Virtualization and Cloud Computing Research at Vasabilab

Kasidit Chanchio

Vasabilab Dept of Computer Science, Faculty of Science and Technology, Thammasat University <u>http://vasabilab.cs.tu.ac.th</u>

Outline

- Introduction to vasabilab
- Research Projects
 - Virtual Machine Live Migration and Checkpointing
 - Cloud Computing

VasabiLab

- Virtualization Architecture and ScalABle Infrastructure Laboratory
 - Kasidit Chanchio, 1 sys admin, 2 Phd, 3 MS
 - Virtualization, HPC, systems
- Virtualization:
 - Thread-based Live Migration and Checkpointing of Virtual Machines
 - Coordinated Checkpointing Protocol for a Cluster of Virtual Machines
- Cloud Computing:
 - Science Cloud: The OpenStack-based Cloud implementation for Faculty of Science

Time-Bounded, Thread-Based Live Migration of Virtual Machines

Kasidit Chanchio

Vasabilab Dept of Computer Science, Faculty of Science and Technology, Thammasat University <u>http://vasabilab.cs.tu.ac.th</u>

Outline

- Introduction
- Virtual Machine Migration
- Thread-based Live Migration Overview
- Experimental Results
- Conclusion

- Cloud computing has become a common platform for large-scale computations
 - Amazon AWS offers 8 vcpus with 68.4GiB Ram
 - Google offers 8 vcpus with 52GB Ram

- Cloud computing has become a common platform for large-scale computations
 - Amazon AWS offers 8 vcpus with 68.4GiB Ram
 - Google offers 8 vcpus with 52GB Ram
- Applications require more CPUs and RAM
 - Big Data Analysis needs big VMs
 - Web Apps need huge memory for caching
 - Scientists always welcomes computing powers

- Data Center has hundreds or thousands of VMs running. It is desirable to be able to live migrate VMs **efficiently**
 - Short migration time: flexible resource utilization
 - Low downtime: low impacts on application
- Users should be able to keep track of the progress of live migration
- We assume scientific workloads are computation intensive and can tolerate some downtime

Contributions

- Define a Time-Bound principle for VM live migration
- Our solution takes less total migration time than that of existing mechanisms.
 - 0.25 to 0.5 time that of qemu-1.6.0, the most recent (best) pre-copy migration mechanism
- Our solution can achieve low downtime comparable to that of pre-copy migration
- Create a basic building block for Time-Bound, Thread-based Live Checkpointing

Outline

- Introduction
- Virtual Machine Migration
- Thread-based Live Migration Overview
- Experimental Results
- Conclusion

VM Migration

VM Migration is the ability to relocate a VM between two computers while the VM is running with minimal downtime

VM Migration

- VM Migration has several advantages:
 Load Balancing, Fault-Resiliency, Data Locality
- Base on Solid Theoretical Foundation [M. Harchol Balter and A. Downey, Sigmetric96]

VM Migration

- VM Migration has several advantages:
 Load Balancing, Fault-Resiliency, Data Locality
- Base on Solid Theoretical Foundation
- Existing Solutions
 - Traditional Pre-copy Migration: qemu-1.2.0, vmotion, hyper-v
 - **Pre-copy** with delta compression: qemu-xbrle
 - **Pre-copy** with migration thread: qemu-1.4.0, 1.5.0
 - **Pre-copy** with migration thread, auto converge: 1.6.0
 - Post-copy, etc.

Original Pre-copy Migration

1.

Transfer partial memory

Either io thread or Migration thread do the transfer

 Switch over VM computation to destination when left-over memory contents are small to obtain a Minimal Downtime

Problems

- Existing solutions cannot handle VMs with large-scale computation and memory intensive workloads well
 - Takes a long time to migrate
 - Have to migrate offline
- E.g. Migrate a VM running NPB MG Class D
 - 8 vcpus, 36 GB Ram
 - 27.3 GB Working Set Size
 - Can generate over 600,000 dirt pages in a sec.

