Preparing for Run-2

Andrej Filipčič Jožef Stefan Institute, Ljubljana

- CPU and Storage organization
- Specializing sites for different workflows
- Flat hierarchy

Run-1 model, briefly

• Strict hierarchical model (Monarc):

- Clouds: T1 + T2s (+ T3s)
- No direct transfers between foreign T2s
- Relaxed towards the end of Run-1 (Multi-cloud production T2s can process jobs of many clouds)

Production organization:

- Tasks assigned to T1s
- ✤ T1 is the aggregation point for the output datasets of the tasks
- T2 PRODDISK used for input/output transfers from/to T1
- T2 disk space:
 - distribute the final data to be used by analysis
 - store secondary replicas of precious datasets

Planning for Run-2 model - facts

Network globally improved

- Much higher bandwidth (an order of magnitude increase)
- Most of the links between ATLAS sites provide sufficient throughput : full mesh for transfers can be used
- Many Tier-2 sites provide the Tier-1 level stability of computing, storage and WAN
 - Many in LHCONE or other high-throughput networks
 - Tape resource is the only difference between Tier-1s and large Tier-2s, as far as the usability for ATLAS is concerned
- CPU only (opportunistic) centers are fully integrated in ATLAS
 - Some run all kind of tasks, including data reprocessing
 - Have good connectivity to geographically close Storage Elements

CPU and Storage organization

- Breaking the barrier between the Storage Element and Computing Element:
 - Remote I/O, job overflow, remote fail-over of input or output file staging → storage not strictly bound to the site computing resource
 - Tier-1, Tier-2, Tier-3 storage classification does not make much sense anymore
- ATLAS Storage pool:
 - ✤ TAPE
 - STABLE disk storage T1 + reliable T2 (former T2Ds)
 - UNSTABLE disk storage less reliable T2s
 - VOLATILE disk storage unreliable T2s, T3s, opportunistic storage

Using new storage classes

• TAPE:

will be addressed by Richard

• STABLE:

- Common pool of Tier-1 and Tier-2 storage, NO differentiation of sites
- Tier-1 and Tier-2 sites will be used at the same level for storing custodial, primary data
- Production tasks will be assigned/brokered to Tier-2 sites as well
- Tier-2 sites will be used to store the final outputs of the production chain

Using new storage classes 2

• UNSTABLE:

- Will be used for secondary data (for analysis)
- Will not store primary data
- We will not rely on the sites as the source of dataset transfers, although they can/will still serve this functionality
- Simply said, they will play a role of the old Monarc Tier-2s
- VOLATILE:
 - Will not be used for the planned replication of datasets
 - Will not serve as the source for the centrally-operated data transfers
 - Can still be used to broker the jobs to close CEs (Tier-3 analysis...)
 - LOCALGROUPDISK SEs, Rucio cache storage ...

Production / Analysis

- Run-1: 75% / 25% (slots occupancy ~ cputime usage)
- Run-2: 90% / 10% (not even a rough estimate)
 - Bulk of analysis (Derivation) moving to (group) production
 - Remaining analysis will be shorter and I/O intensive

Reduce the merging

- Avoid it if possible (simulation, reconstruction)
- Local merging merge on the site, where the files to be merged are
- Jobs will produce bigger outputs
 - Good for tape storage
 - Bigger files transferred good for efficient transfers (but less files to transfer)

Tier-2 site classification

Based on ASAP metric

- ATLAS Site availability for analysis
 - Analysis tests do all relevant checks of CE and SE availability
- See Martina's talk later today

• 3 types of Tier-2s: AN EXAMPLE, to be refined, rediscussed

- ➡ T2S : STABLE, ASAP > 90% in the last 3 months
- → T2U : UNSTABLE, 90% > ASAP > 80% in the last 3 months
- → T2V : VOLATILE, ASAP <80% in the last 3 months
- ICB policy:
 - T2V will be exposed to ICB which will inform the corresponding funding agency
 - → IF T2V has ASAP < 80% for more than 6 months, it will be put in degraded mod
 - Storage will be removed from ATLAS
 - Can continue to contribute as Tier-3 (CPU)
- Metric might be too simple (network throughput), further experience needed

Consequences for production

- STABLE storage effectively doubles the space available for production:
 - ~50 out of ~80 Tier-2 SEs will be part of it (today's T2D, in 2015 T2S)
 - Not limited to Tier-1 disk space for brokering
- Much larger space to consolidate the production data
 - Less complex rules for data placement policies, less need for data migration
- Solving the always problematic full Tier-1 space and less used Tier-2 space which did occasionally block the production of some tasks in the past

Consequences for analysis

- Decrease the analysis pressure on Tier-1s, where the important data was stored
- Adapt the new mechanisms for data replication (like PD2P) to reduce the "unnecessary" migration of data

Job type	Run-1 evts/out [MB]	Run-1 walltime [h]	Run-2 evts/out [MB]	Run-1 walltime [h]
MC evgen	5000	0.1	5000	0.1
MC simul	50-100 / 100	6-24	500-1000 /1000	8-30h - mcore
MC HITSmerge	1000 / 1000	0.3	-	-
MC digi+reco	1000 / 500	10	5000 / 2500	6 - mcore
MC AODmerge	5000 / 2500	2	-	-
Data reco	1000 / 500	6	1000 / 500	6
			10000 / 5000	8 – mcore (?)
Group Prod	10000 / 100	1	10000 / N * 100	2

