

R-Parity Violating Supersymmetry & Long-Lived Sparticles Lived @ LHC

T. Rizzo 1/23/08

What is R-Parity & Why We Should Care

The non non-gauge interactions of the (chiral) (s)fermions gauge and Higgs(inos) are governed by the superpotential:

W=W_{RPC}+W_{RPV}

whose structure is determined by gauge invariance and renormalizability requirements…

 W_{RPC} = y_e H_d LE^c $+y_d$ H_d QD^c $+y_u$ H_u QU^c + μ H_dH_u

is responsible for genenerating the SM fermion masses with the y_i being the familiar Yukawa couplings (Note: **h ll l d h h) here I will suppress generational indices throughout)**

However, the second term is also present and is $\boldsymbol{\rho}$ **potentially dangerous:**

 W_{RPV} = λLLE^c + λ'LQD^c + λ''UDD^c + κH_uL

Here the first 2 trilinear terms and the bilinear term are ∆L=1 and the third term is ∆B=1, leading to rapid proton decay if all are present simultaneously… (Due to very strong constraints we will ignore the bilinear terms.)

$$
\mathcal{L}_{LiL_jE_k^c} = -\frac{1}{2} \lambda_{ijk} (\tilde{v}_{iL} \bar{l}_{kR} l_{jL} + \tilde{l}_{jL} \bar{l}_{kR} v_{iL} + \tilde{l}_{kR}^* \bar{v}_{iR}^c l_{jL} - (i \leftrightarrow j)) + \text{h.c.} ,
$$

$$
\mathcal{L}_{L_i Q_j D_k^c} = -\lambda'_{ijk} (\tilde{v}_{iL} \bar{d}_{kR} d_{jL} + \tilde{d}_{jL} \bar{d}_{kR} v_{iL} + \tilde{d}_{kR}^{\star} \bar{v}_{iR}^c d_{jL} \n- \tilde{l}_{iL} \bar{d}_{kR} u_{jL} - \tilde{u}_{jL} \bar{d}_{kR} l_{iL} - \tilde{d}_{kR}^{\star} \bar{l}_{iR}^c u_{jL}) + \text{h.c.} , \quad \text{etc.}
$$

In the usual MSSM, one imposes the familiar R-parity symmetry:

$$
R = (-1)^{3B+L+2S} = (-1)^{3(B-L)+2S}
$$

which removes these dangerous terms completely.

Note the obvious direct connection to B- and L**numb ll h i l ' i bers as well as t he particle's spin.**

However…

It is important to note that it is is not necessary to necessary impose R-parity to remove these L- and B -**violating terms.**

For example, it was shown long ago that the existence of almost any additional (e g GUT (e.g., -based) gauge based) symmetry, such as an extra U(1) or SU(2), will kill these couplings at tree-level and in many cases to all **orders depending on model details.**

We will not discuss this possibility here.

Under R-parity symmetry the SM fields are even while their spartners are odd this implies the familiar …this 5**results:**

- **SUSY particles can only be pair produced**
- **The LSP is stable and leads to MET final states**
- **The LSP can be a good DM candidate, e.g., the lightest neutralino in the MSSM**

Of course this may be too strict and we can invent other parities that only remove the only the offending B B- or the offending L-violating terms in the superpotential.

The phenomenology then depends upon the sizes of the various λ**'s… However, once these are > ~O(10-22) there will be no MSSM DM! Furthermore to avoid disruption of Furthermore, to nucleosynthesis we need** λ**'s > ~O(10-13); of course even these numbers depend upon the identity of the (unstable) of (unstable)LSP.**

Remembering the generational indices, it is clear that the possible values of the λ 's are restricted by, e.g., **low energy data, usually under the assumption that only** one or two of them are non-zero or dominant... *

As one example, consider D-Dbar mixing:

which can go through either λ**' or** λ**'' couplings and is couplings, now restricted by recent BaBar/BELLE data…**

***Barbier etal, Phys Rep 420 1 2005**

Of course there are many other constraints These are constraints. usually quoted assuming spartner masses of 100 GeV and scale as (100 GeV/m) for single couplings. They are all GeV/m) rather weak for heavier spartner masses and particularly so for couplings involving the third generation…

***Golowich etal, arXiv:0705.3650**

We use the notation V_{ij} for the CKM matrix, R_l , R_l , R_l , R_D , R_l^Z for various branching fractions or ratios of branching fractions as defined in the text, QW for the weak charge, vq , wl for the neutrino renormalization group, AyB for forward-backward asymmetry, $Q_W(Cs)$ for atomic physics parity violation, $n\bar{n}$ for neutron-antineutron oscillation. and NN for two nucleon nuclear decay, $[K\bar K],$ for $K^0-\bar K^0$ mixing. The generation indices denoted i, j, k run over the three generations while those denoted I, m, n run over the first two generations. The dependence on the superpartner mass follows the notational convention $\tilde{m}^F = (\frac{\tilde{m}}{100 \text{ day}})^F$. Aside from a few cases associated with one-loop effects, we use the reference value $\tilde{m} = 100$ GeV. The quoted equation labels refer to equations in the text.

