

Click to edit Master title style

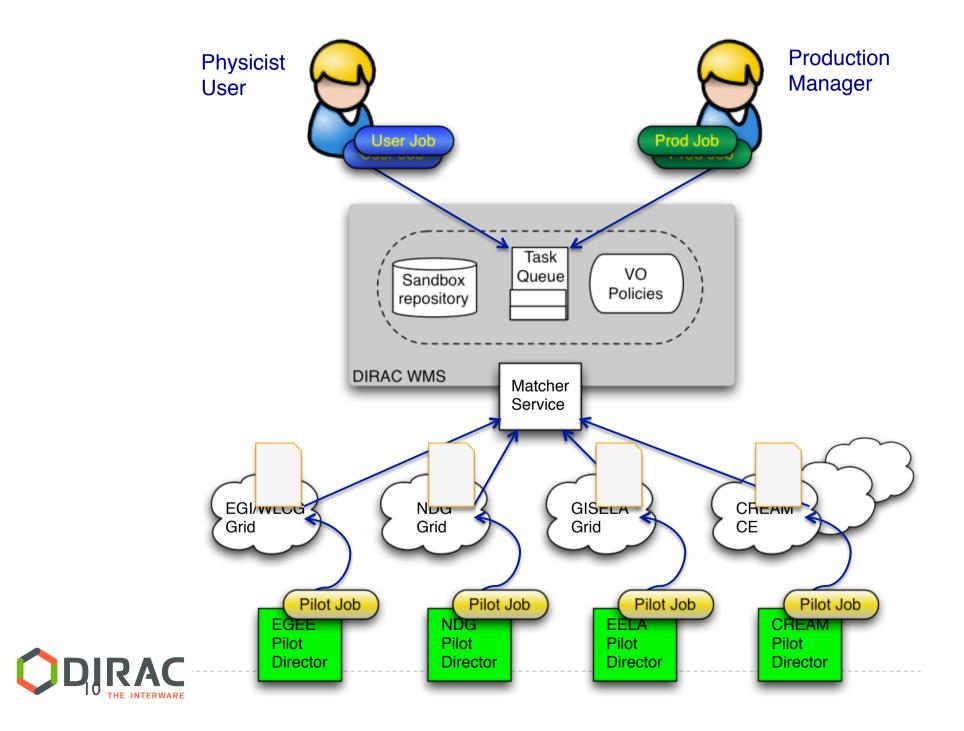
LHC

DIRAC in LHCb and beyond

Philippe Charpentier (LHCb-CERN) Slides courtesy of A.Tsaregorodtsev BigPanda Workshop, October 21 2013

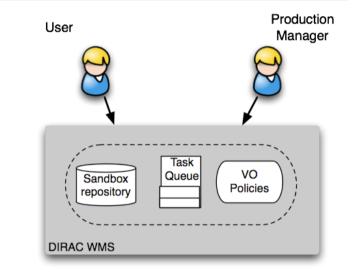
DIRAC Grid Solution

- LHC experiments, all developed their own middleware to address the above problems
 - ▶ PanDA, AliEn, glideIn WMS, PhEDEx, ...
- DIRAC is developed originally for the LHCb experiment with the goals:
 - Integrate all the heterogeneous computing resources available to the community
 - Provide solution for both WMS and DMS tasks
 - Minimize human intervention at sites providers of resources
 - Make the grid convenient for the users:
 - Simpler intuitive interfaces
 - Fault tolerance, quicker turnaround of user jobs
 - Enabling Community policies



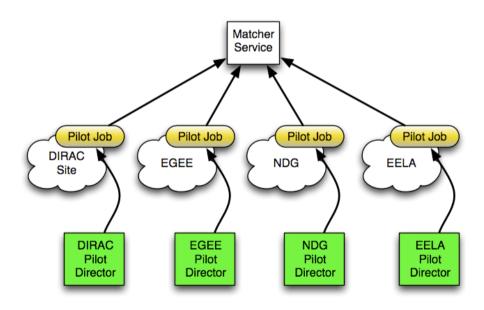
Towards general purpose middleware

- The experience collected with a production grid system of a large HEP experiment is very valuable
 - Several new experiments expressed interest in using this software relying on its proven in practice utility
- In 2009 the core DIRAC development team decided to generalize the software to make it suitable for any user community.
 - Separate LHCb specific functionality into a set of extensions to the generic core libraries
 - Introduce new services to make it a complete solution
 - Support for multiple small groups by a single DIRAC installation
 - General refurbishing of the code, code management, deployment, documentation, etc
- The results of this work are presented in the following


