New QCD-like strong interactions and the $t\bar{t}$ forward-backward asymmetry

Alex Kagan

with Joachim Brod, Jure Drobnak, Emmanuel Stamou, Jure Zupan

Aspen, January 2014

Plan

Introduction

- $t\bar{t}$ asymmetry measurements vs. SM predictions
- weak scale flavor symmetric vectors
- A_C vs. A_{FB}
- A QCD-like strong interaction realization J. Brod, J. Drobnak, A.K., E. Stamou, J. Zupan, to appear
 - the UV model
 - the weak scale resonances
 - phenomenology

Experiment vs SM

For $M_{t\bar{t}} > 450$ GeV CDF measures (lepton+jets):

$$A_{FB}^{t\bar{t}} = \frac{\sigma_F^{SM} + \sigma_F^{NP} - \sigma_B^{SM} - \sigma_B^{NP}}{\sigma_F^{SM} + \sigma_F^{NP} + \sigma_B^{SM} + \sigma_B^{NP}} = 0.295 \pm 0.066$$

SM NLO prediction for $M_{t\bar{t}} > 450$ GeV: Bernreuther, Si

$$A_{FB}^{t\bar{t}}$$
 (NLO) = 0.129^{+0.008}_{-0.006} 2.4 σ discrepancy

SM prediction decreases by $\sim 30\%$ for $\sigma_{\rm NLO}^{t\bar{t}}$ in the denominator

For $M_{t\bar{t}} < 450$ GeV CDF measures:

 $A_{FB}^{t\bar{t}} = 0.084 \pm 0.053$ consistent with SM

D0 does not see a significant $M_{t\bar{t}}$ dependence (not unfolded)

Inclusive $A_{FB}^{\bar{t}t}$ measurements (lepton + jets):

CDF:

$$A_{FB}^{tt} = 0.196 \pm 0.065 \text{ (D0)}, \quad 0.164 \pm 0.045 \text{ (CDF)}$$

 $A_{FB}^{\bar{t}t}$ (exp avg) = 0.174±0.037 vs. $A_{FB}^{\bar{t}t}$ (NLO SM) = 0.088±0.006

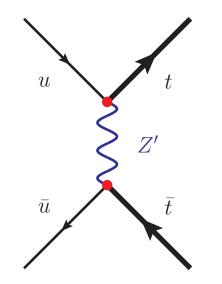
The charge asymmetry A_C at the LHC

- the LHC is a symmetric collider (*P*-invariant) therefore $A_{FB}^{\bar{t}t} = 0$.
- can define a charge asymmetry using rapidity differences, which can access the physics responsible for $A_{FB}^{\bar{t}t}$ at the Tevatron:

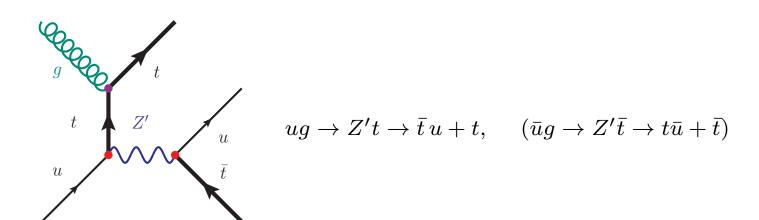
$$A_{C} = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) - N(\Delta|y| < 0)}$$

 $\Delta |y| = |y_t| - |y_{\bar{t}}|$

- If the dilution due to large $gg \to t\bar{t}$ means A_C is much smaller than $A_{FB}^{\bar{t}t}$.
- Experiment and SM theory are consistent


 $\sqrt{s} = 7 \text{ TeV}: \quad A_C^{\text{exp avg}} = 1.0 \pm 0.8\% \text{ (CMS + ATLAS, semileptonic + dileptons)}, \\ A_C = 1.23 \pm 0.05\% \text{ (NLO SM)}$

 $\sqrt{s} = 8 \text{ TeV}: A_C = 0.5 \pm 0.9\%$ (CMS, semileptonic), $1.11 \pm 0.04\%$ (NLO SM)


Low mass vector t-channel explanations

appealing features:

- Z' with mass of a few hundred GeV and $O(1) Z' u_R t_R$ coupling yields large $A_{FB}^{t\bar{t}}$ Jung, Murayama, Pierce, Wells '10
 - t-channel top production more forward with increasing $M_{t\bar{t}}$
- simultaneously, good agreement with CDF measured spectrum at large $M_{t\bar{t}}$ Gresham, Kim, Zurek '11; Jung, Pierce, Wells '11
 - CDF's acceptance decreases rapidly at large rapidity

correlation between NP enhancement of A_{FB} and A_c is broken J. Drobniak, A.K., J. Kamenik, G. Perez, J. Zupan; Alvarez, Leskow

for ug process Z' gets a boost due to larger momentum of u than g,

 \Rightarrow boosted \bar{t} relative to t, opposite to what happens in $u\bar{u} \rightarrow t\bar{t}$

```
\Rightarrow large negative contribution to A_C is possible
```

issues:

- **Solution** same sign top production $uu \rightarrow tt$, if Z' is self-conjugate
- \blacktriangleright $D-\bar{D}$ mixing: why is (Z'-u-c) << (Z'-u-t)
 - both problems solved if Z' is part of a vector flavor multiplet Grinstein, AK, Trott, Zupan

contribution to $\sigma_{t\bar{t}}$ at LHC via single light mediator decay Gresham, Kim, Zurek

$$gq \to t + (Z' \to \bar{t}q)$$

LHC bounds on top+jet resonance production

- both problems solved if $Br(Z' \to \bar{t}q)$ is suppressed, requires additional dominant Z' decay mode
- $m_{Z'} \sim 200$ GeV and $Br(Z' \to \bar{t}q) \sim 0.25$ compatible with large decrease in A_C , e.g. from $A_C = 0.03$ to 0.01
- additional $t + (Z' \rightarrow \overline{t}j)$ production maintains consistency with CMS measurements of jet multiplicity distribution in $t\overline{t}$ events Drobnak, AK, Kamenik, Perez, Zupan

Phenomenological flavor symmetric vector models

Simplest viable possibilities are $U(3)_{U_R}$ or $U(2)_{U_R}$ flavor octet color singlet vectors coupling only to RH up quarks

$$\mathcal{L} = \lambda \, \bar{u}_R \, \gamma^\mu \, V_\mu \, u_R$$

•
$$V_{\mu} = V_{\mu}^{A} T^{A}$$

 $t - channel \quad \frac{1}{\sqrt{2}} \left(V_{\mu}^{4} - i V_{\mu}^{5} \right) (\bar{t}_{R} \gamma^{\mu} u_{R}) + h.c. \quad "K^{*}"$
 $s - channel \quad \frac{1}{\sqrt{6}} V_{\mu}^{8} \left(\bar{u}_{R} \gamma^{\mu} u_{R} + \bar{c}_{R} \gamma^{\mu} c_{R} - 2 \bar{t}_{R} \gamma^{\mu} t_{R} \right) \quad "\Phi/\omega"$

 $\Rightarrow t\bar{t}$ production t-channel dominated

Strong interaction realization

Why strong interactions?

- two renormalizable options for UV completions
 - Iocal horizontal symmetry flavor gauge bosons (FGB's)
 - composite vector meson flavor multiplets
- but sub-TEV FGB models problematic for FCNCs
- Composite vector mesons naturally have new dominant channels for decay: $V \to PP$, e.g. $\rho \to \pi\pi$, $K^* \to K\pi$
 - **•** required in low scale *t*-channel models: LHC $t\bar{t}$ xsec,...
 - favored by dijet constraints

The set-up

- a scaled up copy of QCD with three light flavors, with an additional heavy flavor scalar quark
- symptotically free $SU(3)_{HC}$ "hypercolor" gauge interaction, chiral symmetry breaking scale $\Lambda_{HC} \sim 250$ GeV

• with $SU(2)_L$ singlet matter content:

- color singlet flavor triplet hypercolor quarks $(Q_{L_i}, Q_{R_i}), i = u, c, t$
- **\square** color triplet, flavor singlet hypercolor scalar S
- transformations under $SU(3)_{HC} \times SU(3)_C \times SU(2)_L \times U(1)_Y$

