Network awareness and network as a resource (and its integration with WMS)

Artem Petrosyan (University of Texas at Arlington) BigPanDA Workshop, CERN, 21 October 2013

PanDA and Networking

Goal for PanDA

- Direct integration of networking with PanDA workflow never attempted before for large scale automated WMS systems
- Why PanDA and networking
 - PanDA is a distributed computing workload management system
 - Data transfer/access is done asynchronously: by DQ2 in ATLAS, PhEDEx in CMS, pandamover/FAX for special cases...
 - Data transfer/access systems can provide first level of network optimizations – PanDA will use these enhancements as available
 - Will also discuss with FTS team at CERN IT in few weeks
 - PanDA relies on networking for workload data transfer/access
 - Higher level of network integration directly in workflow management
 - Networking is assumed in PanDA not integrated in workflow

Concept: network as a Resource

- PanDA as workload manager
 - PanDA automatically chooses job execution site
 - Multi-level decision tree task brokerage, job brokerage, dispatcher
 - Also manages predictive future workflows at task definition, PD2P
 - Site selection is based on processing and storage requirements
 - Can we use network information in this decision?
 - Can we go even further network provisioning?
 - Further network knowledge used for all phases of job cycle?
- Network as resource
 - Optimal site selection should take network capability into account
 - We do this already but indirectly using job completion metrics
 - Network as a resource should be managed (i.e. provisioning)
 - We also do this crudely mostly through timeouts, self throttling

Scope of Effort

- Three parallel efforts to integrate networking in PanDA
 - US ATLAS funded primarily to improve integration with FAX
 - ASCR funded BigPanDA project, taking PanDA beyond LHC
 - Next Generation Workload Management and Analysis System for Big Data, DOE funded (BNL, U Texas Arlington)
 - ANSE funded NSF CC-NIE program

PanDA Use Cases

- 1) Use network information for cloud selection
- 2) Use network information for FAX brokerage
- 3) Use network information for job assignment
 - Improve flow of 'activated' jobs
 - Better accounting of 'transferring' jobs
- 4) Use network information for PD2P
- 5) Use network information for site selection
- 6) Provision circuits for PD2P transfers
- 7) Provision circuits for input transfers
- 8) Provision circuits for output transfers

FAX for User analysis

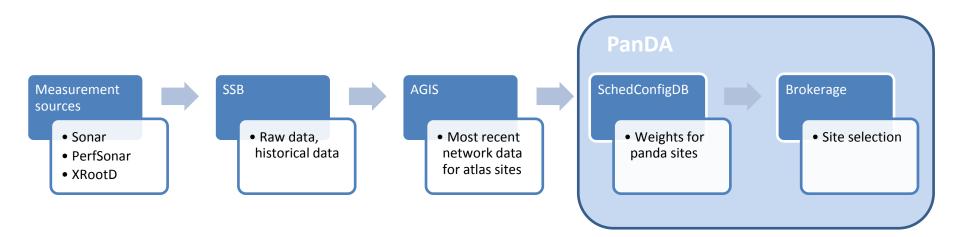
- Goal reduce waiting time for user jobs (FAX job brokerage)
 - User analysis jobs go to sites with local input data
 - This can lead to long wait times occasionally (PD2P will make more copies eventually to reduce congestion)
 - While nearby sites with good network access may have idle CPU's
 - We could use network information to assign work to 'nearby' sites
- Use cost metric generated with HammerCloud tests initially treat as 'typical cost' of data transfer between two sites
- Brokerage should use concept of 'nearby' sites
 - Calculate weight based on usual brokerage criteria (availability of CPU...) plus network transfer cost
 - Jobs to be sent to site with best weight not necessarily the site with local data or with available CPU's

