Virtualization and Cloud
Computing Research at Vasabilab

Kasidit Chanchio
Vasabilab
Dept of Computer Science,
Faculty of Science and Technology,
Thammasat University
http://vasabilab.cs.tu.ac.th

DEPARTMENT OF

COMPUTER SCIENCE
THAMMASAT UNIVERSITY

VIRTUALIZATION ARCHITECTURE'AND

SCALABLE INFRASTRUCTURE LABORATORY

Outline

* Introduction to vasabilab

e Research Projects
— Virtual Machine Live Migration and Checkpointing
— Cloud Computing

VIRTUALIZATION ARCHITECTURE AND
SCALABLE INFRASTRUCTURE LABORATORY

Vasabilab

* Virtualization Architecture and ScalABle
Infrastructure Laboratory

— Kasidit Chanchio, 1 sys admin, 2 Phd, 3 MS
— Virtualization, HPC, systems
e Virtualization:

— Thread-based Live Migration and
Checkpointing of Virtual Machines

— Coordinated Checkpointing Protocol for a
Cluster of Virtual Machines

* Cloud Computing:

— Science Cloud: The OpenStack-based Cloud
implementation for Faculty of Science

Time-Bounded, Thread-Based Live
Migration of Virtual Machines

Kasidit Chanchio
Vasabilab
Dept of Computer Science,
Faculty of Science and Technology,
Thammasat University
http://vasabilab.cs.tu.ac.th

DEPARTMENT OF

COMPUTER SCIENCE
THAMMASAT UNIVERSITY

VIRTUALIZATION ARCHITECTURE'AND .
SCALABLE INFRASTRUCTURE LABORATORY: [kessrererers

Outline

Introduction
Virtual Machine Migration

Thread-based Live Migration Overview

Experimental Results
Conclusion

VIRTUALIZATION ARCHITECTURE AND
SCALABLE INFRASTRUCTURE LABORATORY

Introduction

* Cloud computing has become a common
platform for large-scale computations

— Amazon AWS offers 8 vcpus with 68.4GiB Ram
— Google offers 8 vcpus with 52GB Ram

Introduction

* Cloud computing has become a common
platform for large-scale computations

— Amazon AWS offers 8 vcpus with 68.4GiB Ram
— Google offers 8 vcpus with 52GB Ram

* Applications require more CPUs and RAM
— Big Data Analysis needs big VMs

— Web Apps need huge memory for caching
— Scientists always welcomes computing powers

Introduction

* Data Center has hundreds or thousands of VMs
running. It is desirable to be able to live migrate
VMs efficiently

— Short migration time: flexible resource utilization
— Low downtime: low impacts on application

* Users should be able to keep track of the
progress of live migration

* We assume scientific workloads are computation
intensive and can tolerate some downtime

Contributions

Define a Time-Bound principle for VM live
migration

Our solution takes less total migration time than
that of existing mechanismes.

— 0.25 to 0.5 time that of gemu-1.6.0, the most recent
(best) pre-copy migration mechanism

Our solution can achieve low downtime
comparable to that of pre-copy migration

Create a basic building block for Time-Bound,
Thread-based Live Checkpointing

Outline

Introduction

Virtual Machine Migration

Thread-based Live Migration Overview

Experimental Results
Conclusion

VIRTUALIZATION ARCHITECTURE AND
SCALABLE INFRASTRUCTURE LABORATORY

VM Migration

VM Migration is the ability to relocate a VM
between two computers while the VM is
running with minimal downtime

VM Migration

VM Migration has several advantages:
— Load Balancing, Fault-Resiliency, Data Locality

 Base on Solid Theoretical Foundation [M. Harchol
Balter and A. Downey, Sigmetric96]

VM Migration

VM Migration has several advantages:
— Load Balancing, Fault-Resiliency, Data Locality

e Base on Solid Theoretical Foundation

e Existing Solutions

— Traditional Pre-copy Migration: gemu-1.2.0, vmotion,
hyper-v

— Pre-copy with delta compression: gemu-xbrle

— Pre-copy with migration thread: gemu-1.4.0, 1.5.0

— Pre-copy with migration thread, auto converge: 1.6.0
— Post-copy, etc.

