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Vasabilab

* Virtualization Architecture and ScalABle
Infrastructure Laboratory

— Kasidit Chanchio, 1 sys admin, 2 Phd, 3 MS
— Virtualization, HPC, systems
e Virtualization:

— Thread-based Live Migration and
Checkpointing of Virtual Machines

— Coordinated Checkpointing Protocol for a
Cluster of Virtual Machines

* Cloud Computing:

— Science Cloud: The OpenStack-based Cloud
implementation for Faculty of Science
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Introduction
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platform for large-scale computations
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— Google offers 8 vcpus with 52GB Ram



Introduction

* Cloud computing has become a common
platform for large-scale computations

— Amazon AWS offers 8 vcpus with 68.4GiB Ram
— Google offers 8 vcpus with 52GB Ram

* Applications require more CPUs and RAM
— Big Data Analysis needs big VMs

— Web Apps need huge memory for caching
— Scientists always welcomes computing powers



Introduction

* Data Center has hundreds or thousands of VMs
running. It is desirable to be able to live migrate
VMs efficiently

— Short migration time: flexible resource utilization
— Low downtime: low impacts on application

* Users should be able to keep track of the
progress of live migration

* We assume scientific workloads are computation
intensive and can tolerate some downtime



Contributions

Define a Time-Bound principle for VM live
migration

Our solution takes less total migration time than
that of existing mechanismes.

— 0.25 to 0.5 time that of gemu-1.6.0, the most recent
(best) pre-copy migration mechanism

Our solution can achieve low downtime
comparable to that of pre-copy migration

Create a basic building block for Time-Bound,
Thread-based Live Checkpointing
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VM Migration

VM Migration is the ability to relocate a VM
between two computers while the VM is
running with minimal downtime



VM Migration

VM Migration has several advantages:
— Load Balancing, Fault-Resiliency, Data Locality

 Base on Solid Theoretical Foundation [M. Harchol
Balter and A. Downey, Sigmetric96]



VM Migration

VM Migration has several advantages:
— Load Balancing, Fault-Resiliency, Data Locality

e Base on Solid Theoretical Foundation

e Existing Solutions

— Traditional Pre-copy Migration: gemu-1.2.0, vmotion,
hyper-v

— Pre-copy with delta compression: gemu-xbrle

— Pre-copy with migration thread: gemu-1.4.0, 1.5.0

— Pre-copy with migration thread, auto converge: 1.6.0
— Post-copy, etc.



Original Pre-copy Migration

1. Transfer partial memory

earlier along with VM
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2. Switch over VM computation
to destination when left-over

memory contents are small
to obtain a Minimal Downtime



Problems

* Existing solutions cannot handle VMs with
large-scale computation and memory
intensive workloads well

— Takes a long time to migrate
— Have to migrate offline

* E.g. Migrate a VM running NPB MG Class D
— 8 vcpus, 36 GB Ram
— 27.3 GB Working Set Size
— Can generate over 600,000 dirt pages in a sec.
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Time-Bound Scheme

* New perspective on VM Migration: Assign
additional threads to handle migration

* Time: finish within a bounded period of time

* Resource: best efforts to minimize downtime
while maintaining acceptable 10-bandwidth

<——— Bound time ———

I
f f

Live Migrate Downtime



Thread-based Live Migration
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Thread-based Live Migration
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Thread-based Live Migration
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Thread-based Live Migration
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Thread-based Live Migration
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Notations

* Live Migrate: Time to perform live migration
where the migration is performed during VM
computation

 Downtime: Time the VM stop to transfer the
last part of VM state



Notations

Migration Time = Live Migrate + Downtime
Offline: Time to migrate by stop VM & Transfer

TLM.1S: Like TLM but let Stage 3 transfer all
dirty pages

TLM.3000: Migration Time of TLM

0.5-(2): Over-commit VM’s 8 vcpus (from 8

host cores) on 2 host cores after 50% of live
migration (mtx)



Dirty PagesPer Second

Experimental Results
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Experimental Results
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Dirty PagesPer Second

Experimental Results
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Experimental Results
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Dirty Pages Per Second

Experimental Results
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Experimental Results
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Experimental Results
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Experimental Results
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using CPU over-commit
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Seconds

Downtime Minimization
using CPU over-commit
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Iperf Bandwidth (Mbps)

Bandwidth Reduction when applying

CPUover-commit
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Iperf Bandwidth (Mbps)

oy}
=
=

CPUover-commit

SP.D

900

BT.D

Bandwidth Reduction when applying

5
\

=y}
=
=

i\
)
|

Iperf Bandwidth (Mbps)
Y,
o O
S O

—--02
0.5 300 —
— 0.5
—().8 200 -
100 08
0
4 6 0 2 4 6



Other Results

e We tested TLM on MPI NPB benchmarks.

 We compared TLM to gemu-1.6.0 (released in
August).
— Developed at the same time with our approach
— Qemu-1.6.0 has a migration thread

— It has auto-convergence feature to periodically
“stun” CPU when migration does not converge



Other Results

* Our solution takes less total migration time
than that of gemu-1.6.0

— 0.25 to0 0.5 time that of gemu-1.6.0, the most
recent (best) pre-copy migration mechanism

e Qur solution can achieve low downtime
comparable to that of gemu-1.6.0
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Conclusion

We have invented the TLM mechanism that can
handle VMs with CPU and Memory intensive
workloads

TLM is Time-Bound

Use Best Efforts to Transfer VM State
Over-commit CPU to reduce downtime
Better than existing pre-copy migration

Provide basic for live Checkpointing Mechanism
Thank you. Questions?
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Introduction

* Checkpointing is a basic fault-tolerant
mechanism for HPC applications

* Checkpointing a VM saves state of all
applications running on the VM

* Checkpointing is costly
— Collect State information
— Save State to Remote or Local Persistent Storage

— Hard to handle a lot of checkpoint information at
the same time



Time-bound, Thread-based Live
Checkpointing

e Leverage the Time-Bound, Thread-based Live
Migration approach

— Short checkpoint time/Low downtime

* Use remote memory servers to help perform
checkpointing



Time-bound, Thread-based Live
Checkpointing
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Experimental Setup

Ethernet 10 Gigabit

)

Server A Memory Server1  Memory Server 2  Memory Server 3 Network
Storage
on ServerB



Checkpoint Time

Checkpoint Time
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Downtime
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Science Cloud

* A Pilot Project for the Development and
Deployment of a Private Cloud to support
Scientific Computing in the Faculty of Science
and Technology, Thammasat University

e Study and develop a private cloud.

* Provide the private cloud service to

researchers and staffs in the Faculty of Science
and Technology.



Resources

5 servers

34 CPUs

136GB Memory
2.5TB Disk



OpenStack: Cloud Operating System

e Latest version: Grizzly

* Components:
— Keystone
— Glance
— Nova

— Neutron (Quantum)
— Dashboard



Deployment

e Usage from July, 2013
e 17 users
e 20 active instances



