

Some recommended exercises

- **1** Look at the classical derivation of the the Bethe-Bloch formula
- 2 Kinematics of Compton scattering and (e+e-)-pair creation
- 3 Cerenkov threshold for electrons in water
- 4 Estimate the nuclear interaction length in Iron (Fe, A=56; ρ=7.8 g/cm³)
- 1 The number of particles in a elm shower is proportional to the Energy. If we can measure the number of particles in a shower, how will the energy resolution scale with energy ?
- 2 Movement of a charged particle in a magnetic field. If the curvature is measured, how well can we measure the momentum of the charged particle ?

Bibliographie

Text books :

- C. Grupen, Particle Detectors, Cambridge University Press, 1996
- G. Knoll, Radiation Detection and Measurement, 3rd ed. Wiley, 2000
- W. R. Leo, Techniques for Nuclear and Particle Physics Experiments, Springer, 1994
- K. Kleinknecht, Detectors for particle radiation , 2nd edition, Cambridge Univ. Press, 1998
- D. Green, The physics of <<< particle Detectors, Cambridge Univ. Press 2000
- S. Tavernier, Experimental Techniques in Nuclear and particle Physics, Springer 2010
- G. Lutz, Semiconductor Radiation Detectors, Springer, 1999
- W. Blum, L. Rolandi, Particle Detection with Drift Chambers, Springer, 1994
- R. Wigmans, Calorimetry, Oxford Science Publications, 2000

Review Articles

- Experimental techniques in high energy physics, T. Ferbel (editor), World Scientific, 1991.
- Instrumentation in High Energy Physics, F. Sauli (editor), World Scientific, 1992.
- Many excellent articles can be found in Ann. Rev. Nucl. Part. Sci.

•

•

•

Summer student lectures and academic training

- Particle Detectors Principles and Techniques: C. D'Ambrosio, T. Gys, C. Joram, M. Moll and L. Ropelewski, CERN Academic Training Programme 2004/2005
- Summer Student Lectures 2010, Werner Riegler, CERN,
- Summer Student Lectures 2012, Detectors for Particle Physics, D. Bortoletto, Purdue University
- Particle detection and reconstruction at the LHC (I), African School of Physics, Stellenbosch, South Africa, August 2010 (D. Froidevaux, CERN)
- Particle detectors and large HEP experiments, L. Serin LAL/Orsay & IN2P3/ CNRS, lecture at the European Summer Campus 2011, Strasbourg France

Physics of Particle Detection, ICFA, Instrumental school, South Africa 2001, Claus Grupen, University of Siegen

Photo-electric effect

$$\sigma_{p.e.}^{K}\Big|_{atom} = \sqrt{\frac{32}{\left(\frac{E_{\gamma}}{m_{e}c^{2}}\right)^{7}}} \cdot Z^{5} \alpha^{4} \times \left(\frac{8}{3}\pi r_{e}^{2}\right) \times \text{ corrections}$$

At high *Z*, the hole in the K-shell is filled by an electron under the emission of a fluorescence x-ray of energy $E_{\gamma} = E_{K} - E_{L,M,N}$

At low Z, Auger electrons occur: electrons of higher shells (L) are ejected with energy

$$E_{Auger} = E_{K} - 2E_{L}$$

Compton-effect

12/08/2014 5

RASBOURG

Creation of electron positron pairs

 $E_{v} \ge 4 m_{o}$

Dans le champ du noyau

 $E_{\gamma} \ge 2m_{e} + \frac{2m_{e}^{2}}{m_{\gamma}}$ $m_N \gg m_o \Rightarrow E_V \ge 2m_o$

Nal (Tl)

- Reference/standard of efficiency: $\epsilon = 1,22 \times 10^{-3}$
 - Cylindrical detector Nal(TI), 7,62(Ø) x 7,62(l) cm³
 - Source of ⁶⁰Co (1,33 MeV) at 25 cm

Properties of Nal:

- Z = 53 high \Rightarrow good efficiency
- Relatively short decay time (230 ns)
- intense signal
- Relative good energy resolution
- But Nal is very hygroscopic!!

.

Efficiency of a detector (valid in general!!)