Quadratic coupling constant product bounds

	Lepton flavor	Hadron flavor	L and/or B violation.
$ k^*_{ij2}k_{j1} $	$8.2 \times 10^{-5} (\bar{\nu}_L^2, \bar{l}_L^2) [\mu \to e \gamma]$ (6.95)		
$ \lambda_{23k} \lambda_{13k}^* $	$2.3 \times 10^{-4} (\bar{v}_L^2, \bar{l}_R^2) [\mu \rightarrow e \gamma]$ (6.95)		
$ \lambda_{312} \lambda_{321}^* $	1.9×10^{-3} \hat{v}_L^2		
	$[\mu^+e^- \to \mu^-e^+]$ (6.103)		
$ k_{12}^*k_{11} $	$6.6 \times 10^{-7} \hat{v}_L^2$ [$\mu \rightarrow 3e$] (6.97)		
1λ 321 λ 3111	$6.6 \times 10^{-7} \hat{v}_1^2$ [u \rightarrow 3el (6.97)		
$ x_{123}^* \lambda_{122} $	$2.2 \times 10^{-3} \hat{v}_L^2$ [$\tau \to 3\mu$] (6.97)		
$ x_{132}x_{122}^* $	$2.2 \times 10^{-3} \bar{v}_L^2$ [$\tau \to 3\mu$] (6.97)		
$ \lambda_{i12}\lambda_{j21} $			0.15% m ⁻¹ [m _x < 1eV]
$ \lambda_{i13}\lambda_{j31} $			$8.7 \times 10^{-3} \tilde{l}^2 \tilde{m}^{-1} [m_3 \lt 1 \text{ sV}]$
$ \lambda_{i22} \lambda_{j22} $			$7 \times 10^{-4} \tilde{\mu}^2 \tilde{m}^{-1} [m_v < 1$ eV]
$ \lambda_{i23} \lambda_{i32} $			$4.2 \times 10^{-5} [2m^{-1}]$ [m, < 1 eV]
$ \lambda_{i33}\lambda_{j33} $			$2.5 \times 10^{-6} \xi^2 \tilde{m}^{-1} [m_s < 1 \text{ eV}]$
			$(\tilde{m}^e)_{\tilde{D}}^2 = \tilde{m} M^e$ (5.11)
$ k_{12}^*k_{11}^* $	2.1×10^{-3} %		
$ \lambda_{21} z_{11}^* $	$[\mu \to e \, (\text{Ti})] (6.99)$ 2.1×10^{-3} %		
	$[\mu \to e \text{ (Ti)]} (6.99)$		
$\ \mathcal{X}^*_{\text{f} \text{f}} \ ^2_{\text{f} \text{f} \text{f} \text{f}}$	$16 \times 10^{-7} \hat{v}_i^2$ [de] (6.60)		
$ \lambda_{i31} \lambda_{i11}^{\prime \star} $	$1.6 \times 10^{-3} \hat{v}_{iL}^2$ [$\tau \to e\eta$](6.104)		
$ x_{13}'x_{11}' $	$1.6 \times 10^{-3} \bar{v}_{iL}^2$ [$\tau \to e\eta$] (6.104)		
$ \lambda_{32}\lambda_{11}^4 $	$1.7 \times 10^{-3} \tilde{v}_{fL}^2$ [$\tau \to \mu \eta$] (6.104)		
$ k_{23}^*k_{11}^* $	$1.7 \times 10^{-3} \hat{v}_{f}^2$ [$\tau \to \mu \eta$] (6.104)		

Issues:

What ranges of the λ**'s are `interesting interesting ?' If we use the SM Yukawa couplings as a guide, since they have the same form in the superpotential (why not??), then we might expect (??) the various** λ**'s most likely lie in the range O(10-6-1). Very little of this range is presently excluded by experiment as the above Tables show. However, in principle, we can't exclude values as low as ~10-¹² ¹⁰ based solely on data.**

Until we have a real theory of superpotential couplings, the window is wide open. For example, in a theory where the couplings are zero at tree-level and are calculable at higher order very small values might be expected order, expected.