 $Q_{L_i,R_i}(3,1,1,0), \quad S(\bar{3},3,1,2/3)$

Lagrangian:

$$\mathcal{L}_{NP} = \mathbf{h}_{ij} \, \bar{u}_{Ri} \, \mathcal{Q}_{Lj} \, \mathcal{S} + h.c. + \mathbf{m}_{\mathcal{Q}_{ij}} \, \bar{\mathcal{Q}}_i \, \mathcal{Q}_j + m_{\mathcal{S}}^2 |\mathcal{S}|^2$$

 u_{Ri} are the usual RH up quarks (u_R, c_R, t_R) ,

impose global U(2) flavor symmetry: (u_R, c_R) and $(\mathcal{Q}_u, \mathcal{Q}_c)$ transform as doublets

 $\Rightarrow \mathbf{h} = \operatorname{diag}(h_1, h_1, h_3), \quad \mathbf{m}_{\mathcal{Q}} = \operatorname{diag}(m_{\mathcal{Q}_1}, m_{\mathcal{Q}_1}, m_{\mathcal{Q}_3})$

- HC sector only couples to RH up quarks due to hypercharge assignments for Q, S \Rightarrow do not single out RH up quarks directly for special treatment
- Spontaneous breaking of U(2) or $U(2)^3$ flavor symmetry in the UV could generate the usual quark Yukawa hierarchies via Frogatt-Nielsen type mechanism
- At the weak scale would have SM + flavor symmetric HC sector remnant

$$\mathcal{L}_{NP} = h_i \ \bar{u}_{Ri} \ \mathcal{Q}_{Li} \ \mathcal{S} + h.c. + m_{\mathcal{Q}_i} \ \bar{\mathcal{Q}}_i \ \mathcal{Q}_i + m_{\mathcal{S}}^2 |\mathcal{S}|^2$$

UV parameters

$$h_i \sim 3, \ m_{\mathcal{Q}_1} \sim 3 \ \text{GeV}, \ m_{\mathcal{Q}_3} \sim 30 \ \text{GeV}, \ m_{\mathcal{S}} \sim 500 \ \text{GeV}$$

 $f_{\pi} \sim 20 \text{ GeV} \Rightarrow \Lambda_{\text{HC}} \sim 4\pi f_{\pi} \sim 250 \text{ GeV}$

•
$$m_{Q_i} << \Lambda_{HC}$$
 as in QCD

■ $m_S = O(\text{few}) \times \Lambda_{HC} \Rightarrow$ heavy flavor with mass between "charm" and "bottom"

Hypercolor resonances

Phenomenology of interest is dominated by lowest lying resonances. Include following:

Ilavor octet of color singlet pseudo-Nambu-Goldstone bosons: π^a_{HC}

 $\pi [\bar{\mathcal{Q}}_{1,2}\mathcal{Q}_{1,2}], K [\bar{\mathcal{Q}}_{1,2}\mathcal{Q}_3], \eta [\bar{\mathcal{Q}}_1\mathcal{Q}_1 + \bar{\mathcal{Q}}_2\mathcal{Q}_2 - 2\bar{\mathcal{Q}}_3\mathcal{Q}_3]$

In the flavor nonets of color singlet "light-light" vectors and axial vectors: ρ_{HC}^a , $a_{1 HC}^a$, $\rho[\bar{Q}_{1,2}Q_{1,2}]$, $K^*[\bar{Q}_{1,2}Q_3]$, $\phi[\bar{Q}_3Q_3]$, $\omega[\bar{Q}_1Q_1 + \bar{Q}_2Q_2]$

flavor triplet, weak singlet, "heavy-light" composite up quarks:

$$u'_{(L,R)}\left[\mathcal{Q}_{1}\mathcal{S}\right], \ c'_{(L,R)}\left[\mathcal{Q}_{2}\mathcal{S}\right], \ t'_{(L,R)}\left[\mathcal{Q}_{3}\mathcal{S}\right]$$

flavor singlet P-wave vector "heavy-heavy" bound states of the HC scalars:

 $V_o[\mathcal{S}^*\mathcal{S}]$ (color octet), $V_s[\mathcal{S}^*\mathcal{S}]$ (color singlet)