Original Pre-copy Migration

1. Transfer partial memory

earlier along with VM

Eitheriothreador [~ = = = = — _ _ _ _ computation
Migrationthread = —-_ _ _ = T ==« >
do the transfer

—
—
—_—
_—
ey
—
el -

2. Switch over VM computation
to destination when left-over

memory contents are small
to obtain a Minimal Downtime

Problems

* Existing solutions cannot handle VMs with
large-scale computation and memory
intensive workloads well

— Takes a long time to migrate
— Have to migrate offline

* E.g. Migrate a VM running NPB MG Class D
— 8 vcpus, 36 GB Ram
— 27.3 GB Working Set Size
— Can generate over 600,000 dirt pages in a sec.

Outline

Introduction
Virtual Machine Migration

Thread-based Live Migration Overview

Experimental Results
Conclusion

VIRTUALIZATION ARCHITECTURE AND
SCALABLE INFRASTRUCTURE LABORATORY

Time-Bound Scheme

* New perspective on VM Migration: Assign
additional threads to handle migration

* Time: finish within a bounded period of time

* Resource: best efforts to minimize downtime
while maintaining acceptable 10-bandwidth

<——— Bound time ———

I
f f

Live Migrate Downtime

Thread-based Live Migration

. mem page . .
Source VM #Ic:zsr‘:\?tgtﬁr transmit thr Desm:fc;:‘lon
e Add two threads g-aﬂb-t | (dho ;mfx) ?;gigg?:r |
— Mtx: save entire ram 1,:{.'3’;(.:,9 o=t o / _ (dng - lo=thr
B : ERaT ™] | MStage1
Dtx: new dirty pages IdIVEEI; py—2m | 1 PUIEEE
, r - 12-1
* QOperate in 3 Stages updpte < l‘\\\

(DU) ou F-—I'- PAUSE THREADS |

. .
- \\\-ﬁ—
Him ou 5] THEE PAUSE THREADS |
nterbar -—“Hﬁl | TLM Stage 2
|
|

DU ;7-1Em pause TReADS
~

vepu thr

ou , |BE PAUSE THREADS
L ¥

-

VM STOP DUN/;E—\ L3
.—-__—-—-—-*'—'—-*

¥ T
1 TIM Stage 3 L
SEND THE REST OF
DIRTY PAGES

Thread-based Live Migration

_ mem page N
f 2
T otaged ditybit | ao 0 APeeE
— Setup 2 TCP channels | facking {T’ S, T io-thr
. . . I | T T
— Start dirty bit tracking L wscr o~ e | | TMStage |
dlrggli 1 l‘ 12-1
update < —
(DU) ou i—-—l- PAUSE THREADS |
\IN L2-2
=1 \\\-\'ﬁ—
fim ':Ug“i'- PAUSE THREADS |
et 11T | | v stage2
DU ;7-1Em pause TReADS |
~
vepu thr
.. lou (I PAUSE THREADS |

4 L ___,!

-

VM STOP Duh@_\ L3
-\—-—

+ ¥
1 TLM Stage3 [———

SEND THE REST OF
DIRTY PAGES

Thread-based Live Migration

dirty page ;:1 ;Tn%f%? Destination
e Stagel Source VM transmitthr 1) dirty page VM
start (dix) .
— Setup 2TCP channels diybit " jo-thr |... | / rec:;;sihr |io-thr
— Start dirty bit tracking | ',,0 N_! T "I TIM Stage 1 N[
VM STOP
e Stage 2 dirybit [T 9 _
update < ———L-z\]\
— Mtx transfers Ram (DV) QU 18 pauseeeaDs |
from first to last page \IN___LZLL\—
— Dtx transfers dirty Hm hﬁfi’iﬂ- PAUsE THeEADS |
pages interyal 1, ﬁI | TLM Stage 2
— Mtx skips transferring " o "I_pause HgeADs | |
new dirty pages vepl thr
... U, (I PAUSE THREADS !|
- -7 _“"-—xh
VM STOP Duhﬁ\ L3
._-_—-—-—-*'—'—-_
oA TLM Stage3 [———
SEND THE REST OF
DIRTY PAGES

Thread-based Live Migration

mem page

dity page yrangmit thr Destination
Source VM transmit thr : VM
L ooteed < o T
— Set up 2 TCP channels "m'n f:"L" :::;-::J _ (dn) - lo=thr
B o - L L] | tMStege 1 N
Start dirty bit tracking |dIV§E>OI; py—2m | L TIEEE
r P -
ol i
‘ Stage 2 ([I;U) EUF._I- PAUSE THREADS |
— Mtx transfers Ram \I~-_£2;2_\‘
from first to last page tim hﬁfuﬁ-;imwms | J TLM Stage 2
T age
. interyal
— Dtx transfers dirty BU |- oaverrreans]
pages ~
vepu thr e
o Stage 3 ... jgu, | musemfxns—) |
— Stop VM o R
— Transfer the rest of o iU/NT//ﬂ‘\—-—E’__&_____
. e
dlrty pages SEND THE REST OF TLM Stage 3
DIRTY PAGES

