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• Greg Landsberg, CMSDAS @ FNAL, 9 January, 2013

• Paris Sphicas, CMSDAS @ CERN, 13 January, 2013

• Luca Malgeri, Jeff  Richman, Guenther Dissertori 

• This talk is neither an exhaustive nor an official list of  
2015 CMS physics goals!
• It is an incomplete overview of  "some" of  the analyses which are 

possibly interesting!   ...sprinkled with some personal opinions...

• Example:  I believe that boosted objects, jet-substructure, etc, will 
play a transformative role in the 2015 searches...but I don't discuss 
it in this talk (apologies!).
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• We don’t know when the first collisions start

• Nominally, as early as March-April, but delays are possible

• We don’t know how much data are going to be delivered at 50ns
• Nominally, just a pilot run of  0.5-1.0/fb, but if  there are challenges with 25ns 

running, we may end up getting significantly more 50ns data

• We don’t know how much data will be delivered altogether
• Nominally, 20-30 fb-1, but may end up with 5-10 fb-1

5



27.01.2014

UIC University of Illinois
at Chicago

Fermilab

LPC
LHC Physics Center

Pile-up in 2012

6



BX=50 ns

27.01.2014

UIC University of Illinois
at Chicago

Fermilab

LPC
LHC Physics Center

Pile-up in 2012

6



BX=50 ns

PU

10

40

20

30

50

27.01.2014

UIC University of Illinois
at Chicago

Fermilab

LPC
LHC Physics Center

Pile-up in 2012

6



BX=50 ns
Design value
25 pileup events
(L=1034, BX=25 ns)

PU

10

40

20

30

50

27.01.2014

UIC University of Illinois
at Chicago

Fermilab

LPC
LHC Physics Center

Pile-up in 2012

6



BX=50 ns
Design value
25 pileup events
(L=1034, BX=25 ns)

Peak: 37 pileup events

PU

10

40

20

30

50

27.01.2014

UIC University of Illinois
at Chicago

Fermilab

LPC
LHC Physics Center

Pile-up in 2012

6



BX=50 ns
Design value
25 pileup events
(L=1034, BX=25 ns)

Peak: 37 pileup events

PU

10

40

20

30

50

27.01.2014

UIC University of Illinois
at Chicago

Fermilab

LPC
LHC Physics Center

Pile-up in 2012

6



27.01.2014

UIC University of Illinois
at Chicago

Fermilab

LPC
LHC Physics Center

Pile-up at Design Luminosity

7

M
ay

 2
1,

 2
01

3 
 C

M
S

 P
rio

rit
ie

s 
an

d 
C

ha
lle

ng
es

   
 U

S
 C

M
S

 M
ee

tin
g 

  V
an

de
rb

ilt
   

 J
. I

nc
an

de
la

 (U
C

S
B

/C
E

R
N

)  

Pileup at 25 ns and  L = 2x1034 cm-2s-1 
17 

Basically, life will not be easy… 

17 

Affects Jets and MET 
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Despite the low branching fraction to the final state, the 
mass resolution of these two channels enables sighting 
a “peak”.  The ZZ peak has a Z calibration as well(!)#

 [GeV]4lm

E
ve

nt
s 

/ 3
 G

eV

0

2

4

6

8

10

12

 [GeV]4lm

E
ve

nt
s 

/ 3
 G

eV

0

2

4

6

8

10

12 Data

Z+X

*,ZZaZ

=126 GeVHm

µ, 2e2µ7 TeV 4e, 4
µ, 2e2µ8 TeV 4e, 4

CMS Preliminary -1 = 8 TeV, L = 5.26 fbs ; -1 = 7 TeV, L = 5.05 fbs

 [GeV]4lm
80 100 120 140 160 180



27.01.2014

UIC University of Illinois
at Chicago

Fermilab

LPC
LHC Physics Center

4 July, 2012: The dawning of  a new age!

• Discovery of  a new fundamental Boson!
• Decays to two Spin-1 Bosons (two γ's, two Z's, two W's)

8

P. Sphicas 
CMS Results, 14 TeV and beond 

Mass peaks: H(?)→γγ & 
H(?)→ZZ→4leptons  

Jan 13, 2014 
CMSDAS Jan 2013 

Despite the low branching fraction to the final state, the 
mass resolution of these two channels enables sighting 
a “peak”.  The ZZ peak has a Z calibration as well(!)#

 [GeV]4lm

E
ve

nt
s 

/ 3
 G

eV

0

2

4

6

8

10

12

 [GeV]4lm

E
ve

nt
s 

/ 3
 G

eV

0

2

4

6

8

10

12 Data

Z+X

*,ZZaZ

=126 GeVHm

µ, 2e2µ7 TeV 4e, 4
µ, 2e2µ8 TeV 4e, 4

CMS Preliminary -1 = 8 TeV, L = 5.26 fbs ; -1 = 7 TeV, L = 5.05 fbs

 [GeV]4lm
80 100 120 140 160 180



27.01.2014

UIC University of Illinois
at Chicago

Fermilab

LPC
LHC Physics Center

4 July, 2012: The dawning of  a new age!

• Discovery of  a new fundamental Boson!
• Decays to two Spin-1 Bosons (two γ's, two Z's, two W's)

• Can not be spin-1 

8

P. Sphicas 
CMS Results, 14 TeV and beond 

Mass peaks: H(?)→γγ & 
H(?)→ZZ→4leptons  

Jan 13, 2014 
CMSDAS Jan 2013 

Despite the low branching fraction to the final state, the 
mass resolution of these two channels enables sighting 
a “peak”.  The ZZ peak has a Z calibration as well(!)#

 [GeV]4lm

E
ve

nt
s 

/ 3
 G

eV

0

2

4

6

8

10

12

 [GeV]4lm

E
ve

nt
s 

/ 3
 G

eV

0

2

4

6

8

10

12 Data

Z+X

*,ZZaZ

=126 GeVHm

µ, 2e2µ7 TeV 4e, 4
µ, 2e2µ8 TeV 4e, 4

CMS Preliminary -1 = 8 TeV, L = 5.26 fbs ; -1 = 7 TeV, L = 5.05 fbs

 [GeV]4lm
80 100 120 140 160 180



27.01.2014

UIC University of Illinois
at Chicago

Fermilab

LPC
LHC Physics Center

4 July, 2012: The dawning of  a new age!

• Discovery of  a new fundamental Boson!
• Decays to two Spin-1 Bosons (two γ's, two Z's, two W's)

• Can not be spin-1 
• decays to two γ's, Landau-Yang Theorem

8

P. Sphicas 
CMS Results, 14 TeV and beond 

Mass peaks: H(?)→γγ & 
H(?)→ZZ→4leptons  

Jan 13, 2014 
CMSDAS Jan 2013 

Despite the low branching fraction to the final state, the 
mass resolution of these two channels enables sighting 
a “peak”.  The ZZ peak has a Z calibration as well(!)#

 [GeV]4lm

E
ve

nt
s 

/ 3
 G

eV

0

2

4

6

8

10

12

 [GeV]4lm

E
ve

nt
s 

/ 3
 G

eV

0

2

4

6

8

10

12 Data

Z+X

*,ZZaZ

=126 GeVHm

µ, 2e2µ7 TeV 4e, 4
µ, 2e2µ8 TeV 4e, 4

CMS Preliminary -1 = 8 TeV, L = 5.26 fbs ; -1 = 7 TeV, L = 5.05 fbs

 [GeV]4lm
80 100 120 140 160 180



27.01.2014

UIC University of Illinois
at Chicago

Fermilab

LPC
LHC Physics Center

4 July, 2012: The dawning of  a new age!

• Discovery of  a new fundamental Boson!
• Decays to two Spin-1 Bosons (two γ's, two Z's, two W's)

• Can not be spin-1 
• decays to two γ's, Landau-Yang Theorem

• Either spin-0 or spin-2

8

P. Sphicas 
CMS Results, 14 TeV and beond 

Mass peaks: H(?)→γγ & 
H(?)→ZZ→4leptons  

Jan 13, 2014 
CMSDAS Jan 2013 

Despite the low branching fraction to the final state, the 
mass resolution of these two channels enables sighting 
a “peak”.  The ZZ peak has a Z calibration as well(!)#

 [GeV]4lm

E
ve

nt
s 

/ 3
 G

eV

0

2

4

6

8

10

12

 [GeV]4lm

E
ve

nt
s 

/ 3
 G

eV

0

2

4

6

8

10

12 Data

Z+X

*,ZZaZ

=126 GeVHm

µ, 2e2µ7 TeV 4e, 4
µ, 2e2µ8 TeV 4e, 4

CMS Preliminary -1 = 8 TeV, L = 5.26 fbs ; -1 = 7 TeV, L = 5.05 fbs

 [GeV]4lm
80 100 120 140 160 180



27.01.2014

UIC University of Illinois
at Chicago

Fermilab

LPC
LHC Physics Center

4 July, 2012: The dawning of  a new age!

• Discovery of  a new fundamental Boson!
• Decays to two Spin-1 Bosons (two γ's, two Z's, two W's)

• Can not be spin-1 
• decays to two γ's, Landau-Yang Theorem

• Either spin-0 or spin-2
• could (in principle) be higher spin, but really disfavoured

8

P. Sphicas 
CMS Results, 14 TeV and beond 

Mass peaks: H(?)→γγ & 
H(?)→ZZ→4leptons  

Jan 13, 2014 
CMSDAS Jan 2013 

Despite the low branching fraction to the final state, the 
mass resolution of these two channels enables sighting 
a “peak”.  The ZZ peak has a Z calibration as well(!)#

 [GeV]4lm

E
ve

nt
s 

/ 3
 G

eV

0

2

4

6

8

10

12

 [GeV]4lm

E
ve

nt
s 

/ 3
 G

eV

0

2

4

6

8

10

12 Data

Z+X

*,ZZaZ

=126 GeVHm

µ, 2e2µ7 TeV 4e, 4
µ, 2e2µ8 TeV 4e, 4

CMS Preliminary -1 = 8 TeV, L = 5.26 fbs ; -1 = 7 TeV, L = 5.05 fbs

 [GeV]4lm
80 100 120 140 160 180



27.01.2014

UIC University of Illinois
at Chicago

Fermilab

LPC
LHC Physics Center

Does it behave like a Higgs boson?

