Exploring the Standard Model with ATLAS and CMS

Heather M. Gray, CERN

Thanks to Peter Mattig, Beate Heinemann and ATLAS and CMS!

This lecture: how ATLAS and CMS (and D0) are used to explore the Standard Model

The LHC

Why hadron colliders?

Lepton Collider (LEP)

Collision of two point-like particles

Disadvantages

- Hadrons are complex objects
- High multiplicity of other stuff
- Energy and type of colliding parton (quark, gluon) is unknown
- Advantage
 - Can access higher energies than e+e- colliders

Hadron Collider (Tevatron, LHC)

Collision of ~50 point-like particles

ATLAS and CMS

ATLAS

CMS

Reminder: Particles in a Detector

The Standard Model

A simplified picture

Force Carriers

Photons:

electromagnetic force, theory: Quantum Electrodynamics (QED)

Vector bosons

(W, Z)

weak force,

theory: Quantum Electrodynamics

(OFD)

Gluons:

strong force, theory: Quantum Chromodynamics (QCD)

The Strong Interaction

- Jets: energetic bundles of hadrons
 - How we observe quarks and gluons
 - · Measure direction, energy and (sometimes) parton flavour
 - Allow direct tests of QCD: the strong interaction
 - Experimental challenge: extract jets from 1000 particles

Experimental Challenge: Jet Energy Scale

- Jet energy determined from calorimeter and tracking information
- How accurately is the scale known?
 - Jet energy scale (JES) uncertainty
 - Large effects on cross-section measurements due to the steep slope

- CMS Experiment at LHC. CERN Data section. 365 Photon $p_T=76.1~{\rm GeV/c}$ $\eta=0.0$ $\phi=1.9~{\rm rad}$ Anti-kr 0.5 PFJet $p_T=72.0~{\rm GeV/c}$ $\eta=0.0$ $\phi=1.2~{\rm rad}$ $\phi=-1.2~{\rm rad}$
- Calibrate the jet energy scale using γ+jets data
 - Photon must balance the jet energy

Test QCD at multi-TeV scales: jet cross-section

- Excellent agreement between theory and data over a huge range in phase space
 - 10 orders of magnitude
- Measure jets up to p_T of 2 TeV

Study the strong coupling

 Determine α_S from measurements using jets (3jet fraction, jet mass)

$$\alpha_S^{\text{world}} = 0.1184 \pm 0.0007$$

$$\alpha_S^{\rm LHC} = 0.1160 \pm 0.0031$$

- Single value is less precise, but the LHC covers a huge energy range
- Energy dependence of α_S is clearly visible
 - running of the strong coupling

From the strong to the weak force

Use dilepton pairs to study resonances

Z reconstruction at the LHC

- When a Z decays to leptons, it is easy to reconstruct
 - e+e, -μ+μ-,τ+τ-
 - Only 3% of Z's decay into each lepton pair

- Very clean signal and high statistics: 1 million Z⁰/1 fb⁻¹
- A lot of physics! Important calibration tool

W reconstruction at the LHC

- Harder to reconstruct W's than Z's
 - Do not directly detect v but rather look for unbalanced transverse momentum

$$MET_{x} = -\Sigma(p_{x})_{i}$$

$$MET_{y} = -\Sigma(p_{y})_{i}$$

- Fairly clean signal but no mass peak
- Cross-section is ~10x higher than for Z

Note different cross-sections for W⁺ and W⁻ at the LHC

 W⁺ and W⁻ production is slightly different

$$u\bar{d} \to W^+ \to \mu^+ \bar{\nu}_{\mu}$$
 $\bar{u}d \to W^- \to \mu^- \nu_{\mu}$

- The valence quarks in the proton are uud
 - Easier to find u quarks than d quarks in the proton
- Sensitivity to different quark content constrains the parton density functions (PDFs)