Outline

Introduction
Virtual Machine Migration

Thread-based Live Migration Overview

Experimental Results
Conclusion

VIRTUALIZATION ARCHITECTURE AND
SCALABLE INFRASTRUCTURE LABORATORY

Thread-based Live Migration

LM L2-1/1L2-2
L3 links

Source Computer

Source VM

VM +
OpenMP

Controller

Expenmen’r
Controller

Destination

Computer
10Gbps | pestination VM
Net

MPI ap

eth

Linux
Bridge

ubuntu
12.04

Access \
Files N,

NFS

WMimage |]

Supporting

-~
-

1 Gbps

Computer

Net

Opteron 12 cores
2.1Ghz,48 GB Ram
10 Gbps NIC

1 Gbps NICs

iperf
client |~

N v G ™
MP| Linux 1 Gbps
ap Bridge Net

NAS Parallel Benchmark v3.3
OpenMP Class D
VM 8 vcpu originally
VM with Kernel MG
— 36GB Ram, 27.3GB WSS
VM with Kernel IS
— 36GB Ram, 34.1GB WSS
VM with Kernel MG
— 16GB Ram, 12.1GB WSS

VM with Kernel MG
— 16GB Ram, 11.8GB WSS

Notations

* Live Migrate: Time to perform live migration
where the migration is performed during VM
computation

 Downtime: Time the VM stop to transfer the
last part of VM state

Notations

Migration Time = Live Migrate + Downtime
Offline: Time to migrate by stop VM & Transfer

TLM.1S: Like TLM but let Stage 3 transfer all
dirty pages

TLM.3000: Migration Time of TLM

0.5-(2): Over-commit VM’s 8 vcpus (from 8

host cores) on 2 host cores after 50% of live
migration (mtx)

Dirty PagesPer Second

Experimental Results

700000 < = 0
MG.D m dirty
600000 L
M repeat
>00000 {Itrans

400000

300000

200000

100000

1 6 11 16 21 26 31 36

Very High Memory Update, Low Locality, Dtx Transfer rate << Dirty rate

Experimental Results

OFFLINE | | — P - Yardsti
TLM.1S |
TLDM.SUZU : g
>(2) S Our TLM mech:
0.2-(4) PR
0.2:2) <~ MG.D
0.2-(1)
Timein Sec: 0.00 2000 4000 60.00 80.00 100.00 120.00
0.241) | 0.242) | 0.2-(4) [0.5(2) [TLM.3000/ TLM.1S | OFFLINE
mlive Migrate| 5034 | 4621 | 41.82 | 41.00 | 40.72 | 68.77 | 0.00
ODowntime | 941 | 1123 | 1752 | 2030 | 2527 | 2809 | 69.86

cks

anisms

Dirty PagesPer Second

Experimental Results

W dirty

IS.D

M repeat

Litrans

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71

High Memory Update, Low Locality, Dtx Transfer rate = 2 x Dirty rate

Experimental Results

OFFLINE | | = ‘
TIM.1S ——
TLM.3000 ——
0.5-(2)
0.2-(4) L
0.2(2) ©IS.D
0.2-(1) |

—

Timein Sec: 0.00 20.00 40.00 60.00 80.00 100.00 120.00

0.2-(1) | 0.242) | 0.244) | 0.5(2) [TLM.3000] TLM.1S | OFFLINE
mlive Migrate| 74.14 | 7528 | 7239 | 7422 | 8251 | 7667 | 0.00

ODowntime 1.26 1.68 4.72 2.00 17.51 25.60 66.14

Dirty Pages Per Second

Experimental Results

/700000

SP.D dinty

EDDUUG [| repeat

citrans

500000

400000

300000

200000

100000

0

1 b 11 16 21 26 31

High Memory Update, High Locality, Dtx Transfer rate << Dirty rate

Experimental Results

OFFLINE | | T ‘
TLM.1S —H
TLM.3000 —H—
0.5-(2) '
0.2-(4) —

0.242) " SPD

0.2-(1)

TimeinSec: 0.00 10.00 20.00 30.00 40.00 50.00 60.00

0.241) | 0.242) | 0.244) | 0.542) [TLM.3000] TLM.1S | OFFLINE
mlive Migrate| 30.66 & 3638 | 3529 | 3536 | 37.07 | 34.15 | 0.0

O Downtime 1.16 1.96 3.76 2.17 11.86 | 12.24 | 32.75

Experimental Results

|

W dirty

M repeat
trans

BT.D

t.t_t.
h!
- -
-
e
l‘llllnl. llllll
‘.‘
llll -
=1]
ol
l-
-
ﬁ.
Za
o
S S
llllllllll
-
=
-
-
=T L
.l__-_.-...