- Absolute or total efficiency
 - $\varepsilon_{tot} = \frac{\text{(particles or gammas) registered}}{\text{(particles or gammas) emmitted}}$
 - This depends on the geometry between the source and the detector (its distance and opening, its solid angle)

$$\varepsilon_{tot} = \left[1 - \exp\left(\frac{-S_p}{\lambda}\right)\right] \times \frac{\Delta\Omega}{4\pi} \qquad \varepsilon_{tot} \cong \varepsilon_{int} \times \varepsilon_{geom}$$

$$\lambda = \text{attenuation length}; \left\{\frac{1}{\lambda} = \sigma \cdot n_b\right\}; S_p = \text{Depth of the detector}$$

$$\text{Intrinsic efficiency}$$

$$\varepsilon_{int} = \frac{(\text{particles or gammas}) \text{ "registered"}}{(\text{particles or gammas}) \text{ in the acceptance of the detector}}$$

Interaction of charged "heavy" particles with the electrons of matter

db

ds

surface A and volume V

Classical calculation by Bohr:

Momentum transfer *∆p* to the electron;

Energyloss of particle = - energy transfer to electron *∆E*;

 $n_{\rm e}$ = electron density

$$\Delta p_{e} = \int_{-\infty}^{\infty} F \, dt = e \int_{-\infty}^{\infty} \mathfrak{E}_{\perp} \, dt = \frac{e}{v_{0}} \int_{-\infty}^{\infty} \mathfrak{E}_{\perp} \, ds; \quad \mathfrak{E}_{\perp} = \text{electric field}$$

$$GAUSS: \iiint_{V} \operatorname{div} \vec{\psi} \, dx \, dy \, dz = \oint_{A}^{\infty} \vec{\psi} \, d\vec{a}; \quad \vec{\psi} = \text{vector field}$$

$$\iint_{A} \mathfrak{E}_{\perp} \, da = \iiint_{V} \operatorname{div} \vec{\mathfrak{E}} \, dx \, dy \, dz = \frac{1}{\varepsilon_{0}} \iiint_{P} \rho \, dx \, dy \, dz = \frac{ze}{\varepsilon_{0}}; \quad \operatorname{div} \vec{\mathfrak{E}} = \frac{\rho}{\varepsilon_{0}}$$

$$da = 2\pi b ds; \quad 2\pi b \int_{-\infty}^{\infty} \mathfrak{E}_{\perp} \, ds = \frac{ze}{\varepsilon_{0}}$$

$$\Delta p_{e} = \frac{2}{4\pi\varepsilon_{0}} \frac{ze^{2}}{bv_{0}} = 2k \frac{ze^{2}}{bv_{0}}; \qquad k = \frac{1}{4\pi\varepsilon_{0}}$$

$$\Delta E = -\Delta E_{e} = -\frac{\left(\Delta p_{e}\right)^{2}}{2m_{e}} = -2 \frac{z^{2}e^{4}}{b^{2}m_{e}} \left(\frac{k}{v_{0}}\right)^{2} \frac{db}{b} \, ds; \quad (dV = 2\pi b db ds)$$

$$-\frac{dE}{ds} = -\int_{0}^{\infty} \frac{dE}{db} \, db = 4\pi n_{e} \frac{z^{2}e^{4}}{m_{e}} \left(\frac{k}{v_{0}}\right)^{2} \ln\left(\frac{b_{\max}}{b_{\min}}\right)$$

v₀

b_{min}

Classical calculation by Bohr, b_{min} and b_{max}

 b_{\min} : Maximal energy transfer to electron

$$T_{e}^{\max} = 2m_{e}v_{0}^{2}\gamma^{2} = 2\frac{z^{2}e^{4}}{b_{\min}^{2}m_{e}}\left(\frac{k}{v_{0}}\right)^{2}$$

$$b_{\min} = \frac{z \cdot e^{2}k^{2}}{\gamma m_{e}v_{0}^{2}}; \qquad \gamma = \frac{1}{\sqrt{1-\beta^{2}}}; \beta = \frac{v_{0}}{c}; v_{0} = \text{particle speed }!$$

 b_{\max} : interaction time \ll Orbit time \overline{T}

$$\frac{b_{max}}{\gamma v_0} \ll \overline{T}$$

$$b_{max} = \gamma v_0 \overline{T}$$

$$-\frac{dE}{ds} = -\int_0^\infty \frac{dE}{db} db = \frac{4\pi z^2 e^4 k^2}{m_e v_0^2} n_e \ln \frac{\gamma^2 m_e v_0^3 \overline{T}}{z^2 e^2 k^2}$$