9

• Does it couple like the 
Higgs boson?  (i.e. to 
mass)

• What is it's spin and 
CP?
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CMS Results, 14 TeV and beond 

Does it behave like a Higgs boson? 
■  Does it couple like a H-boson?  (i.e. to mass?) 

◆  Measure couplings to fermions and bosons, and see if they 
come out right 

■  What is its spin & CP? 

Jan 13, 2014 
CMSDAS Jan 2013 

The channels at LHC 

Chiara&Mario)& 7"

5 decay modes exploited 
 
               Exp Sig (CMS)     σM/M 
                       @125.7    
•  bb        2.2σ          10%               
•  ττ          2.7σ          10%       
•  WW      5.1σ          20%      
•  ZZ         7.1σ          1-2%     
•  γγ          4.2σ         1-2%    

•  and searches in Zγ, µµ#

Decay Modes available 

5

Higgs boson decay modes

Favorites:

H → bb ~ 57%

H → WW ~ 22%

H → tt ~ 6.2%

H → ZZ ~ 2.8%

H → gg ~ 0.2%

Very rare:

H → Zg & H →  µµ

'Challenging':

H → cc & H → gg

4 production channels, 5 main decay modes + W, Z, t and t decay too 
→ numerous results from ATLAS & CMS, only few highlighted

cleaner signal

&

better mass

resolution

(if no n) 



27.01.2014

UIC University of Illinois
at Chicago

Fermilab

LPC
LHC Physics Center

Coupling to particles

10



27.01.2014

UIC University of Illinois
at Chicago

Fermilab

LPC
LHC Physics Center

Coupling to particles

10

P. Sphicas 
CMS Results, 14 TeV and beond 

Since the discovery…  
Coupling to fermions! 

Jan 13, 2014 
CMSDAS Jan 2013 

 S
lid

e 
G

re
g 

La
nd

sb
er

g 
- L

H
C

: P
as

t, 
Pr

es
en

t &
 F

ut
ur

e 
- S

tri
ng

s 
20

13
, S

eo
ul

Higgs: 10 Months After
✦ Just a few highlights:

๏ The existence of new particle has been established beyond any doubts; it is 
a 0++ boson responsible for EWSB, as evident from its relative couplings to 
W/Z vs. γ

๏ It’s properties are consistent with those of the SM Higgs boson within 
(sizable) uncertainties

๏ There is mounting evidence (Tevatron, CMS), that it is couples to at least the 
third generation fermions
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Higgs Boson Signal Strength
✦ Consistency with the SM Higgs boson:

๏ ATLAS: µ = 1.30 ± 0.20 @ 125.5 GeV
๏ CMS:    µ = 0.80 ± 0.14 @ 125.7 GeV

23

Has not been updated to the
latest result of 1.00 ± 0.50

■ HIG-13-012

4 5 Results

|h| < 1 region for pT > 0.6 GeV/c. For the multiplicity range studied here, little or no depen-
dence of the tracking efficiency on multiplicity is found and the rate of misreconstructed tracks
remains at the 1–2% level.

Simulations of pp, pPb and peripheral PbPb collisions using the PYTHIA, HIJING and HYDJET
event generators, respectively, yield efficiency correction factors that vary due to the different
kinematic and mass distributions for the particles produced in these generators. Applying
the resulting correction factors from one of the generators to simulated data from one of the
others gives associated yield distributions that agree within 5%. Systematic uncertainties due
to track quality cuts are examined by loosening or tightening the track selections on dz/s(dz)
and dxy/s(dxy) from 2 to 5. The associated yields are found to be insensitive to these track
selections within 2%.
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Figure 1: 2-D two-particle correlation functions for 5.02 TeV pPb collisions for pairs of charged
particles with 1 < pT < 3 GeV/c. Results are shown (a) for low-multiplicity events (Noffline

trk <
35) and (b) for a high-multiplicity selection (Noffline

trk � 110). The sharp near-side peaks from jet
correlations have been truncated to better illustrate the structure outside that region.

5 Results

Figure 1 compares 2-D two-particle correlation functions for events with low (a) and high (b)
multiplicity, for pairs of charged particles with 1 < pT < 3 GeV/c. For the low-multiplicity
selection (Noffline

trk < 35), the dominant features are the correlation peak near (Dh, Df) = (0, 0)
for pairs of particles originating from the same jet and the elongated structure at Df ⇡ p for
pairs of particles from back-to-back jets. To better illustrate the full correlation structure, the jet
peak has been truncated. High-multiplicity events (Noffline

trk � 110) also show the same-side jet
peak and back-to-back correlation structures. However, in addition, a pronounced “ridge”-like
structure emerges at Df ⇡ 0 extending to |Dh| of at least 4 units. This observed structure is
similar to that seen in high-multiplicity pp collision data at

p
s = 7 TeV [17] and in AA collisions

over a wide range of energies [3–10].

As a cross-check, correlation functions were also generated for tracks paired with ECAL pho-
tons, which originate primarily from decays of p0s, and for pairs of ECAL photons. These
distributions showed similar features as those seen in Fig. 1, in particular the ridge-like corre-
lation for high multiplicity events.

To investigate the long-range, near-side correlations in finer detail, and to provide a quanti-
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Figure 26: (a) Distribution of a test-statistic q = �2ln(L0�/L0+) of the pseudoscalar boson
hypothesis tested against the SM Higgs boson hypothesis. Distributions for the SM Higgs
boson are represented by the yellow histogram and for the alternative JP hypotheses by the
blue histogram. The arrow indicates the observed value. (b) Average expected and observed
distribution of �2D ln L as a function of fa3. The horizontal lines at �2D lnL = 1 and 3.84
represent the 68% and 95% CL, respectively.
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4 5 Results

|h| < 1 region for pT > 0.6 GeV/c. For the multiplicity range studied here, little or no depen-
dence of the tracking efficiency on multiplicity is found and the rate of misreconstructed tracks
remains at the 1–2% level.

Simulations of pp, pPb and peripheral PbPb collisions using the PYTHIA, HIJING and HYDJET
event generators, respectively, yield efficiency correction factors that vary due to the different
kinematic and mass distributions for the particles produced in these generators. Applying
the resulting correction factors from one of the generators to simulated data from one of the
others gives associated yield distributions that agree within 5%. Systematic uncertainties due
to track quality cuts are examined by loosening or tightening the track selections on dz/s(dz)
and dxy/s(dxy) from 2 to 5. The associated yields are found to be insensitive to these track
selections within 2%.
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Figure 1: 2-D two-particle correlation functions for 5.02 TeV pPb collisions for pairs of charged
particles with 1 < pT < 3 GeV/c. Results are shown (a) for low-multiplicity events (Noffline

trk <
35) and (b) for a high-multiplicity selection (Noffline

trk � 110). The sharp near-side peaks from jet
correlations have been truncated to better illustrate the structure outside that region.
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multiplicity, for pairs of charged particles with 1 < pT < 3 GeV/c. For the low-multiplicity
selection (Noffline

trk < 35), the dominant features are the correlation peak near (Dh, Df) = (0, 0)
for pairs of particles originating from the same jet and the elongated structure at Df ⇡ p for
pairs of particles from back-to-back jets. To better illustrate the full correlation structure, the jet
peak has been truncated. High-multiplicity events (Noffline

trk � 110) also show the same-side jet
peak and back-to-back correlation structures. However, in addition, a pronounced “ridge”-like
structure emerges at Df ⇡ 0 extending to |Dh| of at least 4 units. This observed structure is
similar to that seen in high-multiplicity pp collision data at

p
s = 7 TeV [17] and in AA collisions

over a wide range of energies [3–10].