Outline

- Introduction
- Virtual Machine Migration
- Thread-based Live Migration Overview
- Experimental Results
- Conclusion

Time-Bound Scheme

- New perspective on VM Migration: Assign additional threads to handle migration
- Time: finish within a **bounded period of time**
- Resource: **best efforts** to minimize downtime while maintaining acceptable IO-bandwidth

- Add two threads
 - Mtx: save entire ram
 - Dtx: new dirty pages
- Operate in 3 Stages

- Stage 1
 - Set up 2 TCP channels
 - Start dirty bit tracking

- Stage 1
 - Set up 2 TCP channels
 - Start dirty bit tracking
- Stage 2
 - Mtx transfers Ram from first to last page
 - Dtx transfers dirty pages
 - Mtx skips transferring new dirty pages

• Stage 1

- Set up 2 TCP channels
- Start dirty bit tracking
- Stage 2
 - Mtx transfers Ram from first to last page
 - Dtx transfers dirty pages
- Stage 3
 - Stop VM
 - Transfer the rest of dirty pages

Outline

- Introduction
- Virtual Machine Migration
- Thread-based Live Migration Overview
- Experimental Results
- Conclusion

- NAS Parallel Benchmark v3.3
- OpenMP Class D
- VM 8 vcpu originally
- VM with Kernel MG
 36GB Ram, 27.3GB WSS
- VM with Kernel IS
 - 36GB Ram, 34.1GB WSS
- VM with Kernel MG
 - 16GB Ram, 12.1GB WSS
- VM with Kernel MG
 - 16GB Ram, 11.8GB WSS

Notations

- Live Migrate: Time to perform live migration where the migration is performed during VM computation
- Downtime: Time the VM stop to transfer the last part of VM state

Notations

- Migration Time = Live Migrate + Downtime
- Offline: Time to migrate by stop VM & Transfer
- TLM.1S: Like TLM but let Stage 3 transfer all dirty pages
- TLM.3000: Migration Time of TLM
- 0.5-(2): Over-commit VM's 8 vcpus (from 8 host cores) on 2 host cores after 50% of live migration (mtx)

Very High Memory Update, Low Locality, Dtx Transfer rate << Dirty rate

High Memory Update, Low Locality, Dtx Transfer rate = 2 x Dirty rate

High Memory Update, High Locality, Dtx Transfer rate << Dirty rate

Medium memory Update, Low Locality, Transfer rate = Dirty rate

Downtime Minimization using CPU over-commit MG.D

IS.D

Downtime Minimization using CPU over-commit

SP.D

Bandwidth Reduction when applying CPUover-commit

MG.D

Bandwidth Reduction when applying **CPUover-commit**

SP.D

Other Results

- We tested TLM on MPI NPB benchmarks.
- We compared TLM to qemu-1.6.0 (released in August).
 - Developed at the same time with our approach
 - Qemu-1.6.0 has a migration thread
 - It has auto-convergence feature to periodically "stun" CPU when migration does not converge

Other Results

- Our solution takes less total migration time than that of qemu-1.6.0
 - 0.25 to 0.5 time that of qemu-1.6.0, the most recent (best) pre-copy migration mechanism
- Our solution can achieve low downtime comparable to that of qemu-1.6.0

Outline

- Introduction
- Existing Solutions
- TLM Overview
- Experimental Results
- Conclusion

Conclusion

- We have invented the TLM mechanism that can handle VMs with CPU and Memory intensive workloads
- TLM is Time-Bound
- Use Best Efforts to Transfer VM State
- Over-commit CPU to reduce downtime
- Better than existing pre-copy migration
- Provide basic for live Checkpointing Mechanism
- Thank you. Questions?

Time-Bounded, Thread-Based Live Checkpointing of Virtual Machines

Kasidit Chanchio

Vasabilab Dept of Computer Science, Faculty of Science and Technology, Thammasat University <u>http://vasabilab.cs.tu.ac.th</u>

Outline

- Introduction
- Thread-based Live Checkpointing with remote storage
- Experimental Results
- Conclusion

- Checkpointing is a basic fault-tolerant mechanism for HPC applications
- Checkpointing a VM saves state of all applications running on the VM
- Checkpointing is costly
 - Collect State information
 - Save State to Remote or Local Persistent Storage
 - Hard to handle a lot of checkpoint information at the same time

Time-bound, Thread-based Live Checkpointing

- Leverage the Time-Bound, Thread-based Live Migration approach
 - Short checkpoint time/Low downtime
- Use remote memory servers to help perform checkpointing

