
New Features in PanDA

Tadashi Maeno (BNL)

2

Old Workflow

Site

PanDA server

pilotpilot

Worker Nodes

submit

get

End-user

analysis jobs
 + src files

job

client
tools

client
tools

remote

task/job
repository

(Production DB)

production
 jobs

Production
 managers

define submitter
(bamboo)

submitter
(bamboo)

3

New Workflow

Site
pilotpilot

Worker Nodes

submit

get

End-user

analysis task
 + src files

job

client
tools

client
tools

JEDIJEDI

generate

jobs

tasks

PanDA server

remote
request

ReqIF/DEFTReqIF/DEFT

4

Main Changes
 Tasks are submitted to the system instead of jobs

– Task = runs on input datasets to produce output
datasets

– Job = runs on input files to produce output files
 Many client functions (job submission, retry, kill)

are moved to the server-side
 Built-in retry mechanism at the same site and/or

other sites
 Capability for task chaining
 Optimization based on job profile measured by

scouts
 Tasks are more exposed to users rather than jobs

5

Benefits
The system works more coherently with

user's perspective
– Users are interested in tasks rather than jobs
– Allows task-level workload management

• Retry/kill/reassign tasks
Simplification of client tools and

centralization of user functions
– Better maintainability

Optimal usage of computing resources
without detailed knowledge on the grid
– Lower hurdle for users

Optimization of database access to
get/provide task information

6

Main functions

Scout jobs
Dynamic job generation
Automatic retry
Task Chaining
 Prestaging from TAPE
Merging
Network-aware brokerage

7

Scout jobs
Scout jobs are introduced to measure job

profiles before generating a bunch of jobs
– Scout-avalanche chain

 If no scout jobs succeeded the task is
aborted
– The user can avoid filling up the system with

problematic jobs
Job parameters are optimized by using real

job profiles, which is more accurate than a-
priori estimate by users
– Some users unintentionally submit short jobs

to long queues since they don't know
beforehand how exactly long their jobs take

8

Dynamic job generation
 Input for jobs is optimized for each

site/queue
– e.g., more input files for larger scratch disk

and/or longer walltime limit
Considering # of cores and memory size as

well
– Good for MCORE and exotic resources

The number of input files for each job could
vary even in the same task
– Tasks can be configure for all jobs to have the

same number of input files if necessary

9

Automatic retry
JEDI has a capability for automatic retry at

the same or another site
 Input is dynamically split or combined based

on site/queue configuration
– For example, if jobs are reassigned to a site

where longer walltime limit is available, jobs
are reconfigured to run on more input files

Jobs are not atomic any more
– PandaMon shows ratio between successful and

failed inputs and hides retried jobs

10

Task Chaining
A capability of task chaining is available
Example

– Completion of an evgen task can trigger a G4
simulation task

The downstream task starts processing
before or when the upstream is completed,
according to task definition
– e.g., G4 jobs can be generated as soon as new

EVNT files become available

11

Prestaging from TAPE
When inputs are available on TAPE,

subscriptions/rules are made in DDM and
jobs are activated once callbacks are
received
– The same machinery has been used for

production and now is used for analysis as
well

More TAPE usage
Will use separate shares for production

and analysis in the future so that those
activities would not interfere with each
other

12

Merging

JEDI has a capability to merge files in a
task
– To merge files at T2 before transferring

back to T1
– To merge user's output files

Jobs go to merging state
– Files actually start being merged when all

jobs at the site finished/failed
 Possible to have a separate task to merge

files
– e.g., super merge and log merge

13

Network-aware brokerage
JEDI brokerage is aware of network

performance measured by cost matrix
Currently only for analysis
Example

– When siteA has free CPUs and good network
connection to siteB where input data is available,
jobs can be sent to siteA even if siteA doesn't
have the input data. The jobs run at siteA and
remotely read data from siteB

– Jobs can go to siteA and siteB while jobs
went only to siteB in the old system
• Users can use more CPU resources in the new

system

14

Future Plans

To improve the brokerage to take the site
failure rate into account
– e.g. avoid problematic sites for reattempts

To use pre-merged files as final products
when merge jobs fail
– Currently pre-merged files are discarded

when merge jobs fail
– For analysis

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

