
Virtualization and Cloud
Computing Research at Vasabilab

Kasidit Chanchio
Vasabilab

Dept of Computer Science,
Faculty of Science and Technology,

Thammasat University
http://vasabilab.cs.tu.ac.th

Outline

• Introduction to vasabilab

• Research Projects

– Virtual Machine Live Migration and Checkpointing

– Cloud Computing

 VasabiLab

• Virtualization Architecture and ScalABle
Infrastructure Laboratory
– Kasidit Chanchio, 1 sys admin, 2 Phd, 3 MS
– Virtualization, HPC, systems

• Virtualization:
– Thread-based Live Migration and

Checkpointing of Virtual Machines
– Coordinated Checkpointing Protocol for a

Cluster of Virtual Machines

• Cloud Computing:
– Science Cloud: The OpenStack-based Cloud

implementation for Faculty of Science

Time-Bounded, Thread-Based Live
Migration of Virtual Machines

Kasidit Chanchio
Vasabilab

Dept of Computer Science,
Faculty of Science and Technology,

Thammasat University
http://vasabilab.cs.tu.ac.th

Outline

• Introduction

• Virtual Machine Migration

• Thread-based Live Migration Overview

• Experimental Results

• Conclusion

Introduction

• Cloud computing has become a common
platform for large-scale computations

– Amazon AWS offers 8 vcpus with 68.4GiB Ram

– Google offers 8 vcpus with 52GB Ram

• Applications require more CPUs and RAM

– Big Data Analysis needs serious VMs

– Web Apps need huge memory for caching

– Scientists always welcomes computing powers

Introduction

• Cloud computing has become a common
platform for large-scale computations

– Amazon AWS offers 8 vcpus with 68.4GiB Ram

– Google offers 8 vcpus with 52GB Ram

• Applications require more CPUs and RAM

– Big Data Analysis needs big VMs

– Web Apps need huge memory for caching

– Scientists always welcomes computing powers

Introduction

• Data Center has hundreds or thousands of VMs
running. It is desirable to be able to live migrate
VMs efficiently

– Short migration time: flexible resource utilization

– Low downtime: low impacts on application

• Users should be able to keep track of the
progress of live migration

• We assume scientific workloads are computation
intensive and can tolerate some downtime

Contributions

• Define a Time-Bound principle for VM live
migration

• Our solution takes less total migration time than
that of existing mechanisms.
– 0.25 to 0.5 time that of qemu-1.6.0, the most recent

(best) pre-copy migration mechanism

• Our solution can achieve low downtime
comparable to that of pre-copy migration

• Create a basic building block for Time-Bound,
Thread-based Live Checkpointing

Outline

• Introduction

• Virtual Machine Migration

• Thread-based Live Migration Overview

• Experimental Results

• Conclusion

VM Migration

 VM Migration is the ability to relocate a VM
between two computers while the VM is
running with minimal downtime

VM Migration

• VM Migration has several advantages:
– Load Balancing, Fault-Resiliency, Data Locality

• Base on Solid Theoretical Foundation [M. Harchol
Balter and A. Downey, Sigmetric96]

• Existing Solutions
– Traditional Pre-copy Migration: qemu-1.2.0, vmotion,

hyper-v

– Pre-copy with delta compression: qemu-xbrle

– Pre-copy with multi-threads: qemu-1.4.0, 1.5.0

– Post-copy, etc.

VM Migration

• VM Migration has several advantages:
– Load Balancing, Fault-Resiliency, Data Locality

• Base on Solid Theoretical Foundation

• Existing Solutions
– Traditional Pre-copy Migration: qemu-1.2.0, vmotion,

hyper-v

– Pre-copy with delta compression: qemu-xbrle

– Pre-copy with migration thread: qemu-1.4.0, 1.5.0

– Pre-copy with migration thread, auto converge: 1.6.0

– Post-copy, etc.

Original Pre-copy Migration

2. Switch over VM computation
 to destination when left-over
 memory contents are small
 to obtain a Minimal Downtime

1. Transfer partial memory
 earlier along with VM
 computation Either io thread or

Migration thread
do the transfer

Problems

• Existing solutions cannot handle VMs with
large-scale computation and memory
intensive workloads well
– Takes a long time to migrate

– Have to migrate offline

• E.g. Migrate a VM running NPB MG Class D
– 8 vcpus, 36 GB Ram

– 27.3 GB Working Set Size

– Can generate over 600,000 dirt pages in a sec.

Outline

• Introduction

• Virtual Machine Migration

• Thread-based Live Migration Overview

• Experimental Results

• Conclusion

Time-Bound Scheme

• New perspective on VM Migration: Assign
additional threads to handle migration

• Time: finish within a bounded period of time

• Resource: best efforts to minimize downtime
while maintaining acceptable IO-bandwidth

