{T}_{R \lambda}, \quad \quad \text { (drop tensor amplitudes } \mathrm{H}_{T L}, \mathrm{H}_{T \mathrm{R}} \text { in the following) } \\
& H_{S}=-N \frac{\hat{m}_{b}}{m_{W}}\left(C_{S} \tilde{S}_{L}+C_{S}^{\prime} \tilde{S}_{R}\right), \\
& H_{P}=-N\left\{\frac{\hat{m}_{b}}{m_{W}}\left(C_{P} \tilde{S}_{L}+C_{P}^{\prime} \tilde{S}_{R}\right)\right. \\
& \left.+\frac{2 m_{l} \hat{m}_{b}}{q^{2}}\left[C_{10 A}\left(\tilde{S}_{L}-\frac{m_{s}}{m_{b}} \tilde{S}_{R}\right)+C_{10 A}^{\prime}\left(\tilde{S}_{R}-\frac{m_{s}}{m_{b}} \tilde{S}_{L}\right)\right]\right\} \\
& H_{V}(\lambda)=N\left\{C_{9 V} \tilde{V}_{L \lambda}+C_{9 V}^{\prime} \tilde{V}_{R \lambda}-\frac{m_{B}^{2}}{q^{2}}\left[\frac{2 \hat{m}_{b}}{m_{B}}\left(C_{7 \gamma} \tilde{T}_{L \lambda}+C_{7 \gamma}^{\prime} \tilde{T}_{R \lambda}\right)-16 \pi h_{\lambda}\right)\right\} \\
& \text { only } 3 \text { helicity amplitudes are } \\
& h_{\lambda} \equiv \frac{i}{m_{B}^{2}} \epsilon^{\mu *}(\lambda) a_{\mu}^{\mathrm{had}} \\
& \text { sensitive to non-(naively-)factorizing } \\
& \text { long-distance physics } \\
& \frac{e^{2}}{q^{2}} L_{V}^{\mu} a_{\mu}^{\mathrm{had}}=-i \frac{e^{2}}{q^{2}} \int d^{4} x e^{-i q \cdot x}\left\langle\ell^{+} \ell^{-}\right| j_{\mu}^{\mathrm{em}, \text { lept }}(x)|0\rangle \int d^{4} y e^{i q \cdot y}\langle M| j^{\mathrm{em}, \text { had }, \mu}(y) \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}}(0)|\bar{B}\rangle
\end{aligned}
$$

form factors and non-factorizable contributions control theory errors $n b-$ often transversity amplitudes are used, e.g. $\mathrm{H}_{v}(+) \propto A_{\| l, L}+A_{l \|, R}+A_{T, L}+A_{T, R} \quad$ (all LD sensitive)

Form factors

Helicity amplitudes naturally involve helicity form factors

$$
\begin{aligned}
-i m_{B} \tilde{V}_{L(R) \lambda}\left(q^{2}\right) & =\langle M(\lambda)| \bar{s} \epsilon^{*}(\lambda) P_{L(R)} b|\bar{B}\rangle \\
m_{B}^{2} \tilde{T}_{L(R) \lambda}\left(q^{2}\right) & =\epsilon^{* \mu}(\lambda) q^{\nu}\langle M(\lambda)| \bar{s} \sigma_{\mu \nu} P_{R(L)} b|\bar{B}\rangle \\
i m_{B} \tilde{S}_{L(R)}\left(q^{2}\right) & =\langle M(\lambda=0)| \bar{s} P_{R(L)} b|\bar{B}\rangle
\end{aligned}
$$

(\& rescale $\lambda=0$ form factors by kinematic factor.)
Can be expressed in terms of traditional "transversity" FFs

$$
\begin{aligned}
V_{ \pm}\left(q^{2}\right) & =\frac{1}{2}\left[\left(1+\frac{m_{V}}{m_{B}}\right) A_{1}\left(q^{2}\right) \mp \frac{\lambda^{1 / 2}}{m_{B}\left(m_{B}+m_{V}\right)} V\left(q^{2}\right)\right], \\
V_{0}\left(q^{2}\right) & =\frac{1}{2 m_{V} \lambda^{1 / 2}\left(m_{B}+m_{V}\right)}\left[\left(m_{B}+m_{V}\right)^{2}\left(m_{B}^{2}-q^{2}-m_{V}^{2}\right) A_{1}\left(q^{2}\right)-\lambda A_{2}\left(q^{2}\right)\right] \\
T_{ \pm}\left(q^{2}\right) & =\frac{m_{B}^{2}-m_{V}^{2}}{2 m_{B}^{2}} T_{2}\left(q^{2}\right) \mp \frac{\lambda^{1 / 2}}{2 m_{B}^{2}} T_{1}\left(q^{2}\right), \\
T_{0}\left(q^{2}\right) & =\frac{m_{B}}{2 m_{V} \lambda^{1 / 2}}\left[\left(m_{B}^{2}+3 m_{V}^{2}-q^{2}\right) T_{2}\left(q^{2}\right)-\frac{\lambda}{\left(m_{B}^{2}-m_{V}^{2}\right)} T_{3}\left(q^{2}\right)\right], \\
S\left(q^{2}\right) & =A_{0}\left(q^{2}\right),
\end{aligned}
$$

