African school of fundamental physics and applications, Dakar 2014

Introductory talk

Saliou DIOUF, PhD

Laboratoire Rayons X Département de Physique Université Cheikh Anta Diop

Outline

- Background
- D PhD
- International conferences attended
- □ Some recent Publications...

Background

Trento-Italy (PhD- Materials Science)

Trento- Dakar (Masters- Physics)

Lecturer Univ. CAD Dept. Physics

PhD Context

4

Spark Plasma Sintering (SPS)

- -Fast heating rate
- -Short isothermal holding
- -"Low" temperature
- -Application of pressure

Nanostructured powder

- High resistance to plastic deformation
- Large density of structural defects

Low heat input

Sintering of nanostructured powders with limited grain growth

How do they affect densification and sintering in a pressure-assisted sintering process ?

PhD materials synthesis ...

STARTING MATERIAL

commercial water atomized Cu powder purity of 99,6% particle size <100μm 0.2% of oxygen

CRYOMILLING PARAMETERS

Milling time:AMilling rate :ASpheresCBall-to-powder ratio:A

8 hours
300 rpm
6 mm φ stainless steel balls
30:1

SPARK PLASMA SINTERING PARAMETERS:				
Starting pressure	up to 25 MPa			
Final pressure	up to 60 MPa			
<u>Heating rate</u>	50°C/min			
	100°C/min			
	150°C/min			
Sintering temperature	up to 900°C			

The synthesized materials characteristics....

D (nm)	ρ _d (10 ¹⁶ m ⁻²)	%CuO	%Cu ₂ O	O (%)	N (%)
17 ± 2	6,26 ± 0,04	$2,0 \pm 0,4$	1,8 ± 0,3	1,2	0,2

Very fine and highly strained structure

Influence of dislocations on thermal stability

7

	Mean	Dislocation
	grain	density (x 10 ¹⁶ m ⁻²)
	size (nm)	
As-milled	17	6,25
290°C	22	1,40
400°C	25	0,60
500°C	34	0,35
600°C	55	0.35

XRD data obtained using PM2K Program

Tersid tubular high vacuum furnace (10⁻⁵ mbar)

Thermal Stability of The Cryomilled Copper

$\tau_d = 3.3 \frac{\phi \gamma_{gl}}{D}$	$\tau_s =$	$\frac{Gb\rho^{\frac{1}{2}}}{8\pi(1-\nu)}$	$ au_z = 0.5 rac{f_{particles} D \gamma}{r_{particles}^2}$	
	$ au_{ m d}({ m x}10^7{ m J}$	T/m^2) $ au_{s} (x \ 10^7)$	J/m^2) $ au_z (x \ 10^7 \ J/m^2)$	m ²)
As-mille	ed 5,63	19	0,023	

$$au_s >> au_d$$

Acta Materialia 58 (2010) 963-966

Spark Plasma Sintering (SPS) Mechanisms

SPS Mechanisms: Song Model

$$\Delta T = \frac{16}{\pi^2} \frac{I_p^2 \rho \Delta t}{C_v \rho_m} \left[\frac{1}{r^2 - (r - x)^2} \right]^2$$

$$I_p = \frac{4r^2}{\phi^2} I_S$$

 ρ = resistivity (Ω .m)

 ρ_m = theoretical density (g/cm³)

C_v = specific heat (JK⁻¹mol⁻¹)

 Δt = duration of the pulse

Is = current passing through the sample

I_p = current passing through two particles

r = particle size

 ϕ = inner diameter of the die

J. Am. Ceram. Soc. 89(2) (2006) 494-500

SPS Mechanisms: Song model

Particle's diameter: 1-3 mm Pressure: 6 MPa Specimen dimensions: - 10 mm height

- 20 mm diameter

SPS Mechanisms: Song model

12

two different morphologies:

- 1. one cellular with only a few small dimples in the intercellular regions (bottom-left side): weak bonding
- 2. another fully dimpled (bottom-right): ductile fracture

- Coarser and differently oriented (50-100 μm layer) (right side)

Equiaxed grains (left side)
 Evidence of solidification under
 Large undercooling

SPS Mechanisms: Effect on nanostructure on densification

13

SPS Mechanisms: Effect on nanostructure on sintering

14

Temperature: 700°C
Pressure: 20 & 30 MPa

Fracture Surface

15

Atomized powder:

rearrangment 2) localized deformation 3) bulk deformation sintering

Nanostructured powder:

1) rearrangment 2) sintering 3) deformation

SPS Mechanisms: Effect on nanostructure on sintering (WHY?)

Nanoparticles have higher surface energy.