As a cross-check, correlation functions were also generated for tracks paired with ECAL pho-
tons, which originate primarily from decays of p0s, and for pairs of ECAL photons. These
distributions showed similar features as those seen in Fig. 1, in particular the ridge-like corre-
lation for high multiplicity events.
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Higgs: 10 Months After
✦ Just a few highlights:

๏ The existence of new particle has been established beyond any doubts; it is 
a 0++ boson responsible for EWSB, as evident from its relative couplings to 
W/Z vs. γ

๏ It’s properties are consistent with those of the SM Higgs boson within 
(sizable) uncertainties

๏ There is mounting evidence (Tevatron, CMS), that it is couples to at least the 
third generation fermions

21

 [GeV]Hm
115 120 125 130 135

0p

-2410

-2110

-1810

-1510

-1210

-910

-610

-310
1

310

610

910

Observed
SM expected

ATLAS Preliminary

-1Ldt = 13-20.7 fb0 = 8 TeV, s

-1Ldt = 4.6-4.8 fb0 = 7 TeV, s

m0
m2
m4

m6

m8

m10

CMS PAS HIG-13-005 S
lid

e 
G

re
g 

La
nd

sb
er

g 
- L

H
C

: P
as

t, 
Pr

es
en

t &
 F

ut
ur

e 
- S

tri
ng

s 
20

13
, S

eo
ul

Higgs: 10 Months After
✦ Just a few highlights:

๏ The existence of new particle has been established beyond any doubts; it is 
a 0++ boson responsible for EWSB, as evident from its relative couplings to 
W/Z vs. γ

๏ It’s properties are consistent with those of the SM Higgs boson within 
(sizable) uncertainties

๏ There is mounting evidence (Tevatron, CMS), that it is couples to at least the 
third generation fermions

21

 [GeV]Hm
115 120 125 130 135

0p

-2410

-2110

-1810

-1510

-1210

-910

-610

-310
1

310

610

910

Observed
SM expected

ATLAS Preliminary

-1Ldt = 13-20.7 fb0 = 8 TeV, s

-1Ldt = 4.6-4.8 fb0 = 7 TeV, s

m0
m2
m4

m6

m8

m10

 S
lid

e 
G

re
g 

La
nd

sb
er

g 
- L

H
C

: P
as

t, 
Pr

es
en

t &
 F

ut
ur

e 
- S

tri
ng

s 
20

13
, S

eo
ul

Higgs Boson Signal Strength
✦ Consistency with the SM Higgs boson:

๏ ATLAS: µ = 1.30 ± 0.20 @ 125.5 GeV
๏ CMS:    µ = 0.80 ± 0.14 @ 125.7 GeV
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Has not been updated to the
latest result of 1.00 ± 0.50

■ HIG-13-012

4 5 Results

|h| < 1 region for pT > 0.6 GeV/c. For the multiplicity range studied here, little or no depen-
dence of the tracking efficiency on multiplicity is found and the rate of misreconstructed tracks
remains at the 1–2% level.

Simulations of pp, pPb and peripheral PbPb collisions using the PYTHIA, HIJING and HYDJET
event generators, respectively, yield efficiency correction factors that vary due to the different
kinematic and mass distributions for the particles produced in these generators. Applying
the resulting correction factors from one of the generators to simulated data from one of the
others gives associated yield distributions that agree within 5%. Systematic uncertainties due
to track quality cuts are examined by loosening or tightening the track selections on dz/s(dz)
and dxy/s(dxy) from 2 to 5. The associated yields are found to be insensitive to these track
selections within 2%.
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Figure 1: 2-D two-particle correlation functions for 5.02 TeV pPb collisions for pairs of charged
particles with 1 < pT < 3 GeV/c. Results are shown (a) for low-multiplicity events (Noffline

trk <
35) and (b) for a high-multiplicity selection (Noffline

trk � 110). The sharp near-side peaks from jet
correlations have been truncated to better illustrate the structure outside that region.

5 Results

Figure 1 compares 2-D two-particle correlation functions for events with low (a) and high (b)
multiplicity, for pairs of charged particles with 1 < pT < 3 GeV/c. For the low-multiplicity
selection (Noffline

trk < 35), the dominant features are the correlation peak near (Dh, Df) = (0, 0)
for pairs of particles originating from the same jet and the elongated structure at Df ⇡ p for
pairs of particles from back-to-back jets. To better illustrate the full correlation structure, the jet
peak has been truncated. High-multiplicity events (Noffline

trk � 110) also show the same-side jet
peak and back-to-back correlation structures. However, in addition, a pronounced “ridge”-like
structure emerges at Df ⇡ 0 extending to |Dh| of at least 4 units. This observed structure is
similar to that seen in high-multiplicity pp collision data at

p
s = 7 TeV [17] and in AA collisions

over a wide range of energies [3–10].

As a cross-check, correlation functions were also generated for tracks paired with ECAL pho-
tons, which originate primarily from decays of p0s, and for pairs of ECAL photons. These
distributions showed similar features as those seen in Fig. 1, in particular the ridge-like corre-
lation for high multiplicity events.

To investigate the long-range, near-side correlations in finer detail, and to provide a quanti-
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Figure 26: (a) Distribution of a test-statistic q = �2ln(L0�/L0+) of the pseudoscalar boson
hypothesis tested against the SM Higgs boson hypothesis. Distributions for the SM Higgs
boson are represented by the yellow histogram and for the alternative JP hypotheses by the
blue histogram. The arrow indicates the observed value. (b) Average expected and observed
distribution of �2D ln L as a function of fa3. The horizontal lines at �2D lnL = 1 and 3.84
represent the 68% and 95% CL, respectively.
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direct 2.5σ hint for 
coupling to top quarks
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4 5 Results

|h| < 1 region for pT > 0.6 GeV/c. For the multiplicity range studied here, little or no depen-
dence of the tracking efficiency on multiplicity is found and the rate of misreconstructed tracks
remains at the 1–2% level.

Simulations of pp, pPb and peripheral PbPb collisions using the PYTHIA, HIJING and HYDJET
event generators, respectively, yield efficiency correction factors that vary due to the different
kinematic and mass distributions for the particles produced in these generators. Applying
the resulting correction factors from one of the generators to simulated data from one of the
others gives associated yield distributions that agree within 5%. Systematic uncertainties due
to track quality cuts are examined by loosening or tightening the track selections on dz/s(dz)
and dxy/s(dxy) from 2 to 5. The associated yields are found to be insensitive to these track
selections within 2%.
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Figure 1: 2-D two-particle correlation functions for 5.02 TeV pPb collisions for pairs of charged
particles with 1 < pT < 3 GeV/c. Results are shown (a) for low-multiplicity events (Noffline

trk <
35) and (b) for a high-multiplicity selection (Noffline

trk � 110). The sharp near-side peaks from jet
correlations have been truncated to better illustrate the structure outside that region.

5 Results

Figure 1 compares 2-D two-particle correlation functions for events with low (a) and high (b)
multiplicity, for pairs of charged particles with 1 < pT < 3 GeV/c. For the low-multiplicity
selection (Noffline

trk < 35), the dominant features are the correlation peak near (Dh, Df) = (0, 0)
for pairs of particles originating from the same jet and the elongated structure at Df ⇡ p for
pairs of particles from back-to-back jets. To better illustrate the full correlation structure, the jet
peak has been truncated. High-multiplicity events (Noffline

trk � 110) also show the same-side jet
peak and back-to-back correlation structures. However, in addition, a pronounced “ridge”-like
structure emerges at Df ⇡ 0 extending to |Dh| of at least 4 units. This observed structure is
similar to that seen in high-multiplicity pp collision data at

p
s = 7 TeV [17] and in AA collisions

over a wide range of energies [3–10].

As a cross-check, correlation functions were also generated for tracks paired with ECAL pho-
tons, which originate primarily from decays of p0s, and for pairs of ECAL photons. These
distributions showed similar features as those seen in Fig. 1, in particular the ridge-like corre-
lation for high multiplicity events.

To investigate the long-range, near-side correlations in finer detail, and to provide a quanti-
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Higgs: 10 Months After
✦ Just a few highlights:

๏ The existence of new particle has been established beyond any doubts; it is 
a 0++ boson responsible for EWSB, as evident from its relative couplings to 
W/Z vs. γ

๏ It’s properties are consistent with those of the SM Higgs boson within 
(sizable) uncertainties

๏ There is mounting evidence (Tevatron, CMS), that it is couples to at least the 
third generation fermions
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Higgs Boson Signal Strength
✦ Consistency with the SM Higgs boson:

๏ ATLAS: µ = 1.30 ± 0.20 @ 125.5 GeV
๏ CMS:    µ = 0.80 ± 0.14 @ 125.7 GeV
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4 5 Results

|h| < 1 region for pT > 0.6 GeV/c. For the multiplicity range studied here, little or no depen-
dence of the tracking efficiency on multiplicity is found and the rate of misreconstructed tracks
remains at the 1–2% level.

Simulations of pp, pPb and peripheral PbPb collisions using the PYTHIA, HIJING and HYDJET
event generators, respectively, yield efficiency correction factors that vary due to the different
kinematic and mass distributions for the particles produced in these generators. Applying
the resulting correction factors from one of the generators to simulated data from one of the
others gives associated yield distributions that agree within 5%. Systematic uncertainties due
to track quality cuts are examined by loosening or tightening the track selections on dz/s(dz)
and dxy/s(dxy) from 2 to 5. The associated yields are found to be insensitive to these track
selections within 2%.
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Figure 1: 2-D two-particle correlation functions for 5.02 TeV pPb collisions for pairs of charged
particles with 1 < pT < 3 GeV/c. Results are shown (a) for low-multiplicity events (Noffline

trk <
35) and (b) for a high-multiplicity selection (Noffline

trk � 110). The sharp near-side peaks from jet
correlations have been truncated to better illustrate the structure outside that region.

