

ALICE Q² Project

Pierre VANDE VYVRE for the O² project

07-Oct-2013 - Bangkok, Thailand

- High Energy Physics (HEP)
 - Large Hadron Collider (LHC)
 - ALICE experiment
 - Data selection and acquisition
- ALICE experiment upgrade
- O² project
 - Requirements
 - Big data
 - Computing Working Groups
 - Next steps

Inside the LHC machine

Experiments

Underground "cathedrals"

ALICE Experiment

Data Deluge

- Beam crossing at 40 MHz
 600 million potential collisions/second
- 100-10'000 "interesting" events/second
- 10-500 million measurement channels
- 1-50 Mbytes of data after first level of data compression
- Severe selection is mandatory to keep the computing costs to a reasonable level

Data Selection

Lots of data anyway !

Data Acquisition Design Concepts

Memory matrix

Multiplexer

Complete events

P. Vande Vyvre

18/36

Challenge #1: Data Collection

- Memories: initially custom and now using PC's central memory
- In 1995 (ALICE 1 GB/s, 1PB/yr)
- Multiplexing: many data sources and data destinations
- Big issue with ad-hoc projects during the R&D phase (1990-96)
- Fast switched Ethernet products delivered in 1995
- Bandwidth increased and prices dropped thanks to the huge market triggered by the explosion of Internet
- Data memories, transport and multiplexing based on commodity products

Challenge #2: Data Storage

- HEP has traditionally relied on tape for data storage
- In 1995 (ALICE 1 GB/s)
 - 1 GB/s \rightarrow 100 tapes drives
 - 1 GB/ set as a reasonable limit
- Since then
 - Tape devices have slowly improved
 - Cheap disk capacity has exploded sustained by the PC market
 - Large disk storage bandwidth obtained by parallelism (RAID)

Today

- The yearly dataset on disk
- Data storage using commodity products

Challenge #3: Data Processing

From Particles to Articles

Increase of LHC luminosity

LEP e⁻ e⁺ crossing rate 45 kHz, Luminosity 7 10³¹ cm⁻² s⁻¹

ALICE Upgrade

- Now: reducing the event rate from 40 MHz to ~1 kHz
 - Select the most interesting particle interactions
 - Reduce the data volume to a manageable size
- After 2018:
 - Much more data (x100) because
 - o Higher interaction rate
 - More violent collisions \rightarrow More particles \rightarrow More data (1 TB/s)
 - $\circ\,$ Physics topics require measurements characterized by very small signal-over-background ratio \rightarrow large statistics
 - Large background → traditional triggering or filtering techniques very inefficient for most physics channels.
 - <u>Read out all particle interactions</u> (PbPb) at the anticipated interaction rate of 50~kHz.
 - No more data selection
 - $\circ\,$ Continuous detector read-out \rightarrow Data less structured than in the past
 - Read-out and process all interactions with a standard computer farm ~1'500 nodes with the computing power expected by then
- Total data throughput out of the detectors: 1 TB/s

O² Project

Overall Schedule

• Sep 2012 ALICE Upgrade Lol

Jan 2013 Report of the DAQ-HLT-Offline software panel on "ALICE Computer software framework for LS2 upgrade"

• Mar 2013 O² Computing Working Groups

• Sep 2014 O² Technical Design Report

O² Institutes

- Institutes
 - FIAS, Frankfurt, Germany
 - IIT, Mumbay, India
 - Jammu University, Jammu, India
 - IPNO, Orsay, France
 - IRI, Frankfurt, Germany
 - Rudjer Bošković Institute, Zagreb, Croatia
 - SUP, Sao Paulo, Brasil
 - University Of Technology, Warsaw, Poland
 - Wiegner Institute, Budapest, Hungary
 - CERN, Geneva, Switzerland
- Looking for more people
 - Need people with computing skills and from detector groups
- CWG's membership is neither closed nor rigid:
 - New members more than welcome to join

O² Hardware System from Lol

- HEP is not alone in the computing universe !
- 1 ZB/year in 2017 (Cisco)
- 35 ZB in 2020 (IBM)
- 1 ZB = 1'000 EB = 1'000'000 PB

 Number of users (Kissmetrics)

...with a few very large galaxies !

- 9
- "Hyper giants": the 150 companies that control 50% of all traffic on the web (Arbor Networks)
- Google : 100 billion searches/month, 38'500 searches/second
- YouTube:
 6 billion hours of video are watched each month
- Facebook 350 millions photos uploaded/day
- HEP should definitely try to navigate in the wake of the Big Data hyper giants

Big Data approach

- Very large data sets
 - High Energy Physics data are inherently and embarrassingly parallel... but
 - At the luminosity targeted for the upgrade there will some pile-up → Continuous dataflow
 - Good calibration often requires high statistics and therefore some central database.
- Issues to become a Big Data shop
 - Lots of legacy software not designed for this paradigm
 - Fraction the work into small independent manageable tasks
- P. Vande Vyvre Merge results

Big Data approach

9

33/36

Dataflow Model

Model from the Software Framework Panel

2

- Intensive period of R&D :
 - Collect the requirements: ITS and TPC TDRs
 - System modeling
 - Prototyping and benchmarking
- Technology and time are working with us
 - New options
 - Massive usage of commercial equipment very appealing
- TDR
 - October '13:
 - o Define table of content
 - Establish editorial board
 - December '13:
 - System Requirement Document
 - High-level dataflow model
 - Computing platforms benchmarks
 - Networking benchmark
 - June '14
 - o Software framework architecture
 - Sep '14
 - o TDR

P. Vande Vyvre

Thanks !