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What is under the *hood’ ?




How does Geant4 work?

Mag) simulation

— Inside 1t I1Is a Monte Cato

—1 It generates ‘events’ usi bability distributionS™f® the
types of interactions (cro€sgsection ~ probability of

occurence)
— Framework for physF processes / models
— 1 Different ‘content’, ie. m rocesses, allow it to be

used/adapted for manydff nt physics domains




What 1s Monte Carlo?

— Integrals
— Random numbers
— Transport as discrete?events

¢C"9
¢
—1 Putting it "all togetheg’



Range of applicability

-~ Hadronic physics

I A

— EM Physics

—]

models for hadrons up to &LV Loiwmanieye
models for hadrons with cades to ~ 186lleV
approximate models for hg@fons below 100 MeV

neutron ‘databases’ fro rmal to 20-150 MeV
stopping processes (captere at rest) for negative hadrons
Y
‘Standard’ package ha,cqr

sses from ~1KeV

—  Penelope, Livermore processes/models down to ~100 eV
—1 G4DNA: models for specific materials, to a few eV



Applications (continued)




Events / 30 MeV

GEANT4 Comparisons with the Calorimeters
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Geant4 has been successfully employed for

Detector design
Calibration / alignment
First analyses
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Invariant mass of pairs of well-isolated
electromagnetic clusters.

The x? mass is within 0.8 £ 0.6% of
expectations.

The Y mass is within 3 £ 2% of
expectations.

The detector uniformity is better than 2%.

Mormalized
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Response of the calorimeter to single

isol

noise, topological clusters are used in
summing the energy.

This plot agreed better than we ever
expected. (| sent the student who made it

back to make sure that they didn’ t
accidentally compare G4 with G4.

T. LeCompte (ANL)
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Solar event gamma-rays

Electron Bremsstrahlung —
iInduced gammas in solar flares

Compton back-scattering

spectrum
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Using fully relativistic GEANT4 simulation tool kit, the transport of ener-

petic electrons generated in solar flares was Monte-Clarlo simulated, and resunltant

Photon Ener MeV .
9y ( ) bremsstrahlung gamma-ray spectra were calculated. The solar atmosphere was ap-



Geant4 @ Medical Science
- Four major use

cases

- Beam therapy
— Brachytherapy
— Imaging




Medical Physics

1 Geant4 1s used to calculate dgs
aEeroevices (PET

) - o a Va ‘.

gamma cameras)

—1 Geantd is used to v
with software (fast c
therapies

—1 Interesting future dire@idbadron beams for cancer
therapy (C12, p beams)- Wl

— Need very precise®W energy (keV-MeV)
em physics description (at the opposite of the
spectra with compared to HEP)

te results obtamed
lations) to plan
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Exercises - More Tasks




Practical exercises (cont.)

TS

—1 We will use an install oant4 for a few

tasks
—1 ldentify the parts of Gean
—1 Compile a first program

—1 Visualize a particle sh
P ¢

-
—1 Go to http://bit.ly/qMeWL4t0
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http://bit.ly/g4asp14t0

Task 1 - revisited




Task 2 - scoring




Task 3 - Geometry

— Review how Geant4 &geates a geometry
— Made small modificagodns/additions

e

LS
S
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Task 4 - Visualisation




Task 5 - Installation

—1 We will follow the standard methog

Installing Geant4
cadlll& |1 AllalliCU

— Install cmake for your s

—  Get the source code

—+ Build (compile) Geant4

—1 Alternative Installation - if $re-built binaries exists for your

OS f..

‘"
— Download source angd

| Small modification: %

—1 you will get the (larger) files that need to be downloaded
on a USB key

ela fram so aWalaVala

m

Jes for your system
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Comparison with test beam

-
I




Test-beam summary (G4 9.4.p01)
Status Sept-Oct 2011

Lateral Longitudin Peculiariti
Response [ Resolution | Smoothness Shape alg:‘gfe sg?nlrignl{ess’
QGSP_BER 0 0 A~5%@10Ge | T1,p: -(10- . -10% Extensive
T t(1-3)% | -(5-10)% Y 20)% 0:-20% | use of LHEP
ti-nucl ,
FTFP_BERT +(0-5)% _(3-7\% A~0 m: -(10-20)% m: +10% ah”yLQr”oCniovTZ
QGSP_FTFP_BERT (¥+%) (3-7)% p: -(3-10)% | p: +(10-20)% CHIPS(¥),
no LHEP
anti-
1Mo 1090 N M. -(3-10)% | 1T:-10% nucleons,
CHIPS +(5-10)% (10-20)% A~0 0: -(10-20)%| p: -20% hyperons,
single model
Implements re-
scattering at
FTE_BIC(*)| +(3-5)% -(2-6)% . esel}ll(:\:ﬁiles - m: +10% high E,
E*): Native ETF model|under testifig™" Extensive use
; attHC

(***): Lower limit: CMS; Upper limit

ATLAS




Number of Tracks

Data and simulation agreements

Average Number of Pixel Hits
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Missing ET

‘; " ATLAS Preliminary - &10°k | % ATLAS Preliminary -
; \ Ve =7 TeV » :105 V=7 TeV o
1 g This is one of the hardest
R i w 10° i vsiise things to get right. MET
10} incorporates everything
10? measured in the detector
ioL. and attempts to identify
’ 3 non-interacting particles,
504030 20 10 0 10 20 30 40 50 50 40 -30 20 -0 0 10 20 30 40 so SUChas neutrinos or dark
E™* [GeV] 76Vl matter.
>
gug SMSPeIminav2010 . Before cleaning . .
e p — After cleaning Agreement is astounding.
1 ———
B Simulation

Yens
hu m..i.. nmu i

Both ATLAS and CMS plots are made from a tiny piece of the very earliest data.

You can even see that the
ATLAS detector is not
quite centered — in both
data and MC.

T. LeCompte (ANL)







Comparison with data

- -
v N o \ L/ A/ \_J/

ero Oremeapteractions
tions expected

—1 Thin target - each track h
—  Thick target - multiple int

— Models are tuned a st thin-target data only

—1 Itis vital to ensure that els are checked against all the
most reliable data ¢ fl

—  Much of the work of tupin®olves finding all the available
data, and evaluating wl”~h ta is the most reliable

4[
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Create a validation test

— FInding all the avalla
—1 check the key database

— Read the papers
— Identify the cuts used to

— Evaluating which @ﬁ?the most reliable
%

.. @
FOR, PDG)
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More Validation
EX a.m p I eS p cross-sections for vay models at different
angles-—-"'"'-
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p on Cu with kinetic energy of 0.1/0.2 GeV
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