5 Results

Figure 1 compares 2-D two-particle correlation functions for events with low (a) and high (b)
multiplicity, for pairs of charged particles with 1 < pT < 3 GeV/c. For the low-multiplicity
selection (Noffline

trk < 35), the dominant features are the correlation peak near (Dh, Df) = (0, 0)
for pairs of particles originating from the same jet and the elongated structure at Df ⇡ p for
pairs of particles from back-to-back jets. To better illustrate the full correlation structure, the jet
peak has been truncated. High-multiplicity events (Noffline

trk � 110) also show the same-side jet
peak and back-to-back correlation structures. However, in addition, a pronounced “ridge”-like
structure emerges at Df ⇡ 0 extending to |Dh| of at least 4 units. This observed structure is
similar to that seen in high-multiplicity pp collision data at

p
s = 7 TeV [17] and in AA collisions

over a wide range of energies [3–10].

As a cross-check, correlation functions were also generated for tracks paired with ECAL pho-
tons, which originate primarily from decays of p0s, and for pairs of ECAL photons. These
distributions showed similar features as those seen in Fig. 1, in particular the ridge-like corre-
lation for high multiplicity events.

To investigate the long-range, near-side correlations in finer detail, and to provide a quanti-
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Figure 26: (a) Distribution of a test-statistic q = �2ln(L0�/L0+) of the pseudoscalar boson
hypothesis tested against the SM Higgs boson hypothesis. Distributions for the SM Higgs
boson are represented by the yellow histogram and for the alternative JP hypotheses by the
blue histogram. The arrow indicates the observed value. (b) Average expected and observed
distribution of �2D ln L as a function of fa3. The horizontal lines at �2D lnL = 1 and 3.84
represent the 68% and 95% CL, respectively.
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4 5 Results

|h| < 1 region for pT > 0.6 GeV/c. For the multiplicity range studied here, little or no depen-
dence of the tracking efficiency on multiplicity is found and the rate of misreconstructed tracks
remains at the 1–2% level.

Simulations of pp, pPb and peripheral PbPb collisions using the PYTHIA, HIJING and HYDJET
event generators, respectively, yield efficiency correction factors that vary due to the different
kinematic and mass distributions for the particles produced in these generators. Applying
the resulting correction factors from one of the generators to simulated data from one of the
others gives associated yield distributions that agree within 5%. Systematic uncertainties due
to track quality cuts are examined by loosening or tightening the track selections on dz/s(dz)
and dxy/s(dxy) from 2 to 5. The associated yields are found to be insensitive to these track
selections within 2%.
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Figure 1: 2-D two-particle correlation functions for 5.02 TeV pPb collisions for pairs of charged
particles with 1 < pT < 3 GeV/c. Results are shown (a) for low-multiplicity events (Noffline

trk <
35) and (b) for a high-multiplicity selection (Noffline

trk � 110). The sharp near-side peaks from jet
correlations have been truncated to better illustrate the structure outside that region.

5 Results

Figure 1 compares 2-D two-particle correlation functions for events with low (a) and high (b)
multiplicity, for pairs of charged particles with 1 < pT < 3 GeV/c. For the low-multiplicity
selection (Noffline

trk < 35), the dominant features are the correlation peak near (Dh, Df) = (0, 0)
for pairs of particles originating from the same jet and the elongated structure at Df ⇡ p for
pairs of particles from back-to-back jets. To better illustrate the full correlation structure, the jet
peak has been truncated. High-multiplicity events (Noffline

trk � 110) also show the same-side jet
peak and back-to-back correlation structures. However, in addition, a pronounced “ridge”-like
structure emerges at Df ⇡ 0 extending to |Dh| of at least 4 units. This observed structure is
similar to that seen in high-multiplicity pp collision data at

p
s = 7 TeV [17] and in AA collisions

over a wide range of energies [3–10].

As a cross-check, correlation functions were also generated for tracks paired with ECAL pho-
tons, which originate primarily from decays of p0s, and for pairs of ECAL photons. These
distributions showed similar features as those seen in Fig. 1, in particular the ridge-like corre-
lation for high multiplicity events.

To investigate the long-range, near-side correlations in finer detail, and to provide a quanti-
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Figure 26: (a) Distribution of a test-statistic q = �2ln(L0�/L0+) of the pseudoscalar boson
hypothesis tested against the SM Higgs boson hypothesis. Distributions for the SM Higgs
boson are represented by the yellow histogram and for the alternative JP hypotheses by the
blue histogram. The arrow indicates the observed value. (b) Average expected and observed
distribution of �2D ln L as a function of fa3. The horizontal lines at �2D lnL = 1 and 3.84
represent the 68% and 95% CL, respectively.
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• But, this is a fairly challenging analysis!

• Multileptons will play leading role (and they are good for other things, too!)
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mH = 125 GeV
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Figure 4: Results of the searches in the three final states and their combination, in terms of the
signal strength parameter µ = s/sSM. Left panel: 95% CL upper limit on µ, observed (solid
markers), median expected under the background-only hypothesis (hollow markers), and in-
tervals containing 68% and 95% of the expected outcomes under that hypothesis (green and
yellow bands). Right panel: best fit values of µ and ±1s uncertainties, for the five individual
final states (solid markers with red error bars) and the full combination (vertical line and green
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ttH Grand Combination
• All channels combined
• Impressive expected sensitivity μ < 2 dominated by 

the multilepton final state!
• Excess is driven by the dimuon excess in the multilepton analysis
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P. Sphicas 
CMS Results, 14 TeV and beond 

Summary  
(and where it was – in mass…) 

■  So it is a Higgs boson; and in fact one that looks very 
(as in very) much like the one of the Standard Model 

■  And its mass?  That “one unknown parameter”? 

Jan 13, 2014 
CMSDAS Jan 2013 

The mass 

Chiara&Mario)& 32"

    H !ZZ!4l:  
Very small systematics due the very good control of the leptons scale and resolution.  
In CMS: Mass estimation with m4l,&KD&and&σ(m4l). 
   H !γγ: 
Systematics on the  extrapolation from  the  Z!ee to H!γγ   
 (0.25% from e to γ, 0.4% from Z to H) 

MH ≈ 126 GeV! A farce? 
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P. Sphicas 
CMS Results, 14 TeV and beond 

Living at the edge… 

Jan 13, 2014 
CMSDAS Jan 2013 

SPG/ÖPG  
2013 R. Wallny - LHC - the first three years

 [GeV]topm
160 165 170 175 180 185-0.5

7.8

Tevatron 2012 combination  0.8± 0.6 ±173.2 
arXiv:1207.1069v2 up to 5.8/fb  syst.)± stat. ±(val. 

CMS combination  0.9± 0.4 ±173.4 
up to L= 5.0/fb  syst.)± stat. ±(val. 

CMS 2011 all-jets  1.3± 0.7 ±173.5 
PAS-TOP-11-017 (L=3.54/fb)  syst.)± stat. ±(val. 

CMS 2011 lepton+jets  1.0± 0.4 ±173.5 
arXiv:1209.2319 (L=5.0/fb)  syst.)± stat. ±(val. 

CMS 2011 dilepton  1.5± 0.4 ±172.5 
arXiv:1209.2393 (L=5.0/fb)  syst.)± stat. ±(val. 

CMS 2010 lepton+jets  2.7± 2.1 ±173.1 
)-1PAS-TOP-10-009 (L=36 pb  syst.)± stat. ±(val. 

=7 TeVsCMS Preliminary, CMS 2010 dilepton  4.6± 4.6 ±175.5 
)-1JHEP 07 (2011) (L=36 pb  syst.)± stat. ±(val. 

=7 TeVsCMS Preliminary, 

CMS combined result

CMS Preliminary

Top quark mass
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Top quark mass:

 Important parameter in the Standard Model  - EW theory 
consistency and vacuum stability 

Measurement accessible in different final states (di-
lepton, lepton + jets, all-hadronic) with different 

systematics
LHC experiments results approach Tevatron precision

LHC top quark mass combination forthcoming

ATLAS-CONF-2013-046

0.6%

0.9%

0.5%

0.9%

0.5%

0.6%

■  Perhaps even more important than originally thought 

Plenty of room for new physics...
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• Some real & some virtual reasons to believe in new 
physics
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• Some real & some virtual reasons to believe in new 
physics
• Real Reasons: Dark Matter & neutrino masses

• Virtual Reasons: Naturalness
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The Higgs opens a window to BSM!
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...even beyond this magic 
of the m(H) vs m(t) mass

P. Sphicas 
CMS Results, 14 TeV and beond 

Living at the edge… 

Jan 13, 2014 
CMSDAS Jan 2013 

SPG/ÖPG  
2013 R. Wallny - LHC - the first three years

 [GeV]topm
160 165 170 175 180 185-0.5

7.8

Tevatron 2012 combination  0.8± 0.6 ±173.2 
arXiv:1207.1069v2 up to 5.8/fb  syst.)± stat. ±(val. 

CMS combination  0.9± 0.4 ±173.4 
up to L= 5.0/fb  syst.)± stat. ±(val. 

CMS 2011 all-jets  1.3± 0.7 ±173.5 
PAS-TOP-11-017 (L=3.54/fb)  syst.)± stat. ±(val. 

CMS 2011 lepton+jets  1.0± 0.4 ±173.5 
arXiv:1209.2319 (L=5.0/fb)  syst.)± stat. ±(val. 

CMS 2011 dilepton  1.5± 0.4 ±172.5 
arXiv:1209.2393 (L=5.0/fb)  syst.)± stat. ±(val. 