Surface overheating

Nanostructure: - increases resistivity (300%) - increases specific heat (16%)

SPS Mechanisms: Effect on nanostructure on sintering

Within the overheated layer **mass transport mechanisms** are activated by the peculiar characteristics of the nanostructure:

- small grain size;
- large density of dislocations

18

The role of dislocations on volume diffusivity

Dislocation pipe diffusion $D_p = 10^5 - 10^6 D_v$

P. Shewmon, Diffusion in Solids, 2nd edition, 1989, ed. The Minerals, Metals and Materials Society, Warrendale (PA), pp. 202-205

 $D_{eff} = D_v (1 + g (D_p/D_v))$

g = the fraction of atoms in the pipe a = pipe radius = 0.5 nm ρ_d = dislocation density

 $g = a^2 \rho_d$

 $\rho_{d} = 6.26 \times 10^{16} \text{ m}^{-2} \longrightarrow \frac{g = 0.01}{D_{eff} = 10^{2} D_{v}}$

Mechanical properties: Effect of Heating Rate and Pressure on Grain Size Distribution Applying....

only P_i

Heating (°C/min)	rate	Mean Size, D (r	Grain nm)	ρ _d (x10 ¹⁴ m ⁻²)
50		38		4,26(1,79)
100		48		6,37(2,82)
150		67		3,99(1,86)

P_i & P_f

Heating (°C/min)	rate	Mean size, D (n	grain m)	Dislocation (10 ¹⁵ m ⁻²)	density
50		52		2.78 (1.50)	
100		58		1.84 (0.61)	
150		58		2.44 (1.33)	

Effect of Heating Rate on the Size Distribution Heating rate 50°C/min

Broad distribution of grain size with defects

The temperature reached in the core of the particle leads to a very slight grain growth (grain size in the starting powder was 22 nm)

Effect of Heating Rate on the Size Distribution Heating rate 100°C/min

Tendency to the formation of a bimodal distribution of grain size with ultrafine and micrometric grains

- Coarsened grains are defect free and very clean
- In the ultrafine areas the grain size is about 100 nm

Effect of Heating Rate on the Size Distribution Heating rate 150°C/min

- Bimodal distribution of grain size with ultrafine and micrometric grains
- Coarsened grains are defect free and very clean
- In the ultrafine areas the grain size is well above 100 nm

Tensile Properties

23

50°C/min

Holding	Relative	Yield	UTS	Elongation
time	density (%)	Stress	(MPa)	at fracture
(min)		(MPa)		(%)
2	96,7	289	296	2,3
5	95,6	271	279	3,2
10	98,3	294	300	5,7

Absence of plastic instability

Tensile Properties

100°C/min

Holding	Relative	Yield	UTS	Elongation at
time	density	Stress	(MPa)	fracture (%)
(min)	(%)	(MPa)		
2	97,2	336	347	2,0
5	95,8	286	291	0,8
10	96,8	289	298	2,8

150°C/min

Holding	Relative	Yield	UTS	Elongation
time	density	Stress	(MPa)	at fracture
(min)	(%)	(MPa)		(%)
2	96,6	279	284	1,8
5	94,4	279	287	2,5
10	94,6	266	270	0,9

Conclusions Thermal stability and sintering behaviour

- 25
 - 1. In the as cryomilled powder the resisting stress applied by dislocations is much higher that the driving stress;
 - 2. The Zener stress due to oxide particles is negligible;
 - Nanostructure and dislocation density enhance sintering whereas high resistance to plastic deformation retards deformation.
 - 4. large density of dislocations may activate a dislocation pipe diffusion mechanism,
 - 5. since about 1% of atoms belong to dislocations in the cryomilled powder.

International conference presentations

✓ L'Initiation aux Logiciels d'Analyse des Materiaux par Diraction des Rayons X et des Electrons", 16 - 18 April 2013, Faculte de Physique, USTHB, Algiers, Algeria.

✓ EuroPM2012, 16 - 19 September 2012, Basel, Switzerland.

✓ Third African School and Workshop on X-Rays in Materials, Some Established Techniques and Practical Applications, UCAD, Senegal, January, 23 - 28, 2012.

✓ Euromat, 12 - 15 September 2011, Montpellier, France

✓ Second African School and Workshop on X-Rays in Materials, Some Established Techniques and Practical Applications, Cheikh Anta Diop University of Dakar, Senegal, January, 19 - 24, 2009.

Some recent scientific productions...

S.Diouf, A. Molinari, <u>Materials Letters</u> 111 (2013) 17-19
S. Diouf et al., <u>Powder Metallurgy</u> 56 (5) (2013) 420-426
S. Diouf et al., <u>Powder Metallurgy</u> 55 (3) (2012) 228 – 234
S. Diouf, A Molinari, <u>Powder Technology</u> 221 (2012) 220-227
A. Molinari, et al. <u>Int. J. Powder Metall</u>., 2012, vol. 48, no. 6, pp. 31-39

Acknowlegments

28

✓ University of Trento✓ Prof. Alberto Molinari (PhD adviser)

✓ ASP 2014 organizers

Thank you...

Thermal Stability of The Cryomilled Copper Energy Stored By Dislocations And Grain Boundary

$$\Delta H_{edge} = \rho_{edge} \frac{Gb^2}{4\pi(1-\nu)} \ln\left(\frac{R_e}{r_0}\right)$$

$$\Delta H_{screw} = \rho_{screw} \frac{Gb^2}{4\pi} \ln\left(\frac{R_e}{r_0}\right)$$

	ΔH _{screw}	ΔH_{edge}	ΔH_{disl}	ΔH_{gb}	ΔH_{total}
As- nilled					
	5,99	9,42	7,70	6,33	14,03
290°C	1,44	2,26	1,85	4,89	6,74
100°C	0,74	1,17	0,96	4,30	5,26
500°C	0,40	0,63	0,52	3,16	3,68
600°C	0,45	0,70	0,58	1,96	2,54

 $\Delta H_{gb} = 3.3 \frac{\gamma_{gb}}{D}$