DIRAC Workload Management

WMS: applying VO policies

- In DIRAC both User and Production jobs are treated by the same WMS
 - Same Task Queue
- This allows to apply efficiently policies for the whole VO
 - Assigning Job Priorities for different groups and activities
 - + Static group priorities are used currently
 - More powerful scheduler can be plugged in
 - demonstrated with MAUI scheduler


- The VO policies application in the central Task Queue dictates the use of Multiuser Pilot Agents
 - Do not know apriori whose job has the highest priority at the moment of the user job matching
- DIRAC fully supports this mode of operation
 - + Multiuser Pilots Jobs submitted with a special "pilot" VOMS role
 - + Using glexec on the WNs to track the identity of the payload owner

WMS: using heterogeneous resources

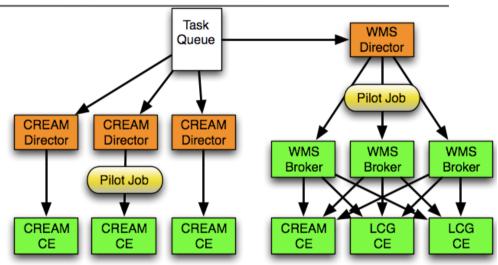
- Including resources in different grids and standalone clusters is simple with Pilot Jobs
 - Needs a specialized Pilot
 Director per resource type
 - Users just see new sites appearing in the job monitoring

DIRAC as a resource manager

- DIRAC was initially developed with the focus on accessing conventional Grid computing resources
 - WLCG grid resources for the LHCb Collaboration
- It fully supports gLite middleware based grids
 - EGI, GISELA, etc
 - Using gLite WMS or accessing CE's directly
 - OSG
- The work is in progress to support ARC middleware based grids
 - NorduGrid
 - A successful demonstration was already done
- Other types of grids can be supported
 - As long we have customers needing that

15

Direct submission to CEs

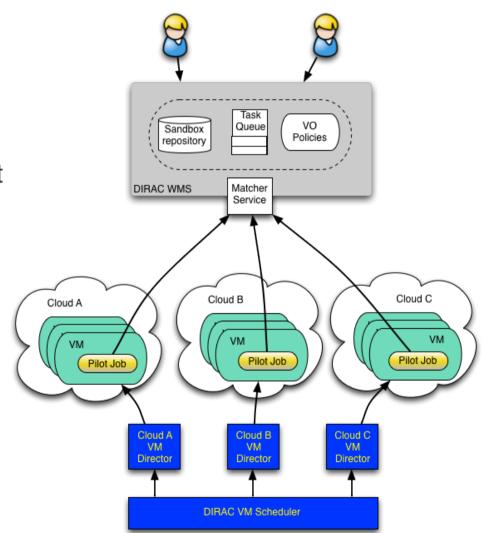

- Using gLite WMS now just as a pilot deployment mechanism
 - Limited use of brokering features
 - For jobs with input data the destination site is already chosen
 - Have to use multiple Resource Brokers because of *scalability* problems

DIRAC is supporting direct submission to CEs

- CREAM CEs or batch clusters through SSH tunnel
- Can apply individual site policy
 - Site chooses how much load it can take (*Pull* vs *Push* paradigm)
- Direct measurement of the site state watching the pilot status info

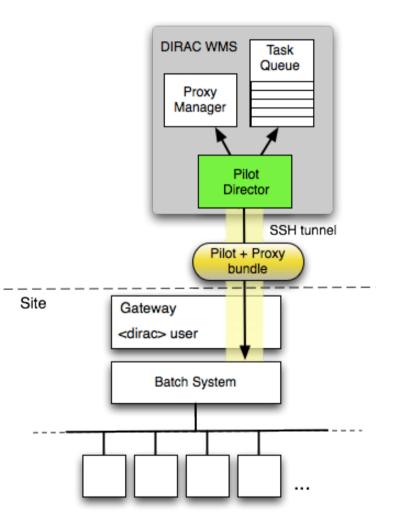
This is a general trend

All the LHC experiments declared abandoning eventually gLite WMS



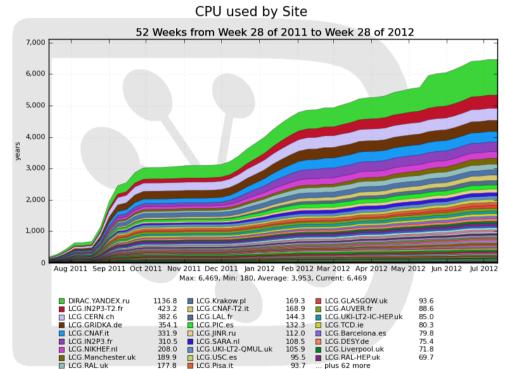
16

Clouds


- VM scheduler developed for Belle MC production system
 - Dynamic VM spawning taking Amazon EC2 spot prices and Task Queue state into account
 - Discarding VMs automatically when no more needed
- The DIRAC VM scheduler by means of dedicated VM Directors is interfaced to
 - OCCI compliant clouds:
 - OpenStack, OpenNebula
 - CloudStack
 - Amazon EC2