A very important point to remember is that

once the LSP is no longer DM, there is no reason to require it to be the lightest neutralino; within the MSSM **context it can be one of many candidates: slepton, sneutrino stau stop neutralino chargino gluino sneutrino, stau, stop, neutralino, chargino, gluino…**

Clearly p gy p y g the phenomenology of this potentially long-lived state is sensitive to these choices. Broadly, we can divide these possibilities into two categories depending upon whether the LSP is either a sfermion or a gaugino. **Additional special care is required if the LSP also carries color.**

Let us consider these two possibilities in turn…

A scan of MSSM parameter space": 5685 points

Who is the LSP???

neutralino: 1936 gluino: 85 sbottom: 208 RH-selectron: 588 stau: 1131

chargino: 33 squark: 128 stop: 195 sneutrino: 864 tau sneutrino: 517

"J. Gainer c/o SUSPECT2.34

The LSP is a Sfermion:

The decays are all 2-body modes directly through the RPV coupling and can be quite rapid. Of course, more than one final state may be allowed.

L = 1μm (βγ) N_c^{-1} (100 GeV/m) (10⁻⁵ **L** = 1μm (βγ) N_c^{-1} (100 GeV/m) (10⁻⁵/λ)² **- 0 GeV/m) (10⁻⁵/λ)² F**

Since the deca y is 2-body, it is harder to get (very) 18**^y y, ^g (y)long-lived states in this case unless the coupling is quite small…**

Given the a priori allowed range of λ a wide range of **decay lengths is possible. But if we regard values below 10-6 as `unnatural' (?) then `interesting' values are rare… b ' h ut we can't assume this.**

This is somewhat similar to, e.g., gauge mediation where very long-lived stau NLSPs decaying into gravitinos are easily possible...

..or to the case of AMSB where very-long lived NLSP charginos are quite possible due to a symmetry...

Note that in the case of a stop LSP, over almost all of the parameter range, the stop will hadronize first **before it decays**

Th ll d f he allowed range ofλ **parameters is such h t at we must in general consider the entire range from prompt** decays, to those taking place anywhere in the detector, **to essentially stable particles.**

The `stable' case has recently been reviewed by Bressler (arXiv:0710.2113) for both ATLAS & CMS

The `prompt' case is the most difficult & has gotten the most attention by both experimenters and theorists theorists, e.g., Allanach etal (arXiv:0710.2034). CDF/D0 searches have mainly concentrated on this as well as the `stable' cases.

Th i di i f i h The intermediate case is more of interest to us here…

CHAMPS: Charged Massive Stable Particles

Scenario: \mathcal{C}

− **Escape detector completely**
$$
{}_{m=p} \sqrt{}
$$

- Experimentally:
	- Search for "muons" that travel at β << 1
		- CDF: Time-Of-Flight detector and drift chamber
		- D0: muon system
	- Reconstruct mass from p and β
- Cross Section Limits
	- (for $p_T > 40$ GeV and $|\eta| < 1$, 0.4 < β < 0.9)
	- Weakly interacting $(\widetilde{\tau}, \widetilde{\chi}_1^{\pm})$:
		- \cdot σ < 10 fb at 95% CL
	- Strongly interacting (stop):
		- \cdot σ <48 fb at 95% CL
		- Assumes stop stays charged up to muon system with $P=43+7%$

In the gaugino case, the decays are 3-body through an intermediate sfermion:* sfermion:

Direct decays of neutralinos and charginos with trilinear \bar{R}_p operators $\lambda_{ijk}L_iL_j\bar{E}_k$, $\lambda'_{ijk}L_iQ_j\bar{D}_k$ and $\lambda''_{ijk}\bar{U}_i\bar{D}_j\bar{D}_k$

Fig. 7.1. Diagrams for the direct decays of the neutralino $\tilde{\chi}_l^0$ via the coupling λ_{ijk} of the \bar{R}_n trilinear $L_i L_j E_k^c$ interaction. The index $l = 1...4$ determines the mass eigenstate of the neutralino. The indices i, j, $k = 1, 2, 3$ correspond to the generation. Gauge invariance forbids $i = j$. The index $\alpha = 1$, 2 gives the slepton mass eigenstate (i.e. the chirality of the Standard Model lepton partner in absence of mixing).

which can lead to somewhat longer lifetimes lifetimes…

***S. Dawson '85**

Fig. 7.2. Diagrams for the direct decays of the chargino $\tilde{\chi}_l^+$ via the coupling λ_{ijk} of the R_p trilinear $L_i L_j E_k^c$ interaction. The index $l = 1...4$ determines the mass eigenstate of the neutralino. The indices index $\alpha = 1$, 2 gives the slepton mass eigenstate (i.e. the chirality of the Standard Model lepton partner in absence of mixing)

L = 190 µm ($\beta\gamma$) (m_f/500 GeV)⁴ (100 GeV/m_x)⁵ F $\times (10^{-3}/\lambda)^2$ N_c⁻¹

The variation is greater than for sfermions due to the presence of an addition parameter

The case of a gluino LSP is again somewhat different g g 26**as it too likely hadronizes, forming R-hadrons, before decaying…**

This is quite different from split-SUSY where the gluino generally has a very long lifetime...