 $\Sigma_{W}^{tot} \times BR(W^{+} \rightarrow |v)[nb]$

The W mass

Fundamental parameter of the Standard Model

$$G_{\mu} = \sqrt{(2)} \cdot \frac{g^2}{8 \cdot M_{\rm W}^2} = \frac{\pi \alpha}{\sqrt{2}} \frac{1}{M_{\rm W}^2 \cdot \sin^2 \theta_W}$$

- G_µ: muon lifetime
 - Prediction for M_W
- Radiative corrections
 - Sensitivity to the mass of the Higgs boson
- Precise measurement at LEP:

$$M_{\rm W} = 80.376 \pm 0.033 \; {\rm GeV}$$

Measuring the W mass I

 Use energy conservation and measurements of the electron/muon and the neutrino

$$m_W^2 = (E_\ell + E_\nu)^2 - (\vec{p_1} + \vec{p_2})^2$$

- Questions
 - How accurately do we know the energy of the e/μ?
 - Use M_Z to calibrate the energy scale
 - What is the energy and direction of v?
 - Use only the transverse momentum of v: identify with missing transverse energy

$$m_W^2 \ge (E_\ell + MET)^2 - (\vec{p_1} + M\vec{E}T)^2$$

Measuring the W mass II

Largest phase space if W boson decays perpendicular to the

direction of flight

$$p_T(\ell) = \frac{m_W}{2} \sin \theta^*$$

$$p_T^{max} = m_W/2 \qquad \theta^* = \pi/2$$

$$\cos \theta^* = \sqrt{1 - 4 \cdot p_T^2 / M_W^2}$$

$$\frac{d\sigma}{dp_T^2} = \frac{d\sigma}{d\cos \theta^*} \frac{2/m_W}{m_W^2 - 4 \cdot p_T^2}$$

Sharp fall - off

Smearing

$$m_{\rm W} = 80.342 \pm 0.014 \; {\rm GeV}$$

- Fast drop around m_W/2 but smeared out
 - W boson width (~2 GeV)
 - QCD effects
 - detector distortion
- Experimental challenge
 - Accurate control of systematics
 - Use similarity between Z and W

Measuring the energy

- How well do we know the true energy?
- Z measurement provides excellent control of the energy scale
- Measure Z: calibrate such that m_Z = 91.1882 GeV

W mass result

- Obtain W mass from template fits to distributions: p_T, m_W, MET
- D0 measurement obtained same precision as the world average
- Strong constraint on Standard Model Higgs

The mysterious top quark

 Top quark: no internal structure but as heavy as a gold atom

$$m_{\rm t} = 173.3 \pm 1.1 \; {\rm GeV}$$

Coupling strength to Higgs boson scales with the mass

$$m_{\rm t} = \frac{\lambda_t \cdot v}{\sqrt{2}}$$

$$\lambda_{\rm t} = 0.996 \pm 0.006$$

Does the top quark have a special role?

A constrained giant

- Top quark is similar to the up-quark, electron and neutrino
- All are matter particles

$$\frac{m_{\nu}}{m_{\rm top}} \sim 10^{-11}$$
 $\frac{m_{\rm up}}{m_{\rm top}} \sim 10^{-5}$

- Does the top quark have the same properties as light fermions?
 - Coupling strength to photons, gluons, W bosons
 - Charge
 - Weak parity violation

A semileptonic top event

An example: Measuring the top cross-section

- Test QCD using massive quarks
- Measure the coupling strength of gluons to top quarks
- Event selection
 - 4 high p_T jets
 - isolated electron or muon
 - missing transverse energy

$$\sigma = \frac{N_{\text{meas}} - N_{\text{bkg}}}{\epsilon \cdot \mathcal{L}}$$

Luminosity

- Measure of the number of proton collisions
- Single most important quantity
- Drives our ability to detect new processes

revolving frequency: 11245.5 s⁻¹ number of bunches: 2808 $L = \frac{f_{\rm rev} n_{\rm bunch} N_p^2}{4\pi\sigma_{\rm x}\sigma_{\rm y}} \qquad \begin{array}{c} \text{protons per bunch:} \\ \text{1.15 x 10}^{\text{11}} \\ \text{Beam area: 40 } \text{µm} \end{array}$