Standalone computing clusters

- Dedicated Pilot Director per group of sites
- Off-site Director
 - Site delegates control to the central service
 - Site must only define a dedicated local user account
 - The payload submission through the SSH tunnel
- The site can be a single computer or a cluster with a batch system
 - LSF, BQS, SGE, PBS/Torque, Condor
 - More to come:
 - > OAR, SLURM, LoadLeveler. etc
- The user payload is executed with the owner credentials
 - No security compromises with respect to external services

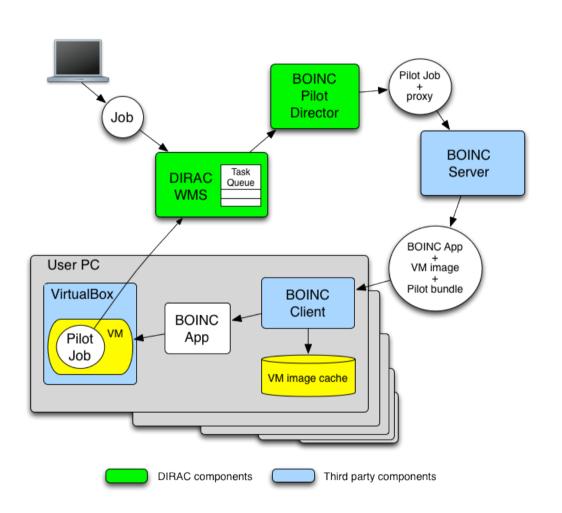

Standalone computing clusters

Examples:

- DIRAC.Yandex.ru
 - 1800 cores
 - Torque batch system, no grid middleware, access by SSH
 - Second largest LHCb MC production site

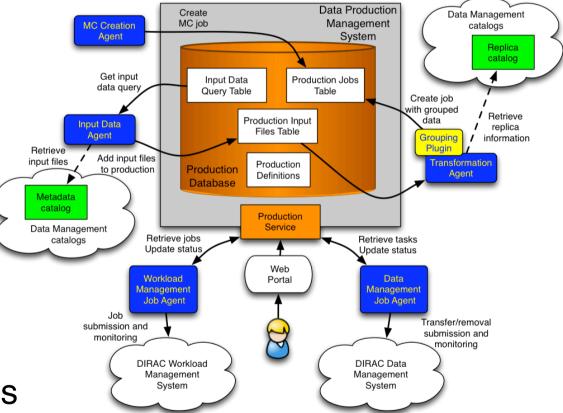
LRZ Computing Center, Munich

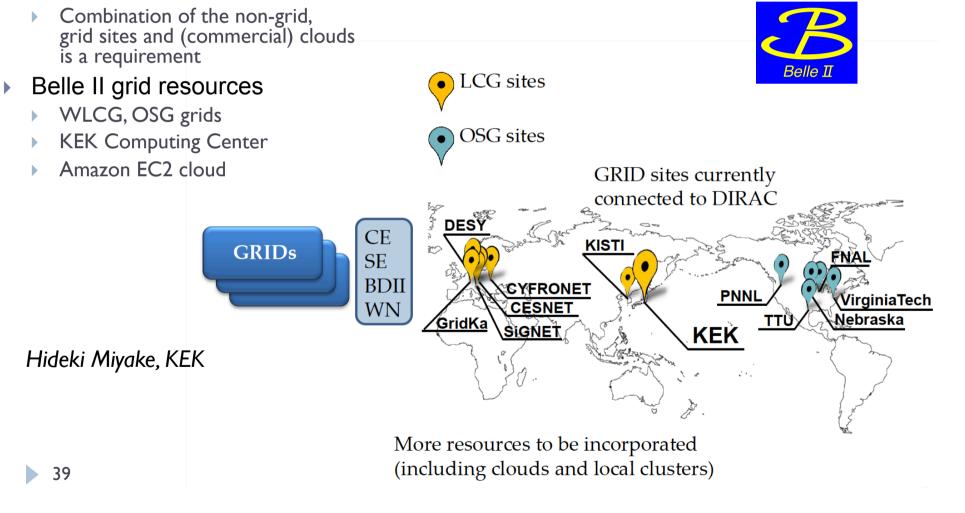
- SLURM batch system, GRAM5 CE service
- Gateway access by GSISSH
- Considerable resources for biomed community (work in progress)
- Mesocentre Aix-Marseille University
 - OAR batch system, no grid middleware, access by SSH
 - Open to multiple communities (work in progress)