Cloud Selection Plan

- Optimize choice of T1-T2 pairings (cloud selection)
 - In ATLAS, production tasks are assigned to Tier 1's
 - Tier 2's are attached to a Tier 1 cloud for data processing
 - Any T2 may be attached to multiple T1's
 - Currently, operations team makes this assignment manually
 - This could/should be automated using network information
 - For example, each T2 could be assigned to a native cloud by operations team (e.g., AGLT2 to US), and PanDA will assign to other clouds based on network performance metrics

First Steps

- Started the work on integrating network information into PanDA few months ago, following community discussions
- Step 1: Introduce network information into PanDA
 - Start with slowly varying (static) information from external probes
 - Populate various databases used by PanDA
- Step 2: Use network information for workload management
 - Start with simple use cases that lead to measurable improvements in work flow / user experience
- From PanDA perspective we assume
 - Network measurements are available
 - Network information is reliable
 - We can examine this assumption later need to start somewhere


Sources of Network Information

- DDM Sonar measurements
 - ATLAS measures transfer rates for files between Tier 1 and Tier 2 sites (information used for site white/blacklisting)
 - Measurements available for small, medium, and large files
- PerfSonar measurements
 - All WLCG sites are being instrumented with PS boxes
 - US sites are already instrumented and fully monitored
- FAX measurements
 - Read-time for remote files are measured for pairs of sites
 - Standard PanDA test jobs (HammerCloud jobs) are used
- This is not an exclusive list just a starting point

Data Repositories

- Native data repositories
 - Historical data stored from collectors
 - SSB site status board for sonar and PS data (currently)
 - HC FAX data is kept independently and uploaded
- AGIS (ATLAS Grid Information System)
 - Most recent/processed data only updated periodically
 - Pushed via JSON API
- SchedConfigDB
 - Internal Oracle DB used by PanDA for fast access
 - Data updated by extension of standard SchedConfig collector
- All work is currently in 'dev' branch

Dataflow

- Data is being transformed
 - Historical to most recent
 - Mb/sec to weights
 - Atlas sites to panda queues

Brokerage mechanism extension

- Site selection basing on network info is an extension of standard PanDA brokerage mechanism:
 - Select several sites basing on preset parameters standard brokerage
 - Select additional N sites basing on network info dynamic
- Network weights calculation formula:
 - Throughputs > 50Mb/sec considered "good" and equal 50
 - (Throughput/50)*0.5 maximum weight should not exceed 0.5 so that we set priority to sites selected basing on configuration parameters
- Site selection module:
 - Returns N best destinations for source S with protocol P with weight higher than T: selectNBestNetworkSites(source='AGLT2',protocol='xrd',N=5,threshold=0.4)

Monitoring sources

• SSB

http://dashb-atlas-ssb.cern.ch/dashboard/request.py/siteview?view=Sonar Update by different sources with different frequency

 AGIS throughput source-destination pairs (dev)

http://atlas-agis-dev.cern.ch/agis/close_sites/atlassites_links/ Updated every hour

 Intelligent Networking weights sourcedestination pairs (dev)

http://voatlas142.cern.ch/network/sites_matrix/ Updated every hour, synchronized with AGIS update