CMS 2010 lepton+jets  2.7± 2.1 ±173.1 
)-1PAS-TOP-10-009 (L=36 pb  syst.)± stat. ±(val. 

=7 TeVsCMS Preliminary, CMS 2010 dilepton  4.6± 4.6 ±175.5 
)-1JHEP 07 (2011) (L=36 pb  syst.)± stat. ±(val. 
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• SUSY must be broken!  
• spins and couplings fully specified! (the unbroken part of  SUSY)

• masses not specified (the broken part of  SUSY, model dependent!)
• many new particles, many mass parameters, many possible signatures

• Matter Parity Conservation 
• (additional symmetry -- completely unrelated to SUSY!)

• Consequences:  
• Models have stable proton; stable weakly interacting LSP; MET

• Matter Parity Violation 
• (just SUSY, no additional assumed symmetry)

• Consequence:
• Hadronic modes, challenging:  no MET (to first order);  Leptonic modes, easier

• Dominant strong production (at hadron colliders); but 
several new EWK production mechanisms interesting
• Long cascades:  many jets, some leptons, lots of  MET (RPC) or little/no 

MET (RPV)
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+
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(LSP) 

   Decays of ~t1  ! neutralinos, charginos 
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± → ± χ1

0

 νL →νL χ1
0

neutralino 
(LSP) 

  Decays of                     :  more leptons!  
L ,R
± ,   τ1,2

± ,   νL

...and in GMSB, 
the lightest 
neutralino can 
decay into a 
gravitino ! MET 
 
... and in R-parity 
violating SUSY, the 
neutralino can 
decay into SM  
particles !no MET 

Even more possibilities 
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pp→ χ1
± χ2

0

    →W ± χ1
0 + H χ1

0

 

pp→ χ1
± + χ2

0

    →W ± χ1
0 + H χ1

0

New program of 
searches for SUSY 
decays with Higgs. 

H 
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What we have been looking for...

26P. Sphicas 
CMS Results, 14 TeV and beond 

What we have been looking for 
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What we have found: QCD, W/Z+jets, tt+jets

27P. Sphicas 
CMS Results, 14 TeV and beond 

What we have been looking for 

Jan 13, 2014 
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• Hadronic (0-lepton) searches
• New topological variables help (kinematics well constrained)

• αT (the QCD "killer")

• Razor (the bump hunt)

• MT2 (extensions of  W decays to massless neutrinos)

• Understand full hadronic component (HT, MET distributions)
• cut on highest mass scales (e.g. Meff)

• Leptonic (1-, 2-, multi-lepton) searches
• Look at tails of  distributions

• Topological variables often help less (kinematics less constrained)
• Because of  confusion between LSP and additional neutrinos (W decays)

• Can nevertheless be useful in special cases (MT, MT2 in stop searches)

• Will need a lot more ingenuity to cover "holes" left 
behind at 8 TeV
• compressed spectra scenarios:  low MET, low pT jets, etc
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Remarkable agreement between 
data and SM prediction

29P. Sphicas 
CMS Results, 14 TeV and beond 

Remarkable agreement data–SM 

Jan 13, 2014 
CMSDAS Jan 2013 

MultiNJets&+&MHT&–&Result&
No&signiWicant&deviation&of&data&from&dataNdriven&SM&prediction!&

3rd&September&2013& C.&Sander&N&Latest&SUSY&Results&from&CMS& 14&

SUSN13N012&

One$bin$shows$an$
excess!$Do$we$have$to$
get$exited?$
)
Nbg)=)0.7”±”1.8)
Ndata)=)9)
)
p)(≥9|0.7”±”1.8))~)0.004)
! ~2.7)σ)

To)observe)such)(or)a)
larger))Pluctuation)in)
any)of)the)36)bins:)
)
p$~$0.11$!$~1.2$σ$

C. Sander, Sep 2013 
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• 8 TeV LHC data has placed severe constraints on 
most studied models having SUSY
• In fact, most "toy" models with SUSY are now almost excluded

• CMSSM, mSUGRA, etc, etc

• The Higgs mass of  126 GeV has really disfavoured those models

• No observation of  strongly sparticles has also nailed those coffins rather well...

• So is SUSY dead?  (the press seems to love to declare this!)
• No!  Some models are dead, but SUSY is not!

• SUSY is a principle, not a theory, not a model!  

• SUSY is the last possible symmetry of  space time...period!

• SUSY is very much alive (even though we have no evidence for it yet)

• The minimal model beyond the SM with SUSY (MSSM)
• also very much alive, though is (arguably) under some pressure

• again, Higgs mass of  126 puts minimal models makes some models uncomfortable

• 8 TeV data

• m(gluinos)     ≥ 1350 GeV,     m(squarks)  ≥ 850 GeV,

• m(EWk-inos) ≥   500 GeV,     m(sleptons) ≥ 300 GeV, 
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GeV, corresponds to √ŝ ~ 1.2 TeV
• Cross section boost in gluon fusion ~6; need ~4-5 fb-1 
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4 5 Results

|h| < 1 region for pT > 0.6 GeV/c. For the multiplicity range studied here, little or no depen-
dence of the tracking efficiency on multiplicity is found and the rate of misreconstructed tracks
remains at the 1–2% level.

Simulations of pp, pPb and peripheral PbPb collisions using the PYTHIA, HIJING and HYDJET
event generators, respectively, yield efficiency correction factors that vary due to the different
kinematic and mass distributions for the particles produced in these generators. Applying
the resulting correction factors from one of the generators to simulated data from one of the
others gives associated yield distributions that agree within 5%. Systematic uncertainties due
to track quality cuts are examined by loosening or tightening the track selections on dz/s(dz)
and dxy/s(dxy) from 2 to 5. The associated yields are found to be insensitive to these track
selections within 2%.
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Figure 1: 2-D two-particle correlation functions for 5.02 TeV pPb collisions for pairs of charged
particles with 1 < pT < 3 GeV/c. Results are shown (a) for low-multiplicity events (Noffline

trk <
35) and (b) for a high-multiplicity selection (Noffline

trk � 110). The sharp near-side peaks from jet
correlations have been truncated to better illustrate the structure outside that region.

5 Results

Figure 1 compares 2-D two-particle correlation functions for events with low (a) and high (b)
multiplicity, for pairs of charged particles with 1 < pT < 3 GeV/c. For the low-multiplicity
selection (Noffline

trk < 35), the dominant features are the correlation peak near (Dh, Df) = (0, 0)
for pairs of particles originating from the same jet and the elongated structure at Df ⇡ p for
pairs of particles from back-to-back jets. To better illustrate the full correlation structure, the jet
peak has been truncated. High-multiplicity events (Noffline

trk � 110) also show the same-side jet
peak and back-to-back correlation structures. However, in addition, a pronounced “ridge”-like
structure emerges at Df ⇡ 0 extending to |Dh| of at least 4 units. This observed structure is
similar to that seen in high-multiplicity pp collision data at

p
s = 7 TeV [17] and in AA collisions

over a wide range of energies [3–10].

As a cross-check, correlation functions were also generated for tracks paired with ECAL pho-
tons, which originate primarily from decays of p0s, and for pairs of ECAL photons. These
distributions showed similar features as those seen in Fig. 1, in particular the ridge-like corre-
lation for high multiplicity events.

To investigate the long-range, near-side correlations in finer detail, and to provide a quanti-
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Figure 26: (a) Distribution of a test-statistic q = �2ln(L0�/L0+) of the pseudoscalar boson
hypothesis tested against the SM Higgs boson hypothesis. Distributions for the SM Higgs
boson are represented by the yellow histogram and for the alternative JP hypotheses by the
blue histogram. The arrow indicates the observed value. (b) Average expected and observed
distribution of �2D ln L as a function of fa3. The horizontal lines at �2D lnL = 1 and 3.84
represent the 68% and 95% CL, respectively.
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boson hypothesis (alternative hypothesis). The black point represents the observed value.
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kinematic and mass distributions for the particles produced in these generators. Applying
the resulting correction factors from one of the generators to simulated data from one of the
others gives associated yield distributions that agree within 5%. Systematic uncertainties due
to track quality cuts are examined by loosening or tightening the track selections on dz/s(dz)
and dxy/s(dxy) from 2 to 5. The associated yields are found to be insensitive to these track
selections within 2%.
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Figure 1: 2-D two-particle correlation functions for 5.02 TeV pPb collisions for pairs of charged
particles with 1 < pT < 3 GeV/c. Results are shown (a) for low-multiplicity events (Noffline

trk <
35) and (b) for a high-multiplicity selection (Noffline

trk � 110). The sharp near-side peaks from jet
correlations have been truncated to better illustrate the structure outside that region.

5 Results

Figure 1 compares 2-D two-particle correlation functions for events with low (a) and high (b)
multiplicity, for pairs of charged particles with 1 < pT < 3 GeV/c. For the low-multiplicity
selection (Noffline

trk < 35), the dominant features are the correlation peak near (Dh, Df) = (0, 0)
for pairs of particles originating from the same jet and the elongated structure at Df ⇡ p for
pairs of particles from back-to-back jets. To better illustrate the full correlation structure, the jet
peak has been truncated. High-multiplicity events (Noffline

trk � 110) also show the same-side jet
peak and back-to-back correlation structures. However, in addition, a pronounced “ridge”-like
structure emerges at Df ⇡ 0 extending to |Dh| of at least 4 units. This observed structure is
similar to that seen in high-multiplicity pp collision data at

p
s = 7 TeV [17] and in AA collisions

over a wide range of energies [3–10].

