

The TDCpix ASIC: High Rate Readout of Hybrid Pixels with Timing Resolution better than 200 ps

Gianluca Aglieri Rinella, S. Bonacini, P. Jarron, J. Kaplon, A. Kluge, M. Morel, M. Noy, L. Perktold, K. Poltorak

On behalf of the NA62 Gigatracker project

1. Target application: NA62 Gigatracker

2. TDCpix ASIC overview and capabilities

3. First tests and characterization

NA62 Gigatracker

- NA62: Direct measurement of rare decay $K^+ \rightarrow p^+ nn$ - In flight decay of Kaons from high intensity beam
- Giagatracker
 - Measure momentum
 - Time stamp with 200 ps resolution (per station)

Gigatracker station

TDCpix overview

- 1800 channels
 - $-~45\times40$ pixels of 300 \times 300 μm^2
- Hit rate 0.8 MHz/mm²
 130 MHits/s per chip
- TDCs with Time Over Threshold
- No digital activity in the matrix
 Discriminated pulses transmitted
 - differentially to periphery
- CMOS 130 nm

FEE 22/5/2014

gianluca.aglieri.rinella@cern.ch

Time walk and Time Over Threshold

Pixel cell

Dynamic Range	0.5-10 fC (3100-62500 e)
Dual polarity	YES
Gain	65 mV/fC (Typ)
Peaking time	5 ns
Current	140 μA (FE) + 160 μA (Discriminator, TX driver)
Input noise (C _{in} 250 fF)	2.6 mV (250 e)

Periphery

- TDCs
- 4 Readout Units
 - Data driven readout (trigger-less)
- Two bandgap references, temperature interlock

TDC based on Delay Locked Loop

TDC

- 9 channels per column
 - 5 pixels each
 - Collision detection
 - Dual edge stamping
 - Time Over Threshold
- Delay Locked Loop
 - 320 MHz reference
 - 32 bins of 97.7 ps
 - Shared between two TDCs

Power

- 1.2 V supplies
- Pixels

 650 mW (450 mW/cm²)
- Periphery

 2000 mW (2500 mW/cm²)

Noise and signal integrity

- No switching in matrix
- Triple-wells
- Substrate isolation
- Shielded routing

Congestion and TDC uniformity

Congestion

 Careful floor
 planning

- Uniformity of TDC channels
 - Custom design,
 placement, routing

Sign-off verification

- Full chip simulations
 - Complex and large design
- Physical verification

Laboratory tests

- 5 chips bonded for tests
- 1 chip under systematic characterization

Functionalities

Block	Status	Remarks
Configuration circuits	WORKING	In all 5 chips
PLL	WORKING	3.2 GHz
Serializers	WORKING	3.2 Gb/s
Bandgaps	WORKING	
Temperature Interlock	WORKING	
Column bias DACs	WORKING	200 DACs
In-pixel threshold trimming	WORKING	1800 DACs

DACs

200 DACs
 - 10*20 Column pair bias blocks

Pixel front-end

- All 1800 pixels functional
 - Injection of charge pulses
 - Threshold scans
- Gain and ENC
 - Good agreement with simulations

Threshold offsets

Hit transmission timing performance

- Pixel -> TX line -> Arbiter -> Test output
 TDC not included
- Less than 65 ps RMS
 Q > 2 fC
- No dependence on position in the column

TDC linearity

- TDC test input
 - External test pulse
 - No pixels involved
 - Random timing

• DNL and INL < 0.4 LSB

Full chain timing performance

Pixel -> TDC -> Output

- Scan over the full clock period for each charge
- Timing performance dictated by pixel discriminator output jitter

Measurements with prototype

- Hybrid assembly prototype
 - 200 μ m thick, p in n pixel sensor

Full chain timing performance (prototype)

- Laser pulses

 Sensor Bonded
- Front-end and discriminator
 - Jitter < 75 ps RMS</p>
- TDC
 - Jitter: < 10 ps RMS</p>
 - Resolution: 40 ps
 @ 320 MHz
- T₀ < 75 ps RMS
 - Including Time walk
 Compensation
 - Bias 300 V, Q > 2 fC,
 C_{det} = 250 fF