The form factors satisfy two exact relations:

$$
\begin{aligned}
T_{+}\left(q^{2}\right. & =0) \\
S\left(q^{2}=0\right) & =V_{0}(0)
\end{aligned}
$$

note - M can be multiparticle state. Eg for a two-pseudoscalar state

$$
\begin{aligned}
\tilde{V}_{L \lambda} & =-\eta(-1)^{L} \tilde{V}_{R,-\lambda} \equiv \tilde{V}_{\lambda}, & & \mathrm{L}=\text { angular momentum } \\
\tilde{T}_{L \lambda} & =-\eta(-1)^{L} \tilde{T}_{R,-\lambda} \equiv \tilde{T}_{\lambda}, & & \eta=\text { intrinsic parity } \\
\tilde{S}_{L} & =-\eta(-1)^{L} \tilde{S}_{R} \equiv \tilde{S}, & & + \text { invariant mass dependence }
\end{aligned}
$$

Large-energy relations

- At small q^{2} (energetic hadronic final state) one has, üp to corrections $O\left(1 / \mathrm{m}_{\mathrm{b}}\right)$, the relations

$$
\begin{aligned}
T_{-} & =\frac{2 E}{m_{B}} \xi_{\perp}, \\
T_{+} & =0, \\
T_{0} & =\frac{E}{m_{K^{*}}} \xi_{\|}\left(1+\frac{\alpha_{s} C_{F}}{4 \pi}\left[\ln \frac{m_{b}^{2}}{\mu^{2}}-2+4 L\right]\right)+\frac{\alpha_{s} C_{F}}{4 \pi} \Delta T_{0}, \\
V_{-} & =\frac{2 E}{m_{B}} \xi_{\perp}\left(1+\frac{\alpha_{s} C_{F}}{4 \pi}\left[\ln \frac{\mu^{2}}{m_{b}^{2}}+L\right]\right)+\frac{2 E}{m_{B}+m_{K^{*}}} \frac{\alpha_{s} C_{F}}{4 \pi} \Delta V: \\
V_{+} & =0, \\
V_{0} & =\frac{E}{m_{K^{*}}} \xi_{\|}\left(1+\frac{\alpha_{s} C_{F}}{4 \pi}[-2+2 L]\right)+\frac{\alpha_{s} C_{F}}{4 \pi} \Delta V_{0},
\end{aligned}
$$

- The "soft" form factors $\xi_{\perp} \xi_{\|}$are ambiguous at $\mathrm{O}\left(1 / \mathrm{m}_{\mathrm{b}}\right)$

We define ξ_{\perp} such that the first equation holds exactly, and $\xi_{\|}$in terms of the "full-QCD" form factor A_{0}.

- $\mathrm{T}_{+}=\mathrm{V}_{+}=0$ at leading power, to all orders (V-A structure)
- Calculable higher-order corrections to eqns 3, 4, and 6

Comparison of FF predictions

- parameterize form factor power corrections as

$$
F^{\text {p.c. }}=a_{F}+b_{F} \frac{q^{2}}{m_{B}^{2}}+\mathcal{O}\left(\left(\frac{q^{2}}{m_{B}^{2}}\right)^{2} ; \Lambda^{2} / m_{b}^{2}\right)
$$

for phenomenology, will take $a_{F}, b_{F}=$ spread of th. predictions (in absence of dedicated calculations!)

observed behaviour consistent with expectations

"narnn oon

(which goes into h_{λ})

LCSR for $\langle M(k, \lambda)| \tilde{\mathcal{O}}_{\mu}|\bar{B}\rangle$

to estimate the matrix element, use light-cone QCD sum rules
Khodjamirian et al 2010

$$
\begin{aligned}
& \mathcal{F}_{\nu \mu}^{(B \rightarrow K)}(p, q)=i \int d^{4} y e^{i p \cdot y}\langle 0| T\left\{j_{\nu}^{K}(y) \widetilde{\mathcal{O}}_{\mu}(q)\right\}|B(p+q)\rangle \\
& \text { insert } \downarrow \text { complete set of hadronic states } \\
& \text { light-cone expansion } \\
& \text { (} p^{2} \sim-1 \mathrm{GeV}^{2} \text { Euclidean, } \\
& \text { far below } \mathrm{K}^{*} \text { threshold) } \\
& \underset{\mathcal{F}_{\nu \mu}^{(B \rightarrow K)}}{\nabla^{\prime}}(p, q)=\frac{i f_{K} p_{\nu}}{m_{K}^{2}-p^{2}}\left[(p \cdot q) q_{\mu}-q^{2} p_{\mu}\right)\left(\tilde{\mathcal{A}}\left(q^{2}\right)+\int_{s_{h}}^{\infty} d s \frac{\tilde{\rho}_{\nu \mu}\left(s, q^{2}\right)}{s-p^{2}}\right.
\end{aligned}
$$

evaluate perturbatively as

LCSR for $\langle M(k, \lambda)| \tilde{\mathcal{O}}_{\mu}|\bar{B}\rangle$

- Only numerical results given in Khodiamirian et al 2010 expressed in terms of effective shift of C_{9}

$$
\Delta C_{9}^{\left(\bar{c} c, B \rightarrow K^{*}, \mathcal{M}_{i}\right)}\left(q^{2}\right)=\left(C_{1}+3 C_{2}\right) g\left(m_{c}^{2}, q^{2}\right)+2 C_{1} \widetilde{g}^{\left(\bar{c} c, B \rightarrow K^{*}, \mathcal{M}_{i}\right)}\left(q^{2}\right)
$$