As a cross-check, correlation functions were also generated for tracks paired with ECAL pho-
tons, which originate primarily from decays of p0s, and for pairs of ECAL photons. These
distributions showed similar features as those seen in Fig. 1, in particular the ridge-like corre-
lation for high multiplicity events.

To investigate the long-range, near-side correlations in finer detail, and to provide a quanti-
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Figure 26: (a) Distribution of a test-statistic q = �2ln(L0�/L0+) of the pseudoscalar boson
hypothesis tested against the SM Higgs boson hypothesis. Distributions for the SM Higgs
boson are represented by the yellow histogram and for the alternative JP hypotheses by the
blue histogram. The arrow indicates the observed value. (b) Average expected and observed
distribution of �2D ln L as a function of fa3. The horizontal lines at �2D lnL = 1 and 3.84
represent the 68% and 95% CL, respectively.
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4 5 Results

|h| < 1 region for pT > 0.6 GeV/c. For the multiplicity range studied here, little or no depen-
dence of the tracking efficiency on multiplicity is found and the rate of misreconstructed tracks
remains at the 1–2% level.

Simulations of pp, pPb and peripheral PbPb collisions using the PYTHIA, HIJING and HYDJET
event generators, respectively, yield efficiency correction factors that vary due to the different
kinematic and mass distributions for the particles produced in these generators. Applying
the resulting correction factors from one of the generators to simulated data from one of the
others gives associated yield distributions that agree within 5%. Systematic uncertainties due
to track quality cuts are examined by loosening or tightening the track selections on dz/s(dz)
and dxy/s(dxy) from 2 to 5. The associated yields are found to be insensitive to these track
selections within 2%.
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Figure 1: 2-D two-particle correlation functions for 5.02 TeV pPb collisions for pairs of charged
particles with 1 < pT < 3 GeV/c. Results are shown (a) for low-multiplicity events (Noffline

trk <
35) and (b) for a high-multiplicity selection (Noffline

trk � 110). The sharp near-side peaks from jet
correlations have been truncated to better illustrate the structure outside that region.

5 Results

Figure 1 compares 2-D two-particle correlation functions for events with low (a) and high (b)
multiplicity, for pairs of charged particles with 1 < pT < 3 GeV/c. For the low-multiplicity
selection (Noffline

trk < 35), the dominant features are the correlation peak near (Dh, Df) = (0, 0)
for pairs of particles originating from the same jet and the elongated structure at Df ⇡ p for
pairs of particles from back-to-back jets. To better illustrate the full correlation structure, the jet
peak has been truncated. High-multiplicity events (Noffline

trk � 110) also show the same-side jet
peak and back-to-back correlation structures. However, in addition, a pronounced “ridge”-like
structure emerges at Df ⇡ 0 extending to |Dh| of at least 4 units. This observed structure is
similar to that seen in high-multiplicity pp collision data at

p
s = 7 TeV [17] and in AA collisions

over a wide range of energies [3–10].

As a cross-check, correlation functions were also generated for tracks paired with ECAL pho-
tons, which originate primarily from decays of p0s, and for pairs of ECAL photons. These
distributions showed similar features as those seen in Fig. 1, in particular the ridge-like corre-
lation for high multiplicity events.

To investigate the long-range, near-side correlations in finer detail, and to provide a quanti-
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Figure 26: (a) Distribution of a test-statistic q = �2ln(L0�/L0+) of the pseudoscalar boson
hypothesis tested against the SM Higgs boson hypothesis. Distributions for the SM Higgs
boson are represented by the yellow histogram and for the alternative JP hypotheses by the
blue histogram. The arrow indicates the observed value. (b) Average expected and observed
distribution of �2D ln L as a function of fa3. The horizontal lines at �2D lnL = 1 and 3.84
represent the 68% and 95% CL, respectively.
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4 5 Results

|h| < 1 region for pT > 0.6 GeV/c. For the multiplicity range studied here, little or no depen-
dence of the tracking efficiency on multiplicity is found and the rate of misreconstructed tracks
remains at the 1–2% level.

Simulations of pp, pPb and peripheral PbPb collisions using the PYTHIA, HIJING and HYDJET
event generators, respectively, yield efficiency correction factors that vary due to the different
kinematic and mass distributions for the particles produced in these generators. Applying
the resulting correction factors from one of the generators to simulated data from one of the
others gives associated yield distributions that agree within 5%. Systematic uncertainties due
to track quality cuts are examined by loosening or tightening the track selections on dz/s(dz)
and dxy/s(dxy) from 2 to 5. The associated yields are found to be insensitive to these track
selections within 2%.
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Figure 1: 2-D two-particle correlation functions for 5.02 TeV pPb collisions for pairs of charged
particles with 1 < pT < 3 GeV/c. Results are shown (a) for low-multiplicity events (Noffline

trk <
35) and (b) for a high-multiplicity selection (Noffline

trk � 110). The sharp near-side peaks from jet
correlations have been truncated to better illustrate the structure outside that region.

5 Results

Figure 1 compares 2-D two-particle correlation functions for events with low (a) and high (b)
multiplicity, for pairs of charged particles with 1 < pT < 3 GeV/c. For the low-multiplicity
selection (Noffline

trk < 35), the dominant features are the correlation peak near (Dh, Df) = (0, 0)
for pairs of particles originating from the same jet and the elongated structure at Df ⇡ p for
pairs of particles from back-to-back jets. To better illustrate the full correlation structure, the jet
peak has been truncated. High-multiplicity events (Noffline

trk � 110) also show the same-side jet
peak and back-to-back correlation structures. However, in addition, a pronounced “ridge”-like
structure emerges at Df ⇡ 0 extending to |Dh| of at least 4 units. This observed structure is
similar to that seen in high-multiplicity pp collision data at

p
s = 7 TeV [17] and in AA collisions

over a wide range of energies [3–10].

As a cross-check, correlation functions were also generated for tracks paired with ECAL pho-
tons, which originate primarily from decays of p0s, and for pairs of ECAL photons. These
distributions showed similar features as those seen in Fig. 1, in particular the ridge-like corre-
lation for high multiplicity events.

To investigate the long-range, near-side correlations in finer detail, and to provide a quanti-
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Figure 26: (a) Distribution of a test-statistic q = �2ln(L0�/L0+) of the pseudoscalar boson
hypothesis tested against the SM Higgs boson hypothesis. Distributions for the SM Higgs
boson are represented by the yellow histogram and for the alternative JP hypotheses by the
blue histogram. The arrow indicates the observed value. (b) Average expected and observed
distribution of �2D ln L as a function of fa3. The horizontal lines at �2D lnL = 1 and 3.84
represent the 68% and 95% CL, respectively.
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4 5 Results

|h| < 1 region for pT > 0.6 GeV/c. For the multiplicity range studied here, little or no depen-
dence of the tracking efficiency on multiplicity is found and the rate of misreconstructed tracks
remains at the 1–2% level.

Simulations of pp, pPb and peripheral PbPb collisions using the PYTHIA, HIJING and HYDJET
event generators, respectively, yield efficiency correction factors that vary due to the different
kinematic and mass distributions for the particles produced in these generators. Applying
the resulting correction factors from one of the generators to simulated data from one of the
others gives associated yield distributions that agree within 5%. Systematic uncertainties due
to track quality cuts are examined by loosening or tightening the track selections on dz/s(dz)
and dxy/s(dxy) from 2 to 5. The associated yields are found to be insensitive to these track
selections within 2%.
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Figure 1: 2-D two-particle correlation functions for 5.02 TeV pPb collisions for pairs of charged
particles with 1 < pT < 3 GeV/c. Results are shown (a) for low-multiplicity events (Noffline

trk <
35) and (b) for a high-multiplicity selection (Noffline

trk � 110). The sharp near-side peaks from jet
correlations have been truncated to better illustrate the structure outside that region.

5 Results

Figure 1 compares 2-D two-particle correlation functions for events with low (a) and high (b)
multiplicity, for pairs of charged particles with 1 < pT < 3 GeV/c. For the low-multiplicity
selection (Noffline

trk < 35), the dominant features are the correlation peak near (Dh, Df) = (0, 0)
for pairs of particles originating from the same jet and the elongated structure at Df ⇡ p for
pairs of particles from back-to-back jets. To better illustrate the full correlation structure, the jet
peak has been truncated. High-multiplicity events (Noffline

trk � 110) also show the same-side jet
peak and back-to-back correlation structures. However, in addition, a pronounced “ridge”-like
structure emerges at Df ⇡ 0 extending to |Dh| of at least 4 units. This observed structure is
similar to that seen in high-multiplicity pp collision data at

p
s = 7 TeV [17] and in AA collisions

over a wide range of energies [3–10].

As a cross-check, correlation functions were also generated for tracks paired with ECAL pho-
tons, which originate primarily from decays of p0s, and for pairs of ECAL photons. These
distributions showed similar features as those seen in Fig. 1, in particular the ridge-like corre-
lation for high multiplicity events.