Stable particles: "stopped Gluinos"

10

- Particles can be rather stable:
	- $-$ Lifetime ~hours
		- Interact in calorimeter and decay at some later time
	- Split-SUSY:
		- m(\hat{q})>10² TeV, m(\hat{q})~TeV
		- Gluino long-lived
- Trigger on events with
	- "no interaction" but jet activity
- Main background:
	- Cosmic ray and beam-halo muons
- Result: $m(\widetilde{g})$ >270 GeV @95%CL

for $\tau(\tilde{g})$ <3h, $\sigma(R_m\rightarrow R_b)$ =3mb, $BR(g \rightarrow g \tilde{\chi}_1^0) = 100\%$, m($\tilde{\chi}_1^0$)=50 GeV

DØ, L=410 pb⁻¹ Background

Data

Signal (m_.=400 GeV, **c**=0.71pb)

[A. Arvanitaki et al.: hep-ph/0506242] 30

B. Heinemann EPS07

FIG. 1: Left: a schematic figure of the CMS detector and two stoppers. The numbers are in units of meters, and $(0,0,0)$ is the collision point. Right: two stopper-detectors and a circle about the size of CMS detector are superimposed on the cross section of CMS cavern UXC 55, drawing taken from Ref. [9].

*Hamaguchi etal, hep-ph/0612060

For an ATLAS study of long lived sleptons & R -hadrons see CSC SUSY Note hadrons, - 8

ATLAS NOTE

ATL-PHYS-xxx-yyy-zzz

January 8, 2008

Draft version 0.0

Studies of the SUSY signatures with photonic, long-lived heavy particles in ATLAS

> The list of contributors \sim The ATLAS Collaboration

Once we choose the identity of the long -lived LSP to lived examine we need to decide the best way to produce/study it at LHC LHC.

Remember:

For ^λ**'s < 10-2 or so, sparticles will still be dominantly pair -produced as in the ordinary RPC MSSM**

Thus long-lived stops and gluinos will be made in pairs in the usual fashion from gg and qq-bar annihilation with **quite large cross sections… For our parameter range they hadronize before decaying decaying.**

SUSY: Rates

Helmholtz Ian Hinchliffe 12/1/07 25

Aside:

If the λ**'s become of order 10-(2-3) , the production of a singp p le resonant spartner becomes possible and benefits from smaller phase space suppression, e.g. qq-bar -> sneutrino -> l+l-, jj. Many other processes are possible.**

K. Gumus etal, CMS-NOTE-2006-070

In the case where the LSP is *not* strongly interacting **there are two possibilities:**

· The LSP will be the last SUSY particle in the decay **chain initiated by a strongly interacting spartner which yields large rates ^e g rates, e.g.,**

In this `worst' case scenario there are no additional leptons only jets (short-lived case studied by Allanach 35**et al, ATLAS-COM-PHYS-2001-003)**

In the long-lived case, one can select events with several high p_t jets and multi-leptons with large M_{eff} **without the MET requirement Then there are two requirement. sub-cases depending upon whether the LSP is charged or neutral.**

In the charged case, one also observes a single pair of charged tracks each leading to a secondary vertex

In the neutral case ^a pair of secondary vertices appear case, `from nowhere' as part of the event

The secondary vertex can be the source of leptons, jets or both depending on the type of R-parity violating coupling.

• **However, unlike in the RPC case here we might want case, to consider the direct production of weakly interacting** LSP's, e.g., sleptons or charginos, if they are not too **heavy. Ordinarily, this production mechanism is not given much attention due to large LHC backgrounds and small rat With RPV th ^t b it l tes. these events may be quite clean.**

For example, if the lightest slepton is the LSP with a 0.5 cm decay length and a cross section of ~200 fb, we don't need to worry too much about backgrounds.

A variety of final states resulting from the secondary vertices are possible possible…

The notations l,\bar{E} and j correspond, respectively, to charged lepton, missing energy from at least one neutrino and jet final states.

Finally, RPV decays may compete with RPC ones if the couplings are sufficiently large. Consider the decay $\mathbf{q}_\mathsf{R} \to$ \rightarrow **q+ bino vs** q_R \rightarrow **lu** via RPC. What is the RPV **branching fraction???**

- **RPV k f d l d ⁱ ifi RPV can take many forms and can lead to significant changes in SUSY expectations, e.g., no MET signals and/or single spartner production**
- **The a p gp riori allowed range of the potential B- or L-violating couplings is in general rather wide.**
- · The identity of the LSP is wide open and no longer **need be the lightest neutralino as in the MSSM**
- • **The LSP may be `almost stable' or can decay anywhere inside the detector**

BACKUP SLIDES