SSB

	*											© Search.
DDM Sonar				perfSONAR								
AvgBRS (MB/s) EvS	FyS A	vS \$ AvgBRM (MB/s) \$		AvgBRL (MB/s)	EvL 💠	MinThr (MB/s) \$	AvgThr (MB/s) \$	MaxThr (MB/s) \$	MinPL 💠	AvgPL 💠	MaxPL 💠	FAX xrdcp ≎ rate
	205 V					9	9	9	9	9	9	rate
1.05+/-0.19	10	7.46+/-1.48	11	12.54+/-6.72	519	12.4	34.7	56.9	0.0	0.0	2.0	n/a
0.85+/-0.04	10	9.97+/-4.20	602	26.48+/-13.48	10	0.6	0.8	1.1	0.0	0.0	1.0	3.93
0.42+/-0.06	10	0.89+/-0.11	10	0.00+/-0.00	0	n/a	n/a	n/a	n/a	n/a	n/a	n/a
0.39+/-0.06	10	1.02+/-0.04	10	0.00+/-0.00	0	n/a	n/a	n/a	n/a	n/a	n/a	n/a
0.58+/-0.07	10	2.91+/-0.82	10	0.00+/-0.00	0	n/a	n/a	n/a	n/a	n/a	n/a	n/a
0.48+/-0.06	10	2.45+/-0.65	10	3.18+/-0.79	10	n/a	n/a	n/a	n/a	n/a	n/a	n/a
0.12+/-0.39	465	4.13+/-1.44	1575	4.59+/-1.68	3803	164.2	172.3	180.3	0.0	0.0	0.0	n/a
2.10+/-1.88	4920	8.76+/-6.32	10075	14.05+/-23.55	4006	0.3	0.3	0.3	0.0	0.0	0.0	0.72
0.47+/-0.11	5	1.23+/-0.39	9	0.00+/-0.00	0	n/a	n/a	n/a	n/a	n/a	n/a	n/a
0.37+/-0.11	10	1.14+/-0.20	5	2.53+/-0.15	10	n/a	n/a	n/a	n/a	n/a	n/a	n/a
0.67+/-0.54	10	7.53+/-3.81	10	0.00+/-0.00	0	n/a	n/a	n/a	n/a	n/a	n/a	n/a
0.56+/-0.38	10	5.95+/-2.64	10	50.52+/-9.11	10	n/a	n/a	n/a	n/a	n/a	n/a	n/a
0.94+/-0.08	10	5.41+/-1.33	10	0.00+/-0.00	0	n/a	n/a	n/a	n/a	n/a	n/a	n/a
0.55+/-0.25	10	4.95+/-1.63	10	21.09+/-9.01	10	n/a	n/a	n/a	n/a	n/a	n/a	n/a
1.13+/-0.11	10	7.17+/-1.44	510	0.00+/-0.00	0	n/a	n/a	n/a	n/a	n/a	n/a	n/a
0.82+/-0.33	10	6.90+/-1.82	10	30.36+/-11.35	10	n/a	n/a	n/a	n/a	n/a	n/a	5.55
1.14+/-0.09	10	6.50+/-2.41	10	0.00+/-0.00	0	n/a	n/a	n/a	n/a	n/a	n/a	n/a

AGIS

Source site:	AGLT2			1				TWiki
Destination site:	BNL-ATLAS							
	F	ind						
Results								
Source		Destination		Sonar small (MB/s)	Sonar medium (MB/s)	Sonar large (MB/s)	PerfSonar (MB/s)	xrdcp (MB/s)
AGLT2		BNL-ATLAS						14.16
w processing tim	e: 0.16 (Python: (al DB Queries: 6).15 + DB: 0.01), DB C	Queries: 6. F	Page request	ed at 2013-1	0-21 08 <mark>:</mark> 36:56		

Intelligent Networking

- → C 🗋 voatlas	142.cern.ch/network/sites	ern.ch/network/sites_matrix/					ବ 📀
						Intelligent Ne	tworkin
ome	Intelligen	t Networking					
ites Matrix	Sites Matrix						
	Source queue	AGLT2					
	Destination queue	ANALY_BNL_CLOUD					
		Find					
	Results						
	Source	Destination	Sonar small	Sonar medium	Sonar large	PerfSonar	Xrdcp
	AGLT2	ANALY_BNL_CLOUD					0.14

Short Term Plan

- In the next few months
 - Network information in PanDA move from development to production branch
 - Implement FAX brokerage algorithm
 - Implement cloud selection algorithm
 - Evaluate algorithm after few months
 - Extend monitoring

Medium Term Plan

- Improve source of information
 - Reliability of network information
 - Dynamic network information
 - Internal measurements

Long Term Plans

 Look at list of topics discussed at various meetings over the past year