To investigate the long-range, near-side correlations in finer detail, and to provide a quanti-
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Figure 26: (a) Distribution of a test-statistic q = �2ln(L0�/L0+) of the pseudoscalar boson
hypothesis tested against the SM Higgs boson hypothesis. Distributions for the SM Higgs
boson are represented by the yellow histogram and for the alternative JP hypotheses by the
blue histogram. The arrow indicates the observed value. (b) Average expected and observed
distribution of �2D ln L as a function of fa3. The horizontal lines at �2D lnL = 1 and 3.84
represent the 68% and 95% CL, respectively.

) + 0
 /L

P J
-2

 ln
(L

-40

-20

0

20

40

60

-0
any

+
h0

any

-1
X→qq

-1
any

+1
X→qq

+1
any

+
m2
X→gg

+
m2
X→qq

+
m2
any

+
b2
X→gg

+
h2
X→gg

-
h2
X→gg

CMS -1 = 8 TeV, L = 19.7 fbs  -1 = 7 TeV, L = 5.1 fbs

CMS data Median expected

σ 1± +0 σ 1± PJ
σ 2± +0 σ 2± PJ
σ 3± +0 σ 3± PJ

Figure 27: Summary of the expected and observed values for the test-statistic q distributions
for the twelve alternative hypotheses tested with respect to the SM Higgs boson. The orange
(blue) band represents the 1s, 2s, and 3s around the median expected value for the SM Higgs
boson hypothesis (alternative hypothesis). The black point represents the observed value.

ies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto1255

Nazionale di Fisica Nucleare, Italy; the Korean Ministry of Education, Science and Technology1256

and the World Class University program of NRF, Republic of Korea; the Lithuanian Academy1257

S
lid

e 
23

 

!  Sbottom:
 !  Stop:


Gluino-Induced Production 

G
. L

an
ds

be
rg

 - 
B

ro
w

n 
- S

ta
tu

s 
of

 C
M

S
 P

hy
si

cs
 - 

D
ec

em
be

r 9
, 2

01
3 

gluino mass [GeV]
400 600 800 1000 1200 1400

LS
P 

m
as

s 
[G

eV
]

0

200

400

600

800

1000

kin
em

ati
ca

lly
 fo

rbidden

SUSY 2013
 = 8 TeVs

CMS Preliminary
1
0
χ∼ b b →g~ production,  g~-g~

-1) 19.4 fbT+HTESUS-12-024 0-lep (

-1) 11.7 fbTαSUS-12-028 0-lep (

-1SUS-13-004 0-lep (Razor) 19.3 fb

Observed
SUSY
theoryσObserved -1 

Expected

gluino mass [GeV]
600 700 800 900 1000 1100 1200 1300 1400 1500

LS
P 

m
as

s 
[G

eV
]

0

100

200

300

400

500

600

700

800

900

Observed
SUSY
theoryσObserved -1 

Expected

m(gluino) - 
m(LSP) =

 2 
m(to

p)

m(gluino) - 
m(LSP) =

 m
(W

) +
 m

(to
p)

Nov 2013
 = 8 TeVs

CMS Preliminary
1
0
χ∼ t t →g~ production,  g~-g~

-1) 19.4 fbT+HTESUS-12-024 0-lep (
-1SUS-13-004 0+1-lep (razor) 19.3 fb

-1 6) 19.4 fb≥
jets

SUS-13-007 1-lep (n
-1SUS-13-016 2-lep (OS+b) 19.7 fb
-1SUS-13-013 2-lep (SS+b) 19.5 fb

-1SUS-13-008 3-lep (3l+b) 19.5 fb



27.01.2014

UIC University of Illinois
at Chicago

Fermilab

LPC
LHC Physics Center

Gluino pair production
• Where we are now:

• m(gluino) > 1.4 TeV @ 95% CL

• Let’s take m(gluino) = 1.5 TeV
• This mass has not been probed yet

• Moreover, relatively light gluino is required by 
natural (i.e., fine-tuned at only 10% level) 
SUSY

• m(gluino) = 1.5 TeV corresponds to 
√ŝ = 3 TeV; 

33

gluino mass [GeV]
400 600 800 1000 1200 1400

LS
P 

m
as

s 
[G

eV
]

0

200

400

600

800

1000

kin
em

ati
ca

lly
 fo

rbidden

SUSY 2013
 = 8 TeVs

CMS Preliminary
1
0
χ∼ b b →g~ production,  g~-g~

-1) 19.4 fbT+HTESUS-12-024 0-lep (

-1) 11.7 fbTαSUS-12-028 0-lep (

-1SUS-13-004 0-lep (Razor) 19.3 fb

Observed
SUSY
theoryσObserved -1 

Expected

P. Sphicas 
CMS Results, 14 TeV and beond 

Gluino-induced sbottom/stop 

Jan 13, 2014 
CMSDAS Jan 2013 

4 5 Results

|h| < 1 region for pT > 0.6 GeV/c. For the multiplicity range studied here, little or no depen-
dence of the tracking efficiency on multiplicity is found and the rate of misreconstructed tracks
remains at the 1–2% level.

Simulations of pp, pPb and peripheral PbPb collisions using the PYTHIA, HIJING and HYDJET
event generators, respectively, yield efficiency correction factors that vary due to the different
kinematic and mass distributions for the particles produced in these generators. Applying
the resulting correction factors from one of the generators to simulated data from one of the
others gives associated yield distributions that agree within 5%. Systematic uncertainties due
to track quality cuts are examined by loosening or tightening the track selections on dz/s(dz)
and dxy/s(dxy) from 2 to 5. The associated yields are found to be insensitive to these track
selections within 2%.
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Figure 1: 2-D two-particle correlation functions for 5.02 TeV pPb collisions for pairs of charged
particles with 1 < pT < 3 GeV/c. Results are shown (a) for low-multiplicity events (Noffline

trk <
35) and (b) for a high-multiplicity selection (Noffline

trk � 110). The sharp near-side peaks from jet
correlations have been truncated to better illustrate the structure outside that region.

5 Results

Figure 1 compares 2-D two-particle correlation functions for events with low (a) and high (b)
multiplicity, for pairs of charged particles with 1 < pT < 3 GeV/c. For the low-multiplicity
selection (Noffline

trk < 35), the dominant features are the correlation peak near (Dh, Df) = (0, 0)
for pairs of particles originating from the same jet and the elongated structure at Df ⇡ p for
pairs of particles from back-to-back jets. To better illustrate the full correlation structure, the jet
peak has been truncated. High-multiplicity events (Noffline

trk � 110) also show the same-side jet
peak and back-to-back correlation structures. However, in addition, a pronounced “ridge”-like
structure emerges at Df ⇡ 0 extending to |Dh| of at least 4 units. This observed structure is
similar to that seen in high-multiplicity pp collision data at

p
s = 7 TeV [17] and in AA collisions

over a wide range of energies [3–10].

As a cross-check, correlation functions were also generated for tracks paired with ECAL pho-
tons, which originate primarily from decays of p0s, and for pairs of ECAL photons. These
distributions showed similar features as those seen in Fig. 1, in particular the ridge-like corre-
lation for high multiplicity events.

To investigate the long-range, near-side correlations in finer detail, and to provide a quanti-
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Figure 26: (a) Distribution of a test-statistic q = �2ln(L0�/L0+) of the pseudoscalar boson
hypothesis tested against the SM Higgs boson hypothesis. Distributions for the SM Higgs
boson are represented by the yellow histogram and for the alternative JP hypotheses by the
blue histogram. The arrow indicates the observed value. (b) Average expected and observed
distribution of �2D ln L as a function of fa3. The horizontal lines at �2D lnL = 1 and 3.84
represent the 68% and 95% CL, respectively.
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4 5 Results

|h| < 1 region for pT > 0.6 GeV/c. For the multiplicity range studied here, little or no depen-
dence of the tracking efficiency on multiplicity is found and the rate of misreconstructed tracks
remains at the 1–2% level.

Simulations of pp, pPb and peripheral PbPb collisions using the PYTHIA, HIJING and HYDJET
event generators, respectively, yield efficiency correction factors that vary due to the different
kinematic and mass distributions for the particles produced in these generators. Applying
the resulting correction factors from one of the generators to simulated data from one of the
others gives associated yield distributions that agree within 5%. Systematic uncertainties due
to track quality cuts are examined by loosening or tightening the track selections on dz/s(dz)
and dxy/s(dxy) from 2 to 5. The associated yields are found to be insensitive to these track
selections within 2%.
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Figure 1: 2-D two-particle correlation functions for 5.02 TeV pPb collisions for pairs of charged
particles with 1 < pT < 3 GeV/c. Results are shown (a) for low-multiplicity events (Noffline

trk <
35) and (b) for a high-multiplicity selection (Noffline

trk � 110). The sharp near-side peaks from jet
correlations have been truncated to better illustrate the structure outside that region.

5 Results

Figure 1 compares 2-D two-particle correlation functions for events with low (a) and high (b)
multiplicity, for pairs of charged particles with 1 < pT < 3 GeV/c. For the low-multiplicity
selection (Noffline

trk < 35), the dominant features are the correlation peak near (Dh, Df) = (0, 0)
for pairs of particles originating from the same jet and the elongated structure at Df ⇡ p for
pairs of particles from back-to-back jets. To better illustrate the full correlation structure, the jet
peak has been truncated. High-multiplicity events (Noffline

trk � 110) also show the same-side jet
peak and back-to-back correlation structures. However, in addition, a pronounced “ridge”-like
structure emerges at Df ⇡ 0 extending to |Dh| of at least 4 units. This observed structure is
similar to that seen in high-multiplicity pp collision data at

p
s = 7 TeV [17] and in AA collisions

over a wide range of energies [3–10].