140000 ©

m

—l

80000

m

puolas Jadsaded Auig

iy
"ll —
i

31

26

21

16

11

Dirty rate

Medium memory Update, Low Locality, Transfer rate

Experimental Results

OFFLINE
TLM.1S
TLM.3000
0.5-(2)
0.2-(4)
0.2-(2)
0.2-(1)

BT.D

Timein Sec: 0.00

10.00

20.00

30.00

40.00

50.00

0.2-(1)

0.2-(2)

0.2-(4)

0.5-(2)

TLM.3000

TLM.15

OFFLINE

M Live Migrate

29.70

31.48

33.33

32.56

34.90

31.74

0.00

O Downtime

0.45

0.60

0.51

0.50

1.33

411

33.45

Seconds

Downtime Mini

mization

using CPU over-commit
MG.D

[[[[[[[[I |
010203040506 070809 1 11

1S.D

-
--""
-

I I I 1
01 0203040506070809 1 11

Seconds

Downtime Minimization
using CPU over-commit

SP.D

[[[[[[[|
01 0.2 03 04 05 06 070809 1 11

BT.D

Seconds

I I I I I I I I I |
01 0.2 03 04 0506 070809 1 11

Iperf Bandwidth (Mbps)

Bandwidth Reduction when applying

CPUover-commit

MG.D 1S.D
800
)(...--"""i_ > ot _ 700 = __;#-—¢
e
= 500
/ E 400 /./.
-#-02 9 i
& 300 -//./ 0.2
0.5 -—
% 200 0.5
i 0.8 2 i (), 8
100 —
0
2 4 6 0 4 6

Iperf Bandwidth (Mbps)

oy}
=
=

CPUover-commit

SP.D

900

BT.D

Bandwidth Reduction when applying

5
\

=y}
=
=

i\
)
|

Iperf Bandwidth (Mbps)
Y,
o O
S O

—--02
0.5 300 —
— 0.5
—().8 200 -
100 08
0
4 6 0 2 4 6

Other Results

e We tested TLM on MPI NPB benchmarks.

 We compared TLM to gemu-1.6.0 (released in
August).
— Developed at the same time with our approach
— Qemu-1.6.0 has a migration thread

— It has auto-convergence feature to periodically
“stun” CPU when migration does not converge

Other Results

* Our solution takes less total migration time
than that of gemu-1.6.0

— 0.25 to0 0.5 time that of gemu-1.6.0, the most
recent (best) pre-copy migration mechanism

e Qur solution can achieve low downtime
comparable to that of gemu-1.6.0

Outline

Introduction

Existing Solutions
TLM Overview
Experimental Results
Conclusion

VIRTUALIZATION ARCHITECTURE AND
SCALABLE INFRASTRUCTURE LABORATORY

Conclusion

We have invented the TLM mechanism that can
handle VMs with CPU and Memory intensive
workloads

TLM is Time-Bound

Use Best Efforts to Transfer VM State
Over-commit CPU to reduce downtime
Better than existing pre-copy migration

Provide basic for live Checkpointing Mechanism
Thank you. Questions?

Time-Bounded, Thread-Based Live
Checkpointing of Virtual Machines

Kasidit Chanchio
Vasabilab
Dept of Computer Science,
Faculty of Science and Technology,
Thammasat University
http://vasabilab.cs.tu.ac.th

DEPARTMENT OF

COMPUTER SCIENCE
THAMMASAT UNIVERSITY

VIRTUALIZATION ARCHITECTURE'AND .
SCALABLE INFRASTRUCTURE LABORATORY: [kessrererers

Outline

Introduction

Thread-based Live Checkpointing with remote

storage
Experimental Results
Conclusion

VIRTUALIZATION ARCHITECTURE AND
SCALABLE INFRASTRUCTURE LABORATORY

Introduction

* Checkpointing is a basic fault-tolerant
mechanism for HPC applications

* Checkpointing a VM saves state of all
applications running on the VM

* Checkpointing is costly
— Collect State information
— Save State to Remote or Local Persistent Storage