$\tilde{g}^{\left(\bar{c} c, B \rightarrow K^{*}, M_{1}\right)}$	$\tilde{g}^{\left(\bar{c} c, B \rightarrow K^{*}, M_{2}\right)}$	$\tilde{g}^{\left(\bar{c} c, B \rightarrow K^{*}, M_{3}\right)}$
0.26	0.27	0.46
-0.08	-0.09	-0.15
-0.04 +0.07	$\begin{aligned} & -0.04 \\ & +0.08 \end{aligned}$	$\begin{aligned} & -0.07 \\ & +0.12 \end{aligned}$
${ }_{-0.17}^{+0.30}$	$\begin{aligned} & +0.36 \\ & { }_{-0.18} \end{aligned}$	$\begin{aligned} & +0.75 \\ & { }_{-0.33} \end{aligned}$
+0.31 +0.19	$\begin{aligned} & +0.37 \\ & { }_{-0.21} \end{aligned}$	$\begin{aligned} & +0.76 \\ & { }_{-0.37} \end{aligned}$
contributing to transversity amplitudes $\left(\mathrm{H}^{+}+/-\mathrm{H}^{-}\right)$		

However, coincidence of central values and error ranges suggest
possibility of cancellations
numerical results contibution to H^{+}, H^{-}at $\mathrm{O}(8-10 \%)$ of leading-power contribution to H^{-}, significantly contaminating "clean"observables.
dedicated consideration of helicity amplitudes needed

LCSR for $\langle M(k, \lambda)| \tilde{\mathcal{O}}_{\mu}|\bar{B}\rangle$

- obtain LCSR directly for helicity amplitudes

SJ, Martin Camalich 2012
(also for helicity-+ form factors!)

$$
G_{h \lambda}\left(q^{2} ; k^{2}\right)=-i \int d^{4} y e^{i k y}\langle 0| T\{\underbrace{\epsilon^{\nu *}(\hat{z} ; \lambda) j_{\nu}^{K^{*}}(y)}_{q})=\xi^{\mu *}(-\hat{z} ; \lambda) \tilde{O}_{\mu}(0)\}|B\rangle
$$

light-cone OPE
key: project out helicities through interpolating current
operator defining 3-particle B-meson LCDA

Prior art - B->K*Y

$$
\begin{aligned}
\mathcal{A}(\bar{B} \rightarrow V(\lambda) \gamma(\lambda)) & =\lim _{q^{2} \rightarrow 0} \frac{q^{2}}{e} H_{V}\left(q^{2}=0 ; \lambda\right) \\
& =\frac{i N m_{B}^{2}}{e}\left[\frac{2 \hat{m}_{b}}{m_{B}}\left(C_{7} \tilde{T}_{\lambda}(0)-C_{7}^{\prime} \tilde{T}_{-\lambda}\right)(0)-16 \pi^{2} h_{\lambda}\left(q^{2}=0\right)\right]
\end{aligned}
$$

(only $\lambda=+/-1$)
earlier estimates of $h_{\lambda}(0)$
numerically small effect for both helicities

Ball, Jones, Zwicky 2006
also Muheim, Xie, Zwicky 2008

First ref employs expansion of \tilde{O}_{μ} in local operators, truncated after leading term.
However, neglected higher-dimensional operator matrix elements scale like $\mathrm{m}_{\mathrm{B}}{ }^{2} /\left(4 \mathrm{~m}_{\mathrm{c}}{ }^{2}\right)$. This is different from a somewhat analogous expansion in $B->X_{s}$ gamma where the scaling is like $m_{B} \Lambda /\left(4 m_{c}{ }^{2}\right)$ giving a reasonable expansion parameter

Second ref only gives numerical result, which relies on unpublished result - cannot assess.

CP asymmetries

- LHCb has reported a large value of the (angular-integrated) CP asymmetry, particularly in the [0.1, 2] GeV^{2} bin

- Large direct CP asymmetries cannot arise in a partonic description (small strong phases, strong CKM hierarchy)
- Resonance model provides large strong phases. Cannot explain the central value, but shows Acp long-distance sensitive. Improved models? Eg Khodjamirian etal 2012
- Conversely the CP-asymmetric angular observable $\mathrm{P}_{3} \mathrm{CP}$ is another clean null test of the SM.

LCSR for $\langle M(k, \lambda)| \tilde{\mathcal{O}}_{\mu}|\bar{B}\rangle$

- obtain LCSR directly for helicity amplitudes

reduce estimate for long-distance charm-loop 10\% -> 2\% in $\mathrm{H}_{\mathrm{v}^{+}}$