P neglect η' , $\eta - \eta'$ mixing; neglect 1_1^P axial vectors, $K_{1A} - K_{1B}$ mixing

HC masses

the HC condensate, decay constants, and resonance masses estimated via scaling from QCD

$$f_{\pi} = \frac{M_{\chi}}{m_{\rho}^{\text{QCD}}} f_{\pi}^{\text{QCD}}, \quad f_{\rho} = \frac{M_{\chi}}{m_{\rho}^{\text{QCD}}} f_{\rho}^{\text{QCD}}, \quad f_{a_1} = \frac{M_{\chi}}{m_{\rho}^{\text{QCD}}} f_{a_1}^{\text{QCD}}$$

where $M_{\chi} \equiv m_{\rho}$ in the chiral limit $m_{Q} \rightarrow 0$

• π^a masses via scaled up Gell-Mann, Oakes, Renner relation

 ${}^{}$ ρ^a , a^a_1 masses via simplified quark model for QCD, scaled up to M_{χ}

$$M_{\chi}, m_{\mathcal{Q}_1}, m_{\mathcal{Q}_3} \Rightarrow m_{\rho^a}, m_{a_1^a}$$

$$+ \phi - \omega$$
 and $f_1^0 - f_1^8$ mixing angles

• u', c', t' and $V_{o,s}$ masses via approximate heavy-light and heavy-heavy meson mass formulas:

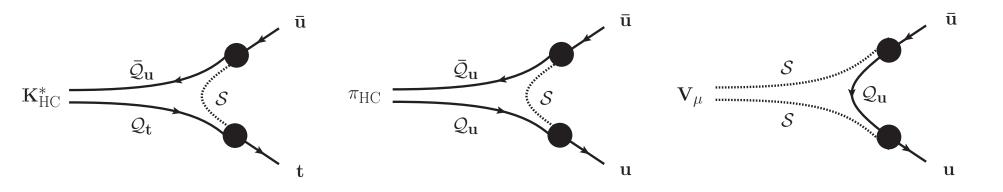
$$M_{u_i'} = M_{\chi} + m_{\mathcal{Q}_i} + m_{\mathcal{S}}$$
$$M_{V_{o,s}} = (m_{a_1}/m_{\rho})_{\text{QCD}} M_{\chi} + 2m_S$$

HC interactions

 couplings among HC resonances estimated via vector meson dominance (VMD), naive dimensional analysis (NDA), and scaling from QCD

 $g_{\rho\pi\pi} f_{abc} \rho^{a}_{\mu} \pi^{b} \partial^{\mu} \pi^{c} + g_{\rho} \rho^{a}_{\mu} \bar{u}' T^{a} \gamma^{\mu} u' + g_{a_{1}} a^{a}_{1 \mu} \bar{u}' T^{a} \gamma^{\mu} \gamma_{5} u' + g_{V_{o}} \bar{u}'_{i} \mathcal{T}^{a} \gamma_{\mu} u'_{i} V^{a \mu}_{o}$

$$+g_{V_s}\bar{u}'_i\gamma_\mu u'_iV^\mu_s + \frac{g_A}{f_\pi} \left(\bar{u}'_R T^a \not\partial \pi^a u'_R - \bar{u}'_L T^a \not\partial \pi^a u'_L\right) + \cdots$$


VMD
$$\Rightarrow g_{\rho\pi\pi} \approx g_{\rho} \approx \frac{m_{\rho}}{f_{\rho}}, \quad g_{a_1} \approx \frac{m_{a_1}}{f_{a_1}}, \quad g_{V_o} \approx \frac{M_{V_o}}{f_{V_o}}$$

• Take $g_A \approx 1$, consistent with NDA, as well as normalized $B^*B\pi$, $D^*D\pi$ couplings ($\hat{g} \simeq 0.6 - 0.7$), and nucleon-pion coupling ($g_A^{\text{QCD}} \simeq 1.26$)

• to estimate $f_{V_{o,s}}$, interpolate between $f_{J/\psi}$ and f_{Υ} in QCD, scale to HC

