

ABC 130 – Silicon Strip Readout Chip for ATLAS Inner Tracker Upgrade

Krzysztof Świentek AGH-UST, Krakow

Faculty of Physics and Applied Computer Science AGH University of Science and Technology

Front End Electronics (FEE 2014), 19 – 23 May 2014, Argonne National Laboratory, USA

- CERN: F. Anghinolfi, J. Kaplon, F. Sousa
- University of Geneva: D. La Marra
- AGH-UST: K. Swientek, W. Dabrowski, M. Bochenek, P. Rymaszewski
- UCSC: A. Grillo, J. De Witt
- University of Pennsylvania: M. Newcomer, N. Dressandt
- RAL: M. Key-Charriere, P. Phillips, B. Gallop
- UCL: M. Warren, S. Kilani
- University of Liverpool: A. Greenall

New All-silicon ATLAS Inner Tracker

- New strip tracker size
 - 193 m² of silicon, 74x10⁶ channels
 - ~20 000 modules
 - ~300 000 ABC130 chips

- ABCD3T
 - presently used in ATLAS SCT
 - BiCMOS DIMILL 0.8um
- ABCN-25
 - module development vehicle chip
 - IBM CMOS 250nm
- ABC130
 - new trigger and readout architecture
 - simplified hybrid
 - IBM CMOS 130nm

- Barrel "short" strips stave
 - 26 sensors of 10x10cm
 - 2 hybrids per sensor
 - 52 hybrids in stave, each with 10 ABC130 and single HCC

- 1.2m —
- Sensor:
 - 4 columns of strips
 - 1280 strips in a column
 - 74.5 um pitch
 - 2.5 cm strip length

- Hybrid glued directly to the sensor
- 256 channels in ABC130

 Data concentrator

Bonding ABC130 to sensor

- Single ASIC bonded to two sensor columns/rows
- Four rows of input pads

ABC130 readout chain

- Simpler hybrid comparing to present one
- Each ABC130 is a data concentrator with priorities

Readout chain with broken chips

- Bidirectional data connection
- Single broken chip/connection in a loop is acceptable

FEE 2014, Argonne, 20.05.2014

✓ ▲ 256us latest L1

- Three triggers
 - L0 synchronous
 - R3 Regional
 Readout Request
 (~10% of detector) –
 input for L1 decision
 - L1 whole detector readout
 - R3 prioritised over L1
 - Non sequential readout – self describing data blocks needed

ABC130 block diagram

- Two RAM buffers L0 & L1/R3
- Different data compression logic (DCL) for L1 & R3

Designed by Jan Kaplon

Requirements:

- ENC <1000e- @3pF
- ENC <1500e- @10pF
- Low power consumption (<300uW/channel)
- Peaking time <25ns (time walk <16ns)

Architecture:

- binary output
- 5-bit current DAC in each channel
- single 8-bit threshold DAC for 256 channels

DCL – Data Compression Logic

Fast Cluster Finder – optional input to L1

- Sensors are mounted to both sides of a stave
- A charged particle crossing these coupled layers would leave one "cluster" at each layer. The coincidence of clusters indicates the presence of a track. The offset in the cluster positions is related to the pT of the track.
- No input from muon or calorimeter is needed. Haichen Wang, Workshop on Intelligence Tracker 2014, May 14 2014, University of Pennsylvania

- Cluster size limited to 2 strips or less, to reject low pT tracks (R3 DCL is similar in operation but more flexible & much slower)
- Up to 2 clusters can be find (in R3 DCL up to 4)
- The cluster finding algorithm takes ~6 ns every single clock 16 information bits are send out (x 2 dedicated outputs)
- Additional ASIC called Correlator is necessary
- Functionally correct

- Ready for both power options: serial powering and DC/DC converters
- Internal shunt transistor serial powering

FEE 2014, Argonne, 20.05.2014

Front-end Floorplan

- Main analogue **GND/VDD** connection on the back (close to regulator) – easier hybrid design
- Power lines resistivity
 - vertical $\sim 60 \text{m}\Omega$
 - horizontal $< 30 \text{m}\Omega$
- Pads and fan-in occupied 2/3 of area