Live Migrate Downtime

Bound time

Thread-based Live Migration

• Add two threads
– Mtx: save entire ram

– Dtx: new dirty pages

• Operate in 3 Stages

• We reduce downtime
by over-committing
VM’s vcpus on host
cpu cores.
– E.g. map 8 vcpus to 2

host cpu cores after
20% of live migration

Thread-based Live Migration

• Stage 1
– Set up 2 TCP channels

– Start dirty bit tracking

• Stage 2
– Mtx transfers Ram

from first to last page

– Dtx transfers dirty
pages

• Stage 3
– Stop VM

– Transfer the rest

Thread-based Live Migration

• Stage 1
– Set up 2 TCP channels

– Start dirty bit tracking

• Stage 2
– Mtx transfers Ram

from first to last page

– Dtx transfers dirty
pages

– Mtx skips transferring
new dirty pages

• Stage 3
– Stop VM

– Transfer the rest

Thread-based Live Migration

• Stage 1
– Set up 2 TCP channels

– Start dirty bit tracking

• Stage 2
– Mtx transfers Ram

from first to last page

– Dtx transfers dirty
pages

• Stage 3
– Stop VM

– Transfer the rest of
dirty pages

Outline

• Introduction

• Virtual Machine Migration

• Thread-based Live Migration Overview

• Experimental Results

• Conclusion

Thread-based Live Migration

• NAS Parallel Benchmark v3.3

• OpenMP Class D

• VM 8 vcpu originally

• VM with Kernel MG
– 36GB Ram, 27.3GB WSS

• VM with Kernel IS
– 36GB Ram, 34.1GB WSS

• VM with Kernel MG
– 16GB Ram, 12.1GB WSS

• VM with Kernel MG
– 16GB Ram, 11.8GB WSS

Notations

• Live Migrate: Time to perform live migration
where the migration is performed during VM
computation

• Downtime: Time the VM stop to transfer the
last part of VM state

Notations

• Migration Time = Live Migrate + Downtime

• Offline: Time to migrate by stop VM & Transfer

• TLM.1S: Like TLM but let Stage 3 transfer all
dirty pages

• TLM.3000: Migration Time of TLM

• 0.5-(2): Over-commit VM’s 8 vcpus (from 8
host cores) on 2 host cores after 50% of live
migration (mtx)

Experimental Results

Very High Memory Update, Low Locality, Dtx Transfer rate << Dirty rate

Experimental Results

 Yardsticks

Our TLM mechanisms

Experimental Results

High Memory Update, Low Locality, Dtx Transfer rate = 2 x Dirty rate

Experimental Results

Experimental Results

High Memory Update, High Locality, Dtx Transfer rate << Dirty rate

Experimental Results

Experimental Results

Medium memory Update, Low Locality, Transfer rate = Dirty rate

Experimental Results

Downtime Minimization
using CPU over-commit

Downtime Minimization
using CPU over-commit

Bandwidth Reduction when applying
CPUover-commit

Bandwidth Reduction when applying
CPUover-commit

Other Results

• We tested TLM on MPI NPB benchmarks.

• We compared TLM to qemu-1.6.0 (released in
August).

– Developed at the same time with our approach

– Qemu-1.6.0 has a migration thread

– It has auto-convergence feature to periodically
“stun” CPU when migration does not converge

Other Results

• Our solution takes less total migration time
than that of qemu-1.6.0

– 0.25 to 0.5 time that of qemu-1.6.0, the most
recent (best) pre-copy migration mechanism

• Our solution can achieve low downtime
comparable to that of qemu-1.6.0

Outline

• Introduction

• Existing Solutions

• TLM Overview

• Experimental Results

• Conclusion

Conclusion

• We have invented the TLM mechanism that can
handle VMs with CPU and Memory intensive
workloads

• TLM is Time-Bound

• Use Best Efforts to Transfer VM State

• Over-commit CPU to reduce downtime

• Better than existing pre-copy migration

• Provide basic for live Checkpointing Mechanism
• Thank you. Questions?

Time-Bounded, Thread-Based Live
Checkpointing of Virtual Machines

Kasidit Chanchio
Vasabilab

Dept of Computer Science,
Faculty of Science and Technology,

Thammasat University
http://vasabilab.cs.tu.ac.th

Outline

• Introduction

• Thread-based Live Checkpointing with remote
storage

• Experimental Results

• Conclusion

Introduction

• Checkpointing is a basic fault-tolerant
mechanism for HPC applications

• Checkpointing a VM saves state of all
applications running on the VM

• Checkpointing is costly
– Collect State information

– Save State to Remote or Local Persistent Storages

– Hard to handle a lot of checkpoint information at
the same timemputing powers

Time-bound, Thread-based Live
Checkpointing

• Leverage the Time-Bound, Thread-based Live
Migration approach

– Short checkpoint time/Low downtime

• Use remote memory servers to help perform
checkpointing

Time-bound, Thread-based Live
Checkpointing

Experimental Setup

Checkpoint Time

Downtime

Science Cloud: TU OpenStack
Private Cloud

Kasidit Chanchio, Vasinee Siripoon
Vasabilab

Dept of Computer Science,
Faculty of Science and Technology,

Thammasat University
http://vasabilab.cs.tu.ac.th

Science Cloud

• A Pilot Project for the Development and
Deployment of a Private Cloud to support
Scientific Computing in the Faculty of Science
and Technology, Thammasat University

• Study and develop a private cloud.

• Provide the private cloud service to
researchers and staffs in the Faculty of Science
and Technology.

Resources

• 5 servers

• 34 CPUs

• 136GB Memory

• 2.5TB Disk

OpenStack: Cloud Operating System

• Latest version: Grizzly

• Components:

– Keystone

– Glance

– Nova

– Neutron (Quantum)

– Dashboard

Deployment

• Usage from July, 2013

• 17 users

• 20 active instances

