SIEMENS

Siemens Corporate Technology, RTC GTF BAM | December 10, 2013

Siemens Data Analytics @ CERN openLab

Dr. Mikhail Roshchin, Michal Skubacz Mikhail Kalinkin, Alexander Loginov

Siemens – Innovations in four Sectors

Siemens: Facts and Figures

Energy

World record in energy efficiency

 New H-class gas turbine

Industry

Efficiency in industrial production

 Totally Integrated Automation Portal

Healthcare

Affordable and personalized healthcare

 MAGNETOM Spectra

Infrastructure & Cities

Intelligent infrastructure

 Driverless subway trains

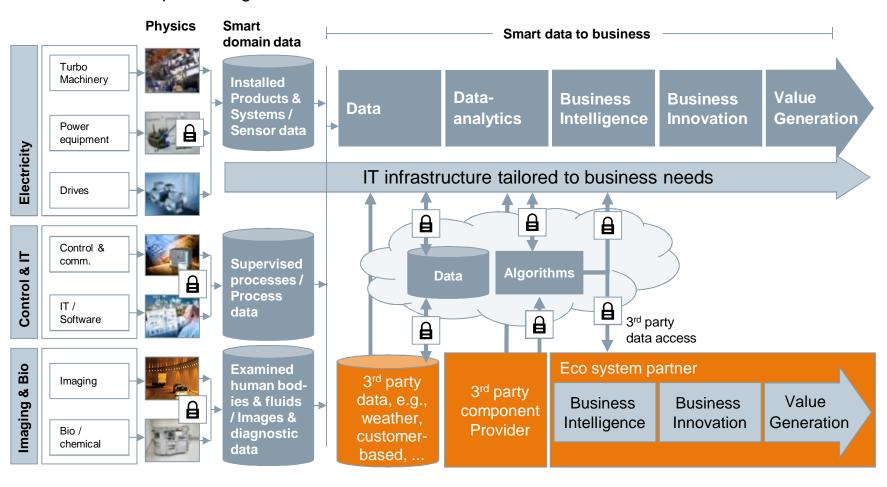
29,500 R&D engineers | 17,500 SW engineers | 160 R&D locations in 30 countries | 4.2bn EUR R&D spending in 2012 | 57,300 patents | 8.900 invention disclosures in 2012

engineers

17.500 SW

Siemens has a strong position in Vertical IT

Software domains and respective tools and systems in the Siemens sectors (examples)


Infrastructure

Industry Healthcare **Energy** and Cities **Domains** Product&Production Engineering Tools for Power Plant **Engineering** Lifecycle Tools rail, traffic and building **Software** Manufacturing Meter Data Mgt. Distributed Control Advanced visualization Supervisory **Execution Systems** Traffic Mat. Hospital and laboratory System **Software** Distributed Control Rail Operations & Fleet Mgt. information systems Energy Mgt. Control System Scada Systems Building Mgt. Power Plant Mgt. Power Plant Programmable Logical **Building Automation** Imaging platforms **Embedded Automation Systems** Controller Equipment inside the modalities **Software** Motion Controller Intersection Control Diagnostic systems Drives, Intelligent Train Control field-devices Intelligent devices

Smart Data to Business: Leveraging additional business opportunities based on smart domain data

Data sources and processing

Partnering opportunities

Protected data and algorithms

Core know-how and technology for data analytics applications needed for Siemens offerings

Smart data to business: Building blocks (examples)

Physics	Data	Data Analytics	3		Business Intelligence		Business Innovation	Value Gen- eration
Sensors, process, etc.		Data Integration	Model and Analyze	Visualize and Advise	Applications		Business Models	Customer Value
Sensor design	Sensor data integration	Modeling, data struc- ture & inte- gration	Machine learning, reasoning	Dashboards	Online cond. monitoring	Forecasting and control	Enhanced products / solutions	AvailabilityProductivityAdditional
Sensor integration, placement,	Data pre- processing (e.g. quality, timestamps)	Relational and NoSQL databases	Math. modeling, Optimization	Information retrieval		Fleet intelligence	Services	revenue • End customer satisfaction
	External data e.g. internet, weather		Data mining, Language processing	Dialog	Customer analytics	Logistics, production processes	Consulting	•
						Business process perf. mgmt.	Perfor- mance contracting	
Technolo	gy Consultino)						
IT Integration								

Dr. Mikhail Roshchin

Challenges in Data Analytics Large, Heterogeneous, Complex

Large volumes of information

- → data streams (raw operational data, events, problem-specific, spatial, temporal): e.g. > 10 GB/day
- → integration of databases required: e.g. >10 data sources, > 300 TB
- → complex queries and complex algorithms: e.g. joints & analytics on-demand

Lack of standardization

- → heterogeneity of data sources/structures
- → data quality issues, inconsistent data types
- → various interfaces for data access: e.g. APIs with OO access & SQL