Design methodology – design

- Analogue part designed fully custom
- Digital part written in Verilog with macros delivered by CERN or designed by our team
 - memories delivered by CERN (corrections and abstracts generation necessary)
 - pads design fully custom then Verilog models, abstracts and liberty description created
 - for other blocks (e.g. regulators) only Verilog models and abstracts created
- Extensive simulation based verification done
 - Verilog scripts to verify ASIC basic operations
 - Matlab based framework for a chain of ASICs with realistic trigger and data structure

FEE 2014, Argonne, 20.05.2014

Design methodology – implementation

- Whole digital part synthesised in single step (finally FCF delivered as macro block)
 - clock gating applied
 - scan chain added
- Place & route done in flat flow
 - floorplan (very time consuming)
 - placement (power filtering capacitance added)
 - clock tree synthesis with clock grouping
 - routing with antenna removal
- Hand DRC error removal (remaining after P&R)
- Digital and analogue parts put together and verified – DRC, LVS with Calibre and Assura

ABC130 layout

AGH

Size: 7.9 x 6.7 mm

Data should be bidirectional but ...

IO model and circuit mismatch

FEE 2014, Argonne, 20.05.2014

Early Tests and Findings

Present FIBed chip operation

Francis Anghinolfi, ATLAS Upgrade Week, 7-11 April 2014, University of Freiburg

FEE 2014, Argonne, 20.05.2014

ASICs bonded to hybrid and sensor

- First measurements done
- No problem with wirebonding from ASIC to sensor

FIB Hybrid with ABC130 – Electrical Results

Gain (92mV/fC) and noise as expected ??? Power consumption: 96 mW/chip

Ashley Greenall, ATLAS Upgrade Week, 7-11 April 2014, University of Freiburg

FEE 2014, Argonne, 20.05.2014

Krzysztof Świentek AGH

23/24

- ABC130 is a fairly complicated ASIC with two level memory, prioritised data multiplexer and bidirectional data outputs
- In spite of careful design and extensive verification small fibbing was necessary
- After fibbing chip is fully functional with expected parameters
- No problems encountered during ASIC assembly and bonding on hybrid and sensor
- 6 "respin" wafers were already ordered with correction in single layer
- Waiting for corrected ASICs

Backup slides

HCC Block Diagram

FEE 2014, Argonne, 20.05.2014

FCF block diagram

FEE 2014, Argonne, 20.05.2014

FIB Module - Part Bonded to Sensor

- First test with 2 lower rows of front-end bonded to sensor
 - Sensor strips under hybrid bonded to ALL asics
 - Upper rows left open-circuit
- · No problems wire-bonding from asics to sensor
 - Benefit of collaborating with asic designers to 'fix' geometry
- Sensor biased to -250V
 - Thybrid (powered): 16°C (was 15°C unpowered)
- Bonded/un-bonded channels clearly visible in both input/out noise plots
- · But, again input noise is high and gain is low
 - Un-bonded I/P noise: 440e (as seen for un-bonded hybrid)
 - Bonded I/P noise: 661e (expected 520e-550e)

FEE 2014, Argonne, 20.05.2014

FIB Hybrid - Summary

- Prototype hybrid with 10 x ABC130s has been shown to work successfully
 - Able to configure devices
 - All LDO's programmed to ~1.2V
 - On board termination working
 - · Serial readout chain of "FIB'd" devices operating at 80MHz shown to pass data correctly
 - Allowing characterisation of Front-end analogue performance
- Power Consumption better than specification
 - FDR predication was 92mA/ABC130
 - Measured is ~80mA
- No evidence of instability at low charge injection (1fC)
 - DTN not yet performed better indicator
- · Output noise in agreement with expectation but "gain" is low
 - Using analysis adopted for ABCN-25 (and ABCD) chipsets
 - · Still to be understood but points to calibration circuit and or procedural error
 - Ideally would like to crosscheck by use of external calibration source (laser, radiation, etc.)

Full functionality restoring

Status :

- All layout changes (M3 layer only) done
- All verifications (DRC LVS) on full chips (ABC130_0 and ABC130_1) done
- XOR with old layout database (gds) show changes only on M3
- New GDS (ABC130_0_V2 and ABAC130_1_V2) delivered to IBM foundry through the CERN microelectronics service.
- 6 "respin" wafers ordered
- Delivery expected in ~40 days (?)