Timing particles in beam test

Summary

- TDCpix hybrid pixels readout ASIC
 - 45×40 pixels of 300×300 μm^2
 - Nominal input range 0.5-10 fC / 3100-62500 e
 - Hit rate
 - 0.8 MHz/mm², 130 MHits/s
 - Trigger-less architecture
 - 4 × 3.2 Gb/s links
- First laboratory tests
 - No bugs detected
 - Analog and TDCs performance as simulated and very close to prototype
 - No performance changes due to large scale integration
- Timing performance with particles < 200 ps RMS
 - Measured with prototype chip

Spare slides

Full list of requirements

Parameter	Requirement
Number of pixels per chip	$1800 = 45 \ge 40$
Size of pixels	$300 \ \mu \mathrm{m} \ge 300 \ \mu \mathrm{m}$
Active area per chip	$12 \text{ mm x } 13.5 \text{ mm} = 162 \text{ mm}^2$
ASIC design time binning	100 ps
Sensor size	$27.0 \text{ mm x } 60.8 \text{ mm} = 162 \text{ mm}^2$
Thickness of sensor	$200 \ \mu \mathrm{m}$
Type of sensor	p in n
Thickness of read-out chip	$100 \ \mu \mathrm{m}$
Dynamic input range	0.7 - 10 fC, $5000 - 60000$ electrons
Design particle rate per chip	$105 \mathrm{~MHz}$
Rate of center pixel	114 kHz
Rate of center column	$2.7 \text{ MHz} \text{ or } 0.66 \text{ MHz}/\text{mm}^2$
Average rate per pixel	58 kHz
Max. dead time	1 % (2 % in beam center)
Data transfer rate per chip	6 Gbit/s
Design transfer rate per chip	12.8 Gbit/s
Total dose in 1 year	$6 \ge 10^4 \text{ Gy}$
Neutron flux in 100 days	$2 \ge 10^{14}$ 1 MeV neutron equivalent cm ⁻²
Max. Material budget/thickness	$0.5 \% X_0$ per station
Operating temperature	-20 to 5 °C
Operating vacuum	10^{-6} bar

Radiation

- 2×10^{14} 1 MeV n_{eq} cm⁻² / year
- 6×10⁴ Gy / year
 - 1 year = 100 days beam time
- Fluence and dose gradient
- Sensor cooling
- SEU protection
 - Triple Modular Redundancy for all configuration bits and state machines
 - Data FIFOs not protected
 - Permanence on chip ~10ms

Timing resolution limit of sensor

Timing resolution

- Laser: 75 ps RMS
- Test beam: 175 ps RMS

Random fluctuations of input current signal shape

- Position of track hit in pixel
- Charge straggling
- Position scan with laser 85 ps RMS
- Charge straggling > 60 ps RMS

Pixel scans with laser

CLK generator, PLL, Serializers

TDCpix TDC jitter

- External pulse source
 - Jitter: 30 ps RMS
 - Scan of 10 ps steps

- 50 ps RMS
 - Include on chip pulse distribution
 - Upper limit to TDC intrinsic jitter

TDC jitter

Full chain timing performance

FEE 22/5/2014

Data readout and data word format

• High speed serial

- 4× 3.2 Gb/s ports with 8b/10b encoding

Auxiliary multi-serial ports
 4× (4× 640 Mb/s) ports

Туре	Pixel address	Pileup	Lead coarse time	Lead Fine	ТоТ	Trail Fine
(1)	(12)	(5)	(13)	Time (5)	(7)	Time (5)
(48)						

Hit losses due to collisions

- Hit processing statistics
 - Nominal rate of pixel hits in peak rate column: 3.3 MHz
 - Simulating with 4 MHz hit rate
 - Nominal readout frequency 320 MHz