HC couplings to quarks

- Partial compositeness: ordinary and composite up quarks mix via the Yukawa couplings $h_i \bar{u}_{iR} Q_{iL} S$
 - mass mixing terms: $\sqrt{2} h_i f_{u'} \bar{u}_{Ri} u'_{Li}$, where $f_{u'}$ is the composite quark decay constant: $\langle u'_i | \bar{Q}_i S^* | 0 \rangle = \sqrt{2} f'_u \bar{u}'_i$
 - to estimate $f_{u'}$, interpolate between light-light (ρ , K^*) and heavy-light (D^* , B^*) decay constants in QCD, scale to HC
 - composite admixture: $\approx 20 40\%$ (u_{Ri}); $\approx 10\%$ (t_L), $\approx 0\%$ (u_L , c_L)

HC decays

• $ho o \pi\pi \Rightarrow \Gamma/M = O(10\%)$, good for dijets

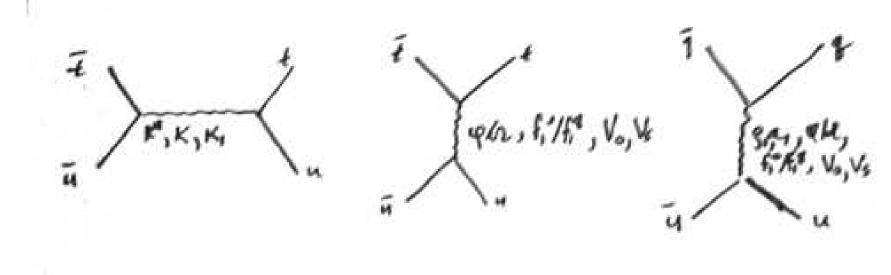
• $K^* \to K\pi \implies Br(K^* \to \bar{u}t) \simeq 20 - 30\%$ can be obtained

pions and kaons have narrow widths: $\pi
ightarrow 2j, \quad K
ightarrow jt^*$

Composite quark decays dominated by $u_i'
ightarrow u_j + n \; \pi^a$

• total widths approximated by width of partonic decay $S \to u_i \bar{Q}_i$ similar to partonic approximation for inclusive *B* and *D* meson widths

• Yukawa couplings $h_i \sim 3 \Rightarrow$ composite quarks are broad, $\Gamma/M = O(20\%)$


 $V_{o,s}$ decay widths are large, dominated by

$$V_{o,s} \to u'\bar{u} + n \pi, \quad n = 0, 1,$$

summing over two body decay widths $\Rightarrow \Gamma/M \sim O(30\%)$, good for $M_{t\bar{t}}$ spectrum, dijets

HC mediated $t\bar{t}$ and dijet production

- $figure{1}{}$ t-channel $t\bar{t}$ amplitudes via K^* , K_1 , K exchange
- \bullet s-channel $t\bar{t}$ amplitudes via exchange of
 - ϕ, ω : highly suppressed by $\phi \omega$ mixing
 - f_1^0, f_1^8 : highly suppressed by $f_1^0 f_1^8$ mixing
 - \checkmark V_o, V_s
- *s*-channel and *t*-channel dijet production via ρ , a_1 , ϕ/ω , f_1^0/f_1^8 , $V_{o,s}$ exchange

A light *t*-channel benchmark

UV inputs for benchmark:

$$M^{HC} = 171 \text{ GeV}, \ m_{Q_1} = 3.1 \text{ GeV}, \ m_{Q_3} = 30.5 \text{ GeV},$$

 $m_{\mathcal{S}} = 520 \text{ GeV}, \ h_1 = 2, \ h_3 = 4.2$

 $\mu = 2m_t$ ren. scale for LO new physics contributions to asymmetries, cross sections

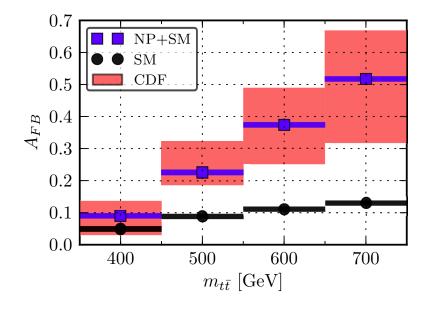
resonance mass outputs:

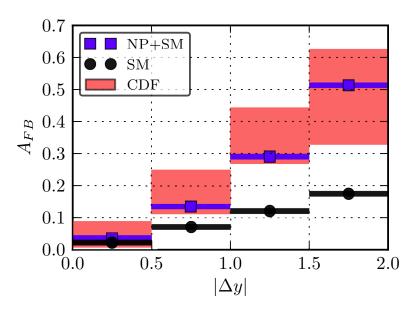
$$M_{\pi} = 62 \text{ GeV}, \ M_K = 143 \text{ GeV}, \dots; M_{\rho} = 177 \text{ GeV}, \ M_{K*} = 211 \text{ GeV}, \dots$$

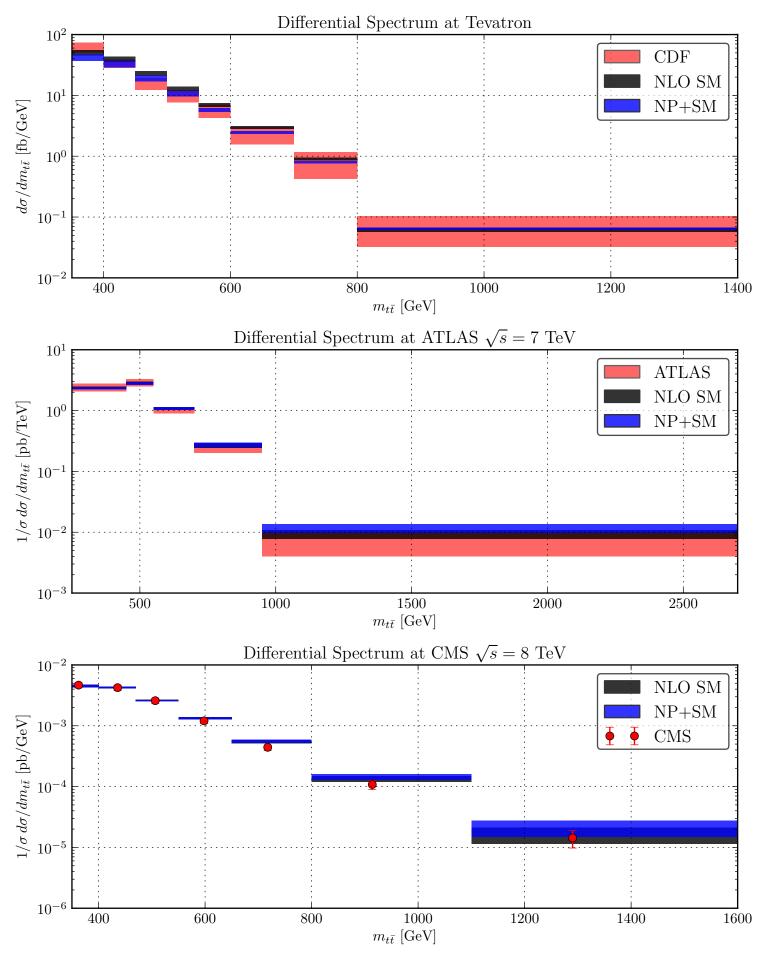
 $M_{a_1}=273\;{\rm GeV},\ M_{K_1}=295\;\;{\rm GeV},\ldots$
 $M_{u'}=M_{c'}=691\;{\rm GeV},\ M_{t'}=718\;\;{\rm GeV};\ M_{V_{o,s}}=1292\;{\rm GeV}$

asymmetries (experiment in parenthesis):