— Hard to handle a lot of checkpoint information at
the same time

Time-bound, Thread-based Live
Checkpointing

e Leverage the Time-Bound, Thread-based Live
Migration approach

— Short checkpoint time/Low downtime

* Use remote memory servers to help perform
checkpointing

Time-bound, Thread-based Live
Checkpointing

A
w(e:a eaﬁ \A\“ ,maa

e} T %

<< Start Check-Point
Epoch 1

Colect Dirty Pages o
o Checkpoint
Epochm_ 4 File
)
v < VM Stop
Save Remaining °
Pages
\ << VM Start
_.a"
Transfer Buffer to o

File

Experimental Setup

Ethernet 10 Gigabit

)

Server A Memory Server1 Memory Server 2 Memory Server 3 Network
Storage
on ServerB

Checkpoint Time

Checkpoint Time

Checkpoint Time(Minute)

45
40
35
30
25 msp.Dx
20 W uDx
15 bt.D.x
10 EmgD.x
5
0
TLC-MemS TLC-Mem5S TLC-NoSaL KVM
Checkpoint Time (Minutes)
senchmarkl TLc-Mems | TLC-Mems TLC-MemS#1 /| TLC-MemS#2 / | TLC-NoSQL/ | TLC-MemS#1/| TLC-MemS22/
#1(Modulas)| #2(Block) TLC-NoSQLL KVM | 11 c-NosqL TLC-NoSQL KVM KVM KVM
sp.D.x 1.72 1.34 5.90 23.20 0.29 0.23 0.25 0.07 0.06
lu.D.x 1.44 1.41 4.35 21.91 0.33 0.32 0.20 0.07 0.06
bt.D.x 1.71 1.36 5.74 18.72 0.30 0.24 0.31 0.09 0.07
mg.D.x 1.75 1.44 = 38.20 = = = 0.05 0.04

Downtime

Downtime (sec)

Downtime (sec)
2500
2000
1500 msp.Dx
BiuDx
1000 B bt.Dx
EmpgD.x
500
0 - —
TLC-MemS5 TLC-MemS$S TLC-NaSQaL KVM
Downtime(sec)
TLC- TLC- TLC-
TLC-MemS |TLC-Mem5S TLC-MemS#1 | TLC-Mem5#2
Benchmark TLC-NoSQL| KVM i i NoSQL/ | MemS#1 (MemS#£2/
#1(Modulas) | #2(Block) JTLC-NoSQL | /TLC-NoSQL KVM JKVM VM
sp.D.x 15.19 8.84 107 1,393.20 0.142 0.083 0.08 0.011 0.006
u.D.x 2.63 2.13 Bl 1,314.60 0.043 0.035 0.05 0.002 0.002
bt.D.x 19.4 4.16 95 1,123.20 0.204 0.044 0.08 0.017 0.004
mg.D.x 38.68 29.3 * 2,292.00 = = * 0.017 0.013

180
160
140
120
100
80
60
40
20

Restart Time (sec)

TLC-MemS
#1(Modulas)

TLC-MemS TLC-NoSQL KVM
#2(Block)

W sp.D.x
W |u.D.x

»bt.Dx

mmg.D.x

Science Cloud: TU OpenStack
Private Cloud

Kasidit Chanchio, Vasinee Siripoon
Vasabilab
Dept of Computer Science,
Faculty of Science and Technology,
Thammasat University
http://vasabilab.cs.tu.ac.th

DEPARTMENT OF

COMPUTER SCIENCE
THAMMASAT UNIVERSITY

VIRTUALIZATION ARCHITECTURE'AND .
SCALABLE INFRASTRUCTURE LABORATORY: [kessrererers

Science Cloud

* A Pilot Project for the Development and
Deployment of a Private Cloud to support
Scientific Computing in the Faculty of Science
and Technology, Thammasat University

e Study and develop a private cloud.

* Provide the private cloud service to

researchers and staffs in the Faculty of Science
and Technology.

Resources

5 servers

34 CPUs

136GB Memory
2.5TB Disk

OpenStack: Cloud Operating System

e Latest version: Grizzly

* Components:
— Keystone
— Glance
— Nova

— Neutron (Quantum)
— Dashboard

Deployment

e Usage from July, 2013
e 17 users
e 20 active instances

