

Towards a 3D-AGIPD

Alessandro Marras

on behalf of the DESY Photon Science–Detector Group

Outline

- The goal and the obstacles to overcome
 - 3DIC: a possible path to the solution
- design and test of 2-tier detector prototype
 - TSVs & tier-to-tier contacts
 - vertically integrated test circuits
 - 16x16 array of vertically integrated pixels
- Conclusion

The Motivation

The Motivation

A possible solution (long term goal)

A path toward the solution

GF 130nm CMOS Low Power ARM SC library Tezzaron FaStack double-tier

T13C11 MPWrun, via CMP submitted 2011 delivered Jan 2014

3D-Agipd investigation 01

test structures + 256 pixels matrix 200um pitch 544 mem depth

simplified architecture: fixed gain (but reserving the space for multiple-gain circuits; equivalent memcell area)

The concept at a glance

- 2x planar chip manufacture
 - via-middle TSVs
- stacking and face-toface coupling
- back-grinding of the top tier and exposition of the TSVs
- Pad definition

pixel architecture

chip architecture

SC-based addressing circuit (distributed on both tiers) both at the pixel level and at the array level

Test summary

chip #	daisy chains (TSV & tier-to-tier)	2D test circuits	single pixel test struct	16x16 matrix (CDS stage input)	power consumption
	Top&Bottom tier	Top tier	Top&Bottom tier	Top&Bottom tier	
1	unbroken	not responding	not responding	not responding	3.75 mW
2	unbroken	responding	not responding	not responding	24.75 mW
3	unbroken	not responding	responding	responding	31.05 mW
4	unbroken	responding	responding	responding	24.3 mW
5	unbroken	responding	responding	responding	26.25 mW
6	unbroken	responding	responding	responding	30.15 mW
7	unbroken	responding	responding	responding	30.9 mW
8	unbroken	responding	responding	responding	31.2 mW
9	unbroken	responding	responding	responding	26.7 mW
10	unbroken	responding	responding	responding	30.0 mW

as expected unexpected

TSV contacts evaluation

"via middle" TSVs Ø 1.2 um , landing on M1

locally: TSV-to-TSV distance down to ~4um however, globally: "uniform" density of TSVs recommended (\rightarrow uniform resistance to grinding)

 \rightarrow designer constraint: dummy TSVs

test structure for TSV evaluation: daisy chain of 64 TSVs, by connected M1/backM.

Tier-to-tier contacts

Cu-bondpoints (M6) used for tier-to-tier connectivity

tier-to-tier contact redundancy was suggested by 2009 MPW experience, to counter eventual tier misalignment , however ...

M³APS (courtesy of INFN-Perugia) submitted end 2009 Tomography by F. Beckmann (DESY)

Tier-to-tier contact evaluation

test structure for contact evaluation: daisy chain of 1000 tier-to-tier contact connected in series using M5.

measured independently on 10 packaged samples no broken chain

x-ray tomography (F. Beckmann, DESY) also suggest better alignment

sample

Single pixel write-read example

10.0MS/s 10k points

2 J 1.08 V

15 May 2014 14:45:34

Pixel matrix write-read example

sequential readout of storage cells:

storing a voltage written by CDS stage storing the precharged voltage

Behaviour comparison of Top/Bottom tier storage cells

Behaviour comparison of Top/Bottom tier storage cells

Behaviour comparison of Top/Bottom tier storage cells

Top/Bottom tier: memory cellto-memory cell variations

Similar trend (comparable linear behaviour) observed for different memory cells in the same pixel, independently from their location. There seems, however, to be a slight pedestal offset between the two sets. To be investigated further

1 pixel in the array

Top/Bottom tier: pixel-to-pixel variations

Top and bottom tier: comparison along a pixel row / column

Output coming from different pixels may have more marked variations. However, outputs from memory cells in the Top/Bottom tier of the same pixel remain similar. Process parameter dispersion in the active pixel circuitry is suspected. Per-pixel calibration will in any case be needed

Top/Bottom tier: chip-to-chip variations

Comparison between outputs coming from different chips follows the same trend Output coming from different chips may have marked variations, but outputs from memory cells in the Top/Bottom tier of the same pixel/chip remain similar. Process parameter dispersion in the active pixel circuitry is suspected. Per-chip calibration will in any case be needed

Open issue: charge leakage

significant parasitic leakage of charge stored in memory cells

Memory cell layout to be optimized Temperature dependence to be investigated

Conclusions and future work <

Extending photon science detectors in the third dimension:

the 3D-AGIPD case

Prototype produced: T13C11 3DIC MPW run (through CMP)

- GF130nm tech, Tezzaron 3D-process, 2 tiers, face-to-face
- 256 pixel array (200um, 544 images memory depth) + test structures

First evaluations

- good TSV, tier-to-tier contact characteristics
- 7(8)/10 working samples
- pixel array working
- able to store/recover info both Top/Bottom tiers

Open issues:

- investigation/mitigation of performance dispersion among different cells/circuits/chips
- investigation/mitigation of storage cell leakage

Backup

memcell comparison

3D-Agipd investigation 01

AGIPD1.0 (2D)