Generated on 2012-07-15 21:13:10 UTC

BOINC Desktop Grids


- On the client PC the third party components are installed:
 - VirtualBox hypervisor
 - Standard BOINC client
- A special BOINC application
 - Starts a requested VM within the VirtualBox
 - Passes the Pilot Job to the VM and starts it
- Once the Pilot Job starts in the VM, the user PC becomes a normal DIRAC Worker Node
- Work on interfacing DIRAC to EDGI resources is in progress

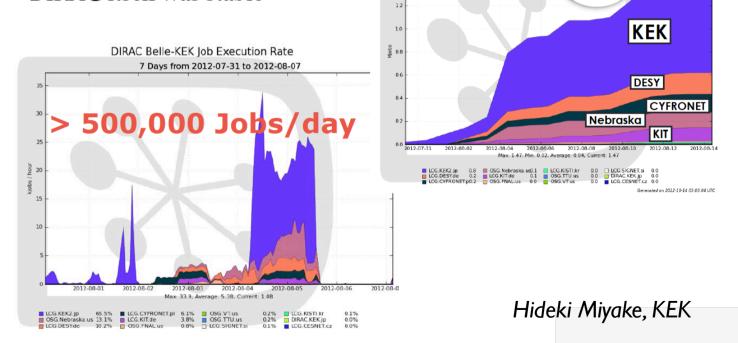


LHCb Production system

- Based on the DIRAC Transformation System
 - Multiple extensions and custom plugins
- Data driven payload generation based on templates
- Generating data processing and replication tasks
- LHCb specific templates and catalogs

Belle II, KEK, Japan

- DIRAC is chosen as the basis of Computing Model for phase II of the experiment
- > 2GB/s DAQ rate


Cumulative lobs by Site

15 Days from 2012-07-30 to 2012-08-14

1.5M

DIRAC Scalability tests

- Random number generation (500/job) or just filling pilot job
 →no SE/AMGA used
- Good performance
 - Even saturated KEKCC GRID
- DIRAC itself was stable

1.4

DIRAC dedicated installations

ILC/CLIC detector Collaboration

- Base production system on DIRAC
- MC simulations
- DIRAC File Catalog was developed to meet the ILC/CLIC requirements

BES III, IHEP, China

- DIRAC is chosen for the phase III
- Using DIRAC DMS: File Catalog, Transfer services

CTA

- CTA started as FG-DIRAC customer for DIRAC evaluation
- Now is using a dedicated installation at PIC, Barcelona
- Using complex workflows

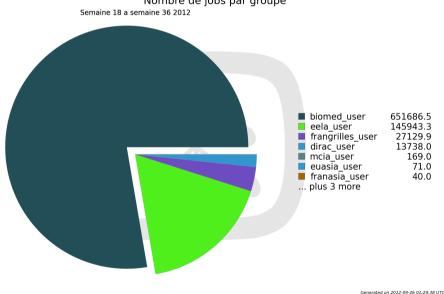
ilc

DIRAC as a service

- DIRAC client is easy to install
 - Part of a usual tutorial
- DIRAC services are easy to install but
 - Needs dedicated hardware for hosting
 - Configuration, maintenance needs expert manpower
 - Monitoring computing resources
- Small user communities can not afford maintaining dedicated DIRAC services
 - Still need easy grid access
- Large grid infrastructures can provide DIRAC services for their users.

 Started as a support for user tutorials

- Several regional and university campus installations
 - Complex maintenance
- Joint effort to provide France-Grid DIRAC service
 - Hosted by the CC/IN2P3, Lyon, T1 center
 - ▶ 6 virtual servers, MySQL server
 - Distributed team of service administrators
 - ▶ 5 participating universities



FG-DIRAC users

France-Grilles users

- 15 VOs, 88users registered
 - astro, auger, biomed, esr, euasia, gilda, glast.org, prod.vo.eu-eela.eu, vo.cta.in2p3.fr, vo.formation.idgrilles.fr, vo.france-asia.org, vo.francegrilles.fr, vo.msfg.fr, vo.mcia.org
 - I robot user VIP/GateLab Biomed
 - More VO's and users can be added as necessary
- In production since May 2012
 - First ~3 millions jobs went through the system
 - Mostly biomed applications

- The computational grids are no more something exotic, they are used in a daily work for various applications
- Rich experience with using computational grids in the LHC experiments, as well as the developed tools, can now be shared with users in other experiments and in other scientific domains
- DIRAC is providing a framework for building distributed computing systems and a rich set of ready to use services. This is used now in a number of DIRAC service projects on a regional and national levels
- Services based on DIRAC technologies can help users to get started in the world of distributed computations and reveal its full potential