#######	###############	+ # # # # # # # # # # # # # # # # # #	+ ############## ######################	****	****	* # # # # # # # # # # # # # # # # # # #	##	
# Hit statistics report from monitor instance								
# :tdc_tb(functional):inst_tdc_mon@								
<pre># and process :tdc_tb(functional):inst_tdc_mon@tdc_mon(behavioural):p_col0_datamon:</pre>								
#######	##############	+ + + + + + + + + + + + + + + + + + + +	******	******	******	******	##	
# Clk Period 3.125 ns								
# Mean interval between hits 250 ns								
* * * * * * * * * * * * * * * * * * * *								
# Group	# Hits in	# Hits out	# Pileup	# Pileup cnts	# Matched	# Unmatched	# (
#######	###############	+ # # # # # # # # # # # # # # # # # # #	******	****	****	+ ############## ######################	##	
8	2604	2583	19	19	2583	2	0	
7	2427	2410	15	14	2410	2	0	
6	2394	2376	18	18	2376	0	0	
5	2329	2314	15	15	2314	0	0	
4	2230	2214	13	13	2214	3	0	
3	2147	2130	17	17	2130	0	0	
2	2028	2012	16	15	2012	0	0	
1	1946	1934	11	10	1934	1	0	
0	1866	1856	10	10	1856	0	0	

TOTAL	19971	19829	134	131	19829	8	0	
* * * * * * * * * * * * * * * * * * * *								

Challenges

- Noise mitigation and signal integrity
 - No digital activity in the matrix
 - Triple-wells, substrate islands separated by low doped regions
 - Routing with shielding
- Congestion
 - Careful floor-planning
- Uniformity of TDC bins, channels, skews
 - Custom design, placement, routing of critical blocks
- Functional and physical verification
 - Complex and large design
 - Mixed signal

Substrate separation

FEE 22/5/2014

Signal integrity

Differential line from pixels to EoC 15 mm, 3ns delay, R=1.3 kΩ

Schematic cross-section of wiring of time stamp registers banks

DLL code traces shielded by power/gnd traces

Power estimates

NOMINAL CONDITIONS

Supply voltage1.2 VTemp25 CMain clk freq320 MHz

Note: at cell inputs

Qty Power domain Power Nominal Current **Total Current** Total Remarks and conditions [mW] [mA] [mA] Power Pixel Analog 1800 VDDanalog 0.140 252.000 0.168 302.4 Constant current bias Pixel Digital 1800 VDDdigital 0.160 288.000 0.192 345.6 Constant current bias Col bias analog 20 VDDanalog 1.000 20.000 1.2 24 Constant current bias Col bias digital 20 VDDdigital 0.340 6.800 0.408 8.16 Constant current bias Hit Arbiter 0.055 19.8 GAR Power Static calc, VCD 360 VDDdigital 0.046 16.500 DLL SM 20 VDDdigital 0.950 19.000 1.14 22.8 AK estimate, checked by GAR DLL 20 VDDtdc 10.333 206.667 12.4 248 Lukas DLL review Buffers 32x 120 VDDtdc 1.750 210.000 2.1 252 Spectre sims FineRegister 720 VDDtdc 0.208 150.000 0.25 180 Spectre sims Encoder 720 VDDtdc 0.001 0.840 0.0014 1.008 Power Static calc. vcd 12.7 Power Static calc. vcd Coarse time unit 40 VDDdigital 10.583 423.333 508 Quarter chip RO 4 VDDdigital 46.667 186.667 56 224 Analysis by GAR Serializer 4 VDDserializer 72.917 291.667 87.5 350 Reviewed 4/2/2013, with TxLines buffers PLL 1 VDDpll 91.667 91.667 110 Reviewed on 4/2/2013 110 TOTAL [mW] 2596 VDDanalog 326 12.6% VDDdigital 43.5% 1128 26.2% VDDtdc 681 VDDpll 110 4.2% 13.5% VDDserializer 350 TOTAL [mA] 2163 VDDanalog 272 VDDdigital 940 VDDtdc 568 VDDpll 92 VDDserializer 292

gianluca.aglieri.rinella@cern.ch

1 LL 22/ J/ 2014

•

•