Numbers are very rough, Run-2 speed up not included

Production / Analysis

- Run-1: 75% / 25% (slots occupancy ~ cputime usage)
- Run-2: 90% / 10% (not even a rough estimate)
 - Bulk of analysis (Derivation) moving to (group) production
 - Remaining analysis will be shorter and I/O intensive

Reduce the merging

- Avoid it if possible (simulation, reconstruction)
- Local merging merge on the site, where the files to be merged are
- Jobs will produce bigger outputs
 - Good for tape storage
 - Bigger files transferred good for efficient transfers (but less files to transfer)

Conclusions

- New production and data management system provides many possibilities for further improvements and dynamic optimizations
 - Unfortunately, the commissioning was delayed, to give us more time for big changes well in advance of the Run-2 startup
- Fortunately, many of the changes can be implemented before the Run-2 starts
 - Many hooks are present already, we just need to use and tune them
- And even during the Run-2 we can afford to bring drastic improvements to our distributed system
- BUT, the production STABILITY will be the FIRST PRIORITY during data taking
 - In the last 2 years, we got used to a bit relaxed modus of operandi
 - In the next few months, we need to gradually tighten the overall stability to be ready for Run-2

- Massive multicore for ~80% of production
 - All G4 simulation and all digi+reco
 - Effective drop in running jobs from 200k to 60k (20k 8-core + 40k single-core)
- JEDI dynamic resizing tune the jobs to 6-12h
 - Avoid failures and cpu losses for very long jobs
- Automatic healing:
 - Split jobs too long
 - Increase memory requirements for out-of-memory failing jobs

Balancing the site usage

- Provide a steady flow of multi-core/single-core jobs
- Shorter jobs (much less than 2 days) better for fast turnaround
 - High priority jobs can get resources faster
 - Borrowed cpus can be drained sooner
- ... and better for sites
 - Less cpu lost due to a downtime
 - Faster node draining for reservations or maintenance

FLAT Hierarchy

- STABLE storage with "stable" computing resources and fast network connections – A set of reliable resources
- 2nd layer of the less reliable, sometimes unavailable, pool of computing resources
- ATLAS plans to use the STABLE layer in a completely FLAT way
 - optimizing all the workflows (cpus, transfers, storage) for fast turnaround while minimizing the resource usage (minimize the transfers, balance disk usage...)

FLAT hierarchy

Rucio supports distributed datasets:

- → A dataset replica can be distributed over many sites
- Strict ATLAS cloud model does not make much sense any more
 - → Tasks are brokered to all stable sites, the point of consolidation of the production chain output
- A task still needs to be processed by many sites job brokering will rely on
 - Input data proximity
 - Transfer cost matrix
 - Dynamic evaluation of transfer time (number of assigned jobs, recent history of past activity)

New Prodsys and DDM:

- Intermediate datasets (middle of the chain) will stay unconsolidated distributed among the sites, skipping the output transfers
- → This might have to be limited to T2S sites only
- Final datasets consolidation:
 - Primary replicas will be consolidated
 - Secondary replicas can stay distributed at the sites that produced the files

Global cloud

- Tasks do not need to be assigned to any site global task
 - The final consolidation can be delayed
- Final (primary) datasets do not need to be consolidated at all
 - Will be evaluated
 - Might be too difficult to manage (migration to tape)
- Big global task can be managed in a better way
 - Less tasks to manage, better activity overview, clearer prioritization
 - Large production tasks have been artificially split in Run-2 to run everywhere
- Experience with the new system is needed to choose the best option

Specializing the sites for workloads

• The pre Run-1 constraints for job placement are gone

- Frontier instead of direct DB access \rightarrow data reprocessing runs anywhere
- High priority jobs (HLT reprocessing, Tier-0 spillover) with a short deadline could run everywhere
- But not all the sites are equal
 - ➡ Tier-1 vs Tier-2 is definitely not the correct answer
- ALL the jobs are important,
 - → But not all the job types run equally well on all the sites
 - Some sites are slow for analysis but they are good for data reprocessing
 - Some sites are very big but cannot run 100% of heavy I/O jobs
- Differentiation was already used during Run-1 by limiting the job types through the fairshare (AGIS settings)
 - e.g. evgensimul=60%,all=40%
- But not all the jobs are EQUALLY important:
 - Some tasks have short deadline
 - Some large activities have close deadline (physics conferences)

Future specialization

- Sites will still be able to limit the heavy jobs to protect their infrastructure from the overload
- Dynamic specialization:
 - I/O expensive jobs will be automatically throttled by the central system based on recent history – keeping track of data transferred to site and reduce the heavy job assignment
- Migration from fixed bamboo queues to per task/job heaviness estimates
- Forced specialization:
 - ADC will specialize sites for certain activities, if the site provides custom resources (more memory per cpu, GPU availability ...)
- New specialization classes will be defined after gaining experience with the new production system for custom requests with short deadline
 - Further site categorization needed to address processing power, network throughput and fast completion of urgent tasks