Maximal energy transfer of charged "heavy" particles to the electrons of matter

UNIVERSITÉ DE STRASBOURG

$$T_{e}^{\max} = E_{e}^{\max} - m_{e}c^{2} = \frac{2m_{e}^{2}c^{2}\beta^{2}\gamma^{2}}{\left(E_{CM} / m_{0}c^{2}\right)^{2}}$$
$$m_{0} \gg m_{e}; 2\gamma m_{e} / m_{0} \ll 1$$
$$T_{e}^{\max} = 2m_{e}c^{2}\beta^{2}\gamma^{2}$$
$$m_{0} = m_{e}$$
$$T_{e}^{\max} = \frac{E^{2} - m_{e}^{2}c^{4}}{m_{e}c^{2} + E} = E - m_{e}c^{2} = T_{e} = T_{0}$$

12/08/2014 13

Bethe – Bloch formula

θc

Cerenkov effect

- Coherent superposition of the radiation of the atoms
- Mainly blue light
- Very few photons
- Very small energy loss
- Identification of particles!

Wave front

Exercise

Blue light in a reactor

- 1. What produces the light?
- 2. Water *n*=1.333. calculate the minimal energy of an electron to produce Cerenkov light

Reconstruction of transy Miles momentum in a magnetic field

- Movement of a charge z in a uniform magnetic field
- Momentum resolution *dp/p*
- Spatial resolution of the sagitta dS/S

$$\frac{dS}{S} = \frac{dp_{\perp}}{p_{\perp}} = \frac{80}{3 \cdot z} \frac{1}{BL^2} p_{\perp} dS$$
$$[B] = Tesla; [L] = m; [p_{\perp}] = GeV / c$$

 $\frac{\sigma(p_T)}{p_T} \bigg|_{p_T}^{meas.} = \frac{\sigma(x) \cdot p_T}{0.3 \cdot BL^2} \sqrt{720/(N+4)} \quad \text{(for N } \ge \sim 10\text{)}$

UNIVERSITÉ DE STRASBOURG

W.Dulinski

Semi-conductor detectors

	E _g [eV]	w [eV]	Mobility (velocity/ <i>E</i>)		τ _e [s]	τ _h [s]		Z [a.m.u]
Material							density	
			μ_{e}	μ_h			g/cm ³	
		10			9 4 0 - 9	9 1 0 - 9		
C	5.5	13	1800	1200	$2 10^{-5}$	$2 10^{-5}$	3.515	6
(diamond)								
Si	1.12	3.61	1350	480	5 10 ⁻³	5 10 ⁻³	2.33	14
Ge	0.67	2.98	3900	1900	2 10 ⁻⁵	2 10 ⁻⁵	5.32	32
GaAs	1.42	4.70	8500	450	5 10 ⁻⁸	5 10 ⁻⁸	5.32	31,33
CdTe	1.56	4.43	1050	100	1 10 ⁻⁶	1 10 ⁻⁶		48,52
HgI ₂	2.13	4.20	100	_	1 10 ⁻⁶	2 10 ⁻⁶		53,80

$$\frac{dN}{N} = \frac{1}{\sqrt{N}} ; E \sim N; \quad N = \text{numb. of (e,h)}$$

Parameters Values for Materials Used in Fabricating Semiconductor Radiation Sensors

[3]

12/08/2014 20

Junction p-n

Formation of a depletion zone

UNIVERSITÉ DE STRASBOURG

Direct Polarisation

- conduction
- I ~ I₀[exp(qV/kT) 1]

Inverse Polarisation

- increase of depletion zone
- reduction of capacitance

electrons and holes combine

UNIVERSITÉ DE STRASBOURG

12/08/2014 22

Surface barrier detectors

Figure 11-16 (a) A particle identifier arrangement consisting of tandem ΔE and E detectors operated in coincidence. (b) Experimental spectrum obtained for the $\Delta E \cdot E$ signal product for a mixture of different ions. (From Bromley.⁹⁰)