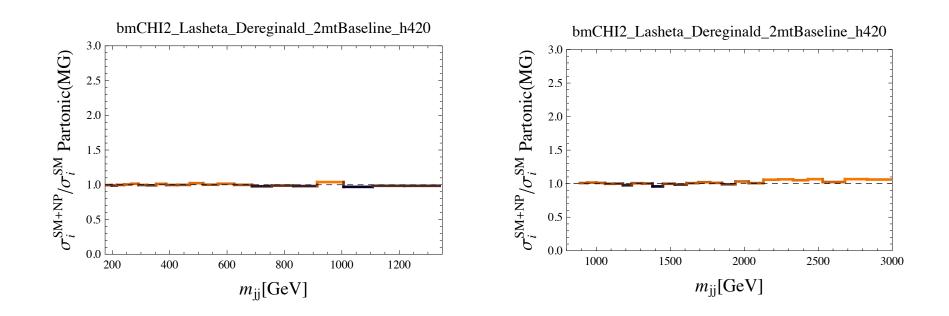
 $A_{\rm FB}^{\rm inc} = 0.191 \, (.175 \pm 0.038), \quad A_{\rm FB}^{\rm low} = 0.096 \, (0.084 \pm 0.055), \quad A_{\rm FB}^{\rm high} = 0.327 \, (0.295 \pm 0.067)$ $A_C^{\rm inc,7TeV} = 0.018 \, (0.010 \pm 0.008), \quad A_C^{\rm inc,8TeV} = 0.017 \, (0.005 \pm 0.009)$

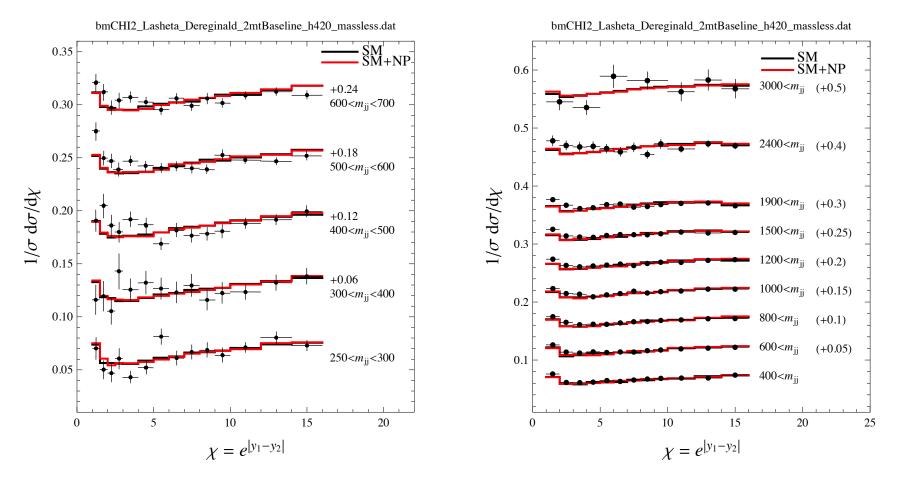

total $t\bar{t}$ cross sections (experiment in parenthesis)


 $\sigma^{\text{TEV,inc}} = 6.53 \pm 0.54 \ (7.60 \pm 0.41) \text{ pb}, \quad \sigma^{\text{LHC,inc}} = 177 \pm 15 \ (172.5 \pm 15) \text{ pb}$


benchmark cross section uncertainties are the SM contribution NNLO errors

Differential asymmetries at Tevatron


obtained partonically in MG



dijet m_{jj} spectra

 ratios of benchmark to SM predictions for Tevatron (left), LHC (right), obtained partonically in MG

dijet angular correlations

ratios of benchmark to SM predictions for Tevatron (left), LHC (right), obtained partonically in MG; data from D0 and CMS

dijet pair production

CDF has bounds on $p\bar{p} \rightarrow X \rightarrow YY \rightarrow (jj)(jj)$ in $m_X - m_Y$ plane 1303.2699

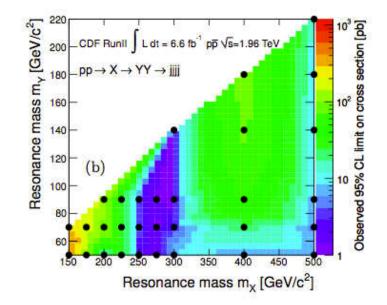


TABLE II: Observed and expected 95% C.L. upper limits on $\sigma(p\bar{p} \to X \to YY \to jj \ jj)$ for several values of m_Y and m_X . Also shown are theoretical predictions for axi-gluon production assuming coupling to quarks of $C_q = 0.4$ [5,9].