Direct input to the rate of physics processes per unit time

Efficiency (
$$\epsilon$$
): Optimised by $N_{
m meas}=\int Ldt\cdot\epsilon\cdot\sigma$ by nature and calculated by theorists

Ability to observe or measure something depends on N_{meas}

Efficiency Example: Electrons

- Goal
 - High efficiency for (isolated) electrons
 - Low misidentification of jets
- Cuts: shower shape, low hadronic energy, track requirement, isolation
- Performance
 - Efficiency measured from Z's: tag and probe method
 - Measure "scale factor"

• SF =
$$\frac{\epsilon_{\text{data}}}{\epsilon_{\text{MC}}}$$

1 for perfect MC

Typical Efficiencies

Loose cuts: 88%

Tight cuts: 65%

$$\sigma = \frac{N_{\text{meas}} - N_{\text{bkg}}}{\epsilon \cdot \mathcal{L}}$$

Efficiency: Uncertainties

- How well do we know this efficiency? Uncertainty
- For ATLAS, material in the inner detector is 20-90% X₀
- Material causes difficulties for electron/photon identification
 - Bremsstrahlung
 - Photon conversions
- Our uncertainty on the material directly translates into an uncertainty on the electron efficiency
- Constrain the material using data
 - Photon conversions
 - E/p distribution
 - Number of e⁺e⁻ events

Cross-section determination

- How accurately we measure the cross-section depends on how accurately we measure each component
- Largest uncertainties are
 - Modelling of top
 - parton distribution function
 - number of background events
 - jet energy scale
 - selection efficiency e, μ
- Total uncertainty is 4.3%
 - Experimental: 2.3%
 - Luminosity: 3.1%
 - Beam energy: 1.7%

$$\sigma = \frac{N_{\text{meas}} - N_{\text{bkg}}}{\epsilon \cdot \mathcal{L}}$$

Systematic Uncertainties

- Typically 90% of the work in an analysis
- Systematic errors cover our lack of knowledge
 - Need to be determined on every aspect of measurement by varying assumptions within sensible reasoning
 - Therefore: there is no correct way
 - But there are good ways and bad ways
 - You will need to develop a feeling and discuss with colleagues and theorists
- What's better? Overestimate or underestimate
 - Find new physics: be generous with systematics
 - Precision measurement: need to make best effort to neither overestimate or underestimate

Top Cross-section

- Theoretical uncertainty <5%
- Theory and experimental uncertainties are approximately equal

Very good agreement between data and expectation

Top Quark Mass

- Top quark mass is a fundamental parameter of the Standard Model
 - First time a quark mass can be measured directly
- A broad spectrum of decays and methods

Top Mass Measurement

CMS Preliminary

- Combination of all measurements (March 2014)
- $173.3 \pm 0.3 \pm 0.7$ GeV
 - 0.4% precision
- Caveat: Relation to 'theoretical' top mass somewhat uncertain due to QCD models

The Higgs Boson

Electroweak Symmetry Breaking

- Masses of boson and fermions are in conflict with local gauge invariance
- Boson masses lead to
 - Infinite cross-sections

$$m_{\mathrm{H}} \leq \sqrt{\frac{8\pi\sqrt(2)}{3G_{\mathrm{F}}}} \sim 1 \mathrm{\ TeV}$$

- Or strong coupling between W's -> many W's
- Way out: introduce a new scalar spin-0 particles

Solution: The Higgs Mechanism

- Standard Model solution: Higgs fields
 - gives mass to bosons
 - provides means for fermion masses
 - implies elementary physical particle
 - gives mass to Higgs boson
 - NOTE: no prediction of particle masses
- Introduce a potential by hand with two unknowns: λ, μ

$$V = -\mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$$

$$\frac{\partial V}{\partial \phi} = 0 \implies \phi_0 = v^2 = \frac{\mu^2}{\lambda}$$

- V: vacuum expectation value
- $m_W -> v = 246 \text{ GeV}$

$$V(\phi)$$

$$m_{\rm W} = \frac{1}{2}v \cdot g$$

$$m_{\rm h} = \sqrt{2 \cdot \lambda} \cdot v$$

$$m_{\rm f} = \frac{1}{\sqrt{2}} G_f \cdot v$$

Higgs Production

W,Z bremsstrahlung

Higgs Decays

How strong is the coupling?