Complex data access

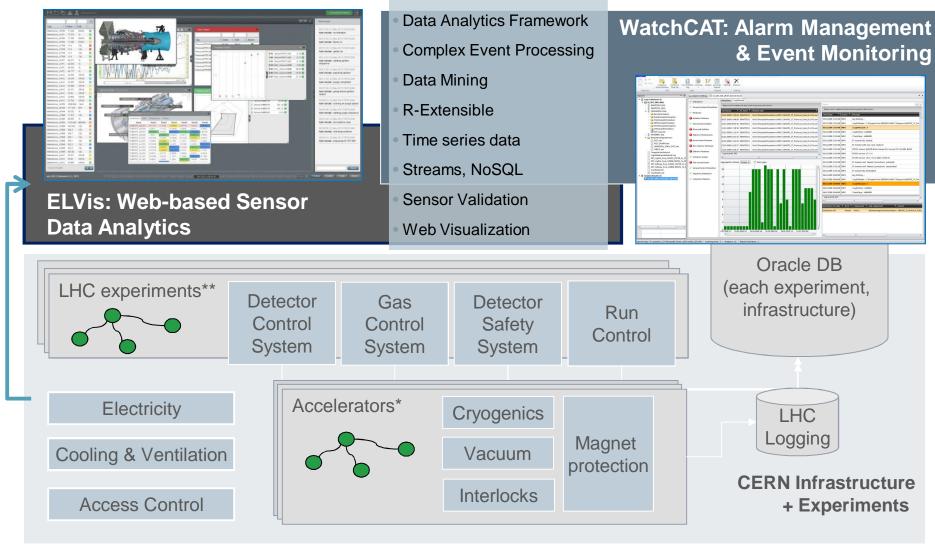
- → no direct access to data by engineers possible, additional IT stuff required
- → treatment for missing and incomplete data required

Challenges in Data Analytics **High speed, Real-time, Operational decisions**

High speed analytics on historical data

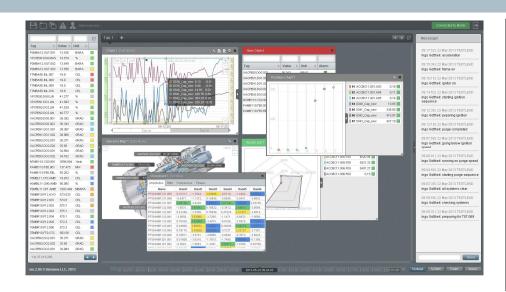
→ Explore more "what if" alternatives to make better strategic, tactical and operational decisions

Real-time analytics on real-time data


→ continuous monitoring of events to enable faster and better responses to emerging operational threats and opportunities

Run decision models in real time

→ involve sophisticated decision management into business processes to make smarter operational decisions

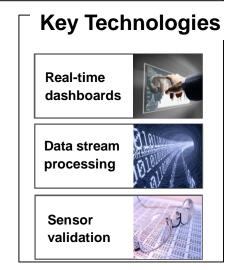


Approach to the System Health Check of the LHC based on ELVis & WatchCAT @Siemens

ELVis Platform: Real Time Data Analytics for CERN

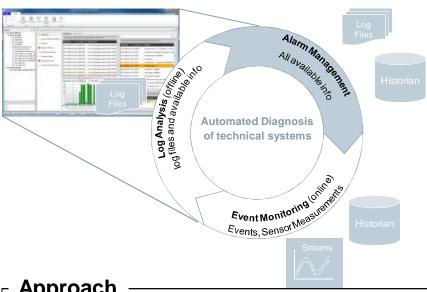
Benefits

- Robust & powerful solution for sensor data analytics with impressive characteristics:
 - 10-100 times more efficient than traditional web tools
 - Real-time processing of 1000x of sensors per second
 - No data loss: no single point of failure design
 - Customizable algorithms for sensor data analysis
 - Scalable from laptop to world-wide multi-site clusters
- Built-in intelligence for sensor data validation done without burden of model creating and learning
- Real-time HTML5 visualization of multiple high-speed data in a conventional browser


Approach

Utilize real-time web technologies recently emerged due to multi-billion R&D investments of Internet giants (Google, Facebook, Twitter, etc)

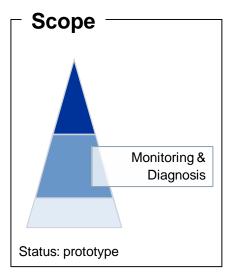
Employ them in the field of industrial monitoring through ELVis - a web-based platform for processing, visualization and archiving multiple streams of timeseries data from sensors.


Rich data processing and flexible API with support of many programming languages.

Scope Online monitoring

SIEMENS

WatchCAT Data Analytics Framework: Alarm & Event based Diagnostics for CERN


Approach

Integrated analysis of events and alarms coming from heterogeneous sources. Combined offline and online analysis (in work) based on a combination of:

- Data fusion of textual logs, events and sensor data
- Data interpretation using logical reasoning
- Automated sequence mining
- Event monitoring over sensor stream
- Complex event processing, R support

Benefits

- IEC 62682-compliant alarm management system for CERN using data from Siemens systems including WinCC OA
- Significant speedup of diagnostic process
- Effective alarm management based on both log and sensor information
- Relevant patterns are mined from data, no prior knowledge needed but the generated knowledge can be effectively re-used