1000		2000		the state
m_X	m_Y	Expected	Observed	Axi-gluon
(GeV/c^2)	(GeV/c^2)	(pb)	(pb)	(pb)
150	50	641.2	431.1	5600
	70	209.6	270.6	
175	50	66.8	78.9	3500
	70	111.5	163.9	
200	50	13.8	9.5	2200
	70	30.4	91.5	
	90	17.8	100.4	
225	50	18.0	26.0	1750
	70	20.7	25.0	
	90	20.9	25.3	
250	50	6.2	2.0	1000
	70	4.0	3.6	
	90	5.1	2.8	

- - for $m_{\rho} \approx 177 \text{ GeV}, m_{\pi} \approx 63, \sigma(p\bar{p} \rightarrow \rho \rightarrow \pi\pi \rightarrow (jj)(jj)) \approx 80 (100) \text{ pb at LO}$ (with NLO K-factor), apparently consistent with CDF bound

Associated *K*^{*} **production at LHC, Tevatron**

at 7 TeV: $\sigma(pp \to K^*t) = 13.6 \text{ pb}; \text{ Br}(K^* \to u\bar{t}) = 32\%$

 \checkmark reduction in A_C from 0.029 to 0.018 via $K^* \rightarrow \bar{u}t$

ATLAS (7 TeV) top + jet resonance searches:

 $\sigma(pp \to K^*t) \times \text{Br}(K^* \to u\bar{t}) \approx 20\% \times \text{ATLAS}$ bound

$$\sigma(p\bar{p} \to K^*t) \times \text{Br}(K^* \to u\bar{t}) \approx 12\% \times \text{CDF}$$
 bound

Associated *K* **production at LHC**

 $\mathbf{P} \quad \sigma(pp \rightarrow Kt \rightarrow \bar{t}^* \ u \ t) = 18 \ \mathsf{pb} \ (\mathsf{7 \ TeV}), \ \mathsf{24 \ pb} \ (\mathsf{8 \ TeV})$

what about spill over into single-top Wt (dilepton) signal region, or $t\bar{t}$ signal regions?

LO MG analysis \Rightarrow softer Kt lepton p_T significantly reduces leakage into the signal regions:

- Solution See Contribution < 11 pb to CMS (dilepton) measurement</p> $σ(pp → t\bar{t}) = 239 \pm 13 \text{ (8 TeV)} \quad [1312.7582]$

Composite u'_i production

•
$$\sigma(pp \rightarrow t'\bar{t}', u'\bar{u}') \approx 1 \text{ pb}$$
 (8 TeV), 7 pb (13 TeV) with $m_{u'_i} \approx 700 \text{ GeV}$

detection at LHC is challenging: decay modes $u'_i \rightarrow u_j + \pi^a 's$, u'_i widths $\Gamma/M \sim 20\%$, and

$$\operatorname{Br}(t' \to t + X) \sim \operatorname{Br}(u' \to t\bar{t}^* + X) \sim 1/3$$

$${oldsymbol s} \quad \pi^a ext{ are color singlets, decay via } \pi o j \, j$$
 , or $K o ar t^* j$

• \Rightarrow final states with two tops have many additional jets, e.g., $\bar{t}'t' \rightarrow \bar{t}t + n$ jets

single
$$u'_i$$
 production more promising:
 $\sigma(t'\bar{t}) \sim 3 - 8$ pb (8 TeV), 10 -30 pb (13 TeV)

• "same sign" u'u' pair production: $\sigma(u'u') \sim 3 - 20$ pb (8 TeV), 9 - 60 pb (13 TeV)

In $r \sim 10\%$ to $t t \bar{t}^* \bar{t}^*$ + n jets final states, could show up as same sign top pairs + many jets

Conclusion

- strong interaction realization of flavor symmetric t-channel origin for A_{FB}
- copy of QCD with 3 light flavor quarks, and a heavy flavor scalar
- in the IR leads to an even bigger zoo of resonances than QCD, e.g. additional composite quarks, additional decay modes....
- excellent illustration of the challenges faced by LHC in BSM searches:
 - the lowest lying resonances are color singlets
 - the heavier colored resonances are broad, decay to multi jet final states
- \blacksquare negligible contributions to precision electroweak parameters S, T
- new contributions to atomic parity violation easily consistent with current bounds
- If the lightest HC baryon, e.g., $[Q_u Q_u Q_c]$, may provide an example of flavorful DM