Time-bound, Thread-based Live Checkpointing

Experimental Setup

Checkpoint Time

Checkpoint Time

Checkpoint Time (Minutes)										
TLC-MemS #1(Modulas)	TLC-MemS #2(Block)	TLC-NoSQL	KVM	TLC-MemS#1 /	TLC-MemS#2 /	TLC-NoSQL/	TLC-MemS#1/	TLC-MemS#2/		
				TLC-NoSQL	TLC-NoSQL	KVM	KVM	KVM		
1.72	1.34	5.90	23.20	0.29	0.23	0.25	0.07	0.06		
1.44	1.41	4.35	21.91	0.33	0.32	0.20	0.07	0.06		
1.71	1.36	5.74	18.72	0.30	0.24	0.31	0.09	0.07		
1.75	1.44	*	38.20	*	*	*	0.05	0.04		
	TLC-MemS #1(Modulas) 1.72 1.44 1.71 1.75	TLC-MemS #1(Modulas) TLC-MemS #2(Block) 1.72 1.34 1.44 1.41 1.71 1.36 1.75 1.44	TLC-MemS #1(Modulas) TLC-MemS #2(Block) TLC-NoSQL 1.72 1.34 5.90 1.44 1.41 4.35 1.71 1.36 5.74 1.75 1.44 *	TLC-MemS #1(Modulas) TLC-MemS #2(Block) TLC-NoSQL KVM 1.72 1.34 5.90 23.20 1.44 1.41 4.35 21.91 1.71 1.36 5.74 18.72 1.75 1.44 * 38.20	TLC-MemS #1(Modulas) TLC-MemS #2(Block) TLC-NoSQL KVM TLC-MemS#1 / TLC-NoSQL 1.72 1.34 5.90 23.20 0.29 1.44 1.41 4.35 21.91 0.33 1.71 1.36 5.74 18.72 0.30 1.75 1.44 * 38.20 *	TLC-MemS #1(Modulas) TLC-MemS #2(Block) TLC-NoSQL TLC-MemS#1 / TLC-NoSQL TLC-MemS#2 / TLC-NoSQL 1.72 1.34 5.90 23.20 0.29 0.23 1.44 1.41 4.35 21.91 0.33 0.32 1.71 1.36 5.74 18.72 0.30 0.24 1.75 1.44 * 38.20 * *	TLC-MemS #1(Modulas) TLC-MemS #2(Block) TLC-NoSQL TLC-MemS#1 / TLC-NoSQL TLC-MemS#2 / TLC-NoSQL TLC-NoSQL / KVM 1.72 1.34 5.90 23.20 0.29 0.23 0.25 1.44 1.41 4.35 21.91 0.33 0.32 0.20 1.71 1.36 5.74 18.72 0.30 0.24 0.31 1.75 1.44 * 38.20 * * *	TLC-MemS #1(Modulas) TLC-MemS #2(Block) TLC-NoSQL TLC-MemS#2 / TLC-NoSQL TLC-NoSQL / KVM T		

Downtime

Downtime (sec)

Downtime(sec)												
Benchmark	TLC-MemS #1(Modulas)	TLC-MemS #2(Block)	TLC-NoSQL	KVM	TLC-MemS#1 /TLC-NoSQL	TLC-MemS#2 /TLC-NoSQL	TLC- NoSQL/ KVM	TLC- MemS#1 /KVM	TLC- MemS#2/ KVM			
sp.D.x	15.19	8.84	107	1,393.20	0.142	0.083	0.08	0.011	0.006			
lu.D.x	2.63	2.13	61	1,314.60	0.043	0.035	0.05	0.002	0.002			
bt.D.x	19.4	4.16	95	1,123.20	0.204	0.044	0.08	0.017	0.004			
mg.D.x	38.68	29.3	*	2,292.00	*	*	*	0.017	0.013			

Science Cloud: TU OpenStack Private Cloud

Kasidit Chanchio, Vasinee Siripoon Vasabilab Dept of Computer Science, Faculty of Science and Technology, Thammasat University <u>http://vasabilab.cs.tu.ac.th</u>

Science Cloud

- A Pilot Project for the Development and Deployment of a Private Cloud to support Scientific Computing in the Faculty of Science and Technology, Thammasat University
- Study and develop a private cloud.
- Provide the private cloud service to researchers and staffs in the Faculty of Science and Technology.

Resources

- 5 servers
- 34 CPUs
- 136GB Memory
- 2.5TB Disk

OpenStack: Cloud Operating System

- Latest version: Grizzly
- Components:
 - Keystone
 - Glance
 - Nova
 - Neutron (Quantum)
 - Dashboard

Deployment

- Usage from July, 2013
- 17 users
- 20 active instances