Width of the Higgs boson is proportional to the coupling

Very small width ... Very small coupling!

How the Higgs would show up

- Ideal world: a narrow excess at m_H ... nothing else
 - A handful (one!) of events is sufficient

Closer to reality

 Other processes have similar signature but smoothly distributed

Reality

- Other processes have similar signature but smoothly distributed
- Experimental resolution broadens signal

1. Test if data exclude hypothesis

- Step 1: cross-section at mass m_H that can be excluded @ 95% CL
- Step 2: Plot ratio σ(excl)/ σ(SM expectation)
- If expected is above 1:
 Higgs cannot be excluded because there is no sensitivity
- If both below 1: Higgs excluded in mass range
- If expected is below 1 and observed above we say either hint or signal

95% CL Limits ZZ \rightarrow (I⁺I⁻) (I⁺I⁻)

p-value: probability of statistical fluctuation

p-value: how likely is it that at a certain mass m_H

Expected background fluctuates upwards to produce at least the

number of observed events

Observed dearth or excess reflected in wiggle Convention: evidence if $p > 3\sigma$ observation if $p > 5\sigma$

ATLAS: H->gg video

ATLAS: H->gg video

Guess the Higgs event

CMS: Higgs event

BERGISCHE

UNIVERSITÄT

July 4, 2012: Announcement!

Now what?

- Qualitative: suggestive of a Higgs
 - Mass accords with expectation
 - It is a VBF: not spin 1, 2!
 - Found in expected decay channels
- Move to quantify agreement: check if Higgs properties are exactly as predicted
 - All production modes
 - All decay modes: measure branching ratios
 - Width of Higgs boson
 - Spin and parity
 - Higgs self coupling (potential)
- Already significant progress since discovery!

How to measure the couplings?

Gluon fusion cross section 'known'

- Compare observed cross-section to predicted one
 - Products of couplings for production and decay
- Theoretical predictions known to ~10%
- Make the same measurement with as many production and decay modes as possible

Comparing data and theory

Measure $\mu = \sigma(\text{meas})/\sigma(\text{pred})$ for different decays

All results agree with expectation for SM Higgs! Uncertainties on coupling to fermions substantial

Spin and parity measurements

- A Standard Model Higgs has a spin and parity of 0+
- Spin: angular momentum of a point
 - Measured from the angular distribution of the Higgs decay products
- Parity: How does a particle look in a mirror?
 - What is the symmetry of the wave function after parity transformation: (x, y, z, t) -> (-x, y, -z, -t)
 - Measured in a similar way to spin

Spin of the Higgs

- Example: h->W+W-
- Spin 0
 - Spins of W's are opposites
 - µ's are aligned

- Spin 2: no such correlation
- After subtracting the background, data agree better with spin 0

Spin-Parity Summary

- Compare Standard Model
 0+ with other possibilities
- Other possibilities
 disfavoured with 10⁻² 10⁻⁴ probability
- Very consistent with the SM!

Is it the Higgs?

- Mass agrees with precision physics
- Production and decay rates as expected
- Spin-parity favours 0+
- Precision still to be improved but, as yet, no disagreement
- It tastes like a Higgs, it smells like a Higgs, it feels like a Higgs
 - Indeed 'we have found it"
 - = "a Higgs boson"

Conclusion

- Lightening tour of key measurements of the Standard Model made at hadron colliders
- Selected examples to illustrate how different aspects are measured
 - Jets to study the strong coupling
 - W and Z bosons to study the weak coupling
 - Example: top quark cross-section measurement
 - The discovery of the Higgs boson
 - and ... what we've learnt since
- ATLAS and CMS have a wide ranging physics program and we use these detectors to measure as many aspects of the SM as possible
- Stay tuned for exciting physics ahead!