As a cross-check, correlation functions were also generated for tracks paired with ECAL pho-
tons, which originate primarily from decays of p0s, and for pairs of ECAL photons. These
distributions showed similar features as those seen in Fig. 1, in particular the ridge-like corre-
lation for high multiplicity events.

To investigate the long-range, near-side correlations in finer detail, and to provide a quanti-
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Figure 26: (a) Distribution of a test-statistic q = �2ln(L0�/L0+) of the pseudoscalar boson
hypothesis tested against the SM Higgs boson hypothesis. Distributions for the SM Higgs
boson are represented by the yellow histogram and for the alternative JP hypotheses by the
blue histogram. The arrow indicates the observed value. (b) Average expected and observed
distribution of �2D ln L as a function of fa3. The horizontal lines at �2D lnL = 1 and 3.84
represent the 68% and 95% CL, respectively.
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• production mechanism is gg
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4 5 Results

|h| < 1 region for pT > 0.6 GeV/c. For the multiplicity range studied here, little or no depen-
dence of the tracking efficiency on multiplicity is found and the rate of misreconstructed tracks
remains at the 1–2% level.

Simulations of pp, pPb and peripheral PbPb collisions using the PYTHIA, HIJING and HYDJET
event generators, respectively, yield efficiency correction factors that vary due to the different
kinematic and mass distributions for the particles produced in these generators. Applying
the resulting correction factors from one of the generators to simulated data from one of the
others gives associated yield distributions that agree within 5%. Systematic uncertainties due
to track quality cuts are examined by loosening or tightening the track selections on dz/s(dz)
and dxy/s(dxy) from 2 to 5. The associated yields are found to be insensitive to these track
selections within 2%.
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Figure 1: 2-D two-particle correlation functions for 5.02 TeV pPb collisions for pairs of charged
particles with 1 < pT < 3 GeV/c. Results are shown (a) for low-multiplicity events (Noffline

trk <
35) and (b) for a high-multiplicity selection (Noffline

trk � 110). The sharp near-side peaks from jet
correlations have been truncated to better illustrate the structure outside that region.

5 Results

Figure 1 compares 2-D two-particle correlation functions for events with low (a) and high (b)
multiplicity, for pairs of charged particles with 1 < pT < 3 GeV/c. For the low-multiplicity
selection (Noffline

trk < 35), the dominant features are the correlation peak near (Dh, Df) = (0, 0)
for pairs of particles originating from the same jet and the elongated structure at Df ⇡ p for
pairs of particles from back-to-back jets. To better illustrate the full correlation structure, the jet
peak has been truncated. High-multiplicity events (Noffline

trk � 110) also show the same-side jet
peak and back-to-back correlation structures. However, in addition, a pronounced “ridge”-like
structure emerges at Df ⇡ 0 extending to |Dh| of at least 4 units. This observed structure is
similar to that seen in high-multiplicity pp collision data at

p
s = 7 TeV [17] and in AA collisions

over a wide range of energies [3–10].

As a cross-check, correlation functions were also generated for tracks paired with ECAL pho-
tons, which originate primarily from decays of p0s, and for pairs of ECAL photons. These
distributions showed similar features as those seen in Fig. 1, in particular the ridge-like corre-
lation for high multiplicity events.

To investigate the long-range, near-side correlations in finer detail, and to provide a quanti-
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Figure 26: (a) Distribution of a test-statistic q = �2ln(L0�/L0+) of the pseudoscalar boson
hypothesis tested against the SM Higgs boson hypothesis. Distributions for the SM Higgs
boson are represented by the yellow histogram and for the alternative JP hypotheses by the
blue histogram. The arrow indicates the observed value. (b) Average expected and observed
distribution of �2D ln L as a function of fa3. The horizontal lines at �2D lnL = 1 and 3.84
represent the 68% and 95% CL, respectively.
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• Where we are now:

• m(gluino) > 1.4 TeV @ 95% CL

• Let’s take m(gluino) = 1.5 TeV
• This mass has not been probed yet

• Moreover, relatively light gluino is required by 
natural (i.e., fine-tuned at only 10% level) 
SUSY

• m(gluino) = 1.5 TeV corresponds to 
√ŝ = 3 TeV; 
• production mechanism is gg

• Sensitivity can be achieved with little 
over ~0.5/fb @ 13 TeV
• 1/fb pilot 50 ns sample is a discovery sample!
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4 5 Results

|h| < 1 region for pT > 0.6 GeV/c. For the multiplicity range studied here, little or no depen-
dence of the tracking efficiency on multiplicity is found and the rate of misreconstructed tracks
remains at the 1–2% level.

Simulations of pp, pPb and peripheral PbPb collisions using the PYTHIA, HIJING and HYDJET
event generators, respectively, yield efficiency correction factors that vary due to the different
kinematic and mass distributions for the particles produced in these generators. Applying
the resulting correction factors from one of the generators to simulated data from one of the
others gives associated yield distributions that agree within 5%. Systematic uncertainties due
to track quality cuts are examined by loosening or tightening the track selections on dz/s(dz)
and dxy/s(dxy) from 2 to 5. The associated yields are found to be insensitive to these track
selections within 2%.
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Figure 1: 2-D two-particle correlation functions for 5.02 TeV pPb collisions for pairs of charged
particles with 1 < pT < 3 GeV/c. Results are shown (a) for low-multiplicity events (Noffline

trk <
35) and (b) for a high-multiplicity selection (Noffline

trk � 110). The sharp near-side peaks from jet
correlations have been truncated to better illustrate the structure outside that region.

5 Results

Figure 1 compares 2-D two-particle correlation functions for events with low (a) and high (b)
multiplicity, for pairs of charged particles with 1 < pT < 3 GeV/c. For the low-multiplicity
selection (Noffline

trk < 35), the dominant features are the correlation peak near (Dh, Df) = (0, 0)
for pairs of particles originating from the same jet and the elongated structure at Df ⇡ p for
pairs of particles from back-to-back jets. To better illustrate the full correlation structure, the jet
peak has been truncated. High-multiplicity events (Noffline

trk � 110) also show the same-side jet
peak and back-to-back correlation structures. However, in addition, a pronounced “ridge”-like
structure emerges at Df ⇡ 0 extending to |Dh| of at least 4 units. This observed structure is
similar to that seen in high-multiplicity pp collision data at

p
s = 7 TeV [17] and in AA collisions

over a wide range of energies [3–10].

As a cross-check, correlation functions were also generated for tracks paired with ECAL pho-
tons, which originate primarily from decays of p0s, and for pairs of ECAL photons. These
distributions showed similar features as those seen in Fig. 1, in particular the ridge-like corre-
lation for high multiplicity events.

To investigate the long-range, near-side correlations in finer detail, and to provide a quanti-
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Figure 26: (a) Distribution of a test-statistic q = �2ln(L0�/L0+) of the pseudoscalar boson
hypothesis tested against the SM Higgs boson hypothesis. Distributions for the SM Higgs
boson are represented by the yellow histogram and for the alternative JP hypotheses by the
blue histogram. The arrow indicates the observed value. (b) Average expected and observed
distribution of �2D ln L as a function of fa3. The horizontal lines at �2D lnL = 1 and 3.84
represent the 68% and 95% CL, respectively.
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• Where we are now:

• m(gluino) > 1.4 TeV @ 95% CL

• Let’s take m(gluino) = 1.5 TeV
• This mass has not been probed yet

• Moreover, relatively light gluino is required by 
natural (i.e., fine-tuned at only 10% level) 
SUSY

• m(gluino) = 1.5 TeV corresponds to 
√ŝ = 3 TeV; 
• production mechanism is gg

• Sensitivity can be achieved with little 
over ~0.5/fb @ 13 TeV
• 1/fb pilot 50 ns sample is a discovery sample!

• Gluino-mediated searches will have 
the highest priority in early 2015!
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4 5 Results

|h| < 1 region for pT > 0.6 GeV/c. For the multiplicity range studied here, little or no depen-
dence of the tracking efficiency on multiplicity is found and the rate of misreconstructed tracks
remains at the 1–2% level.

Simulations of pp, pPb and peripheral PbPb collisions using the PYTHIA, HIJING and HYDJET
event generators, respectively, yield efficiency correction factors that vary due to the different
kinematic and mass distributions for the particles produced in these generators. Applying
the resulting correction factors from one of the generators to simulated data from one of the
others gives associated yield distributions that agree within 5%. Systematic uncertainties due
to track quality cuts are examined by loosening or tightening the track selections on dz/s(dz)
and dxy/s(dxy) from 2 to 5. The associated yields are found to be insensitive to these track
selections within 2%.
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Figure 1: 2-D two-particle correlation functions for 5.02 TeV pPb collisions for pairs of charged
particles with 1 < pT < 3 GeV/c. Results are shown (a) for low-multiplicity events (Noffline

trk <
35) and (b) for a high-multiplicity selection (Noffline

trk � 110). The sharp near-side peaks from jet
correlations have been truncated to better illustrate the structure outside that region.

5 Results

Figure 1 compares 2-D two-particle correlation functions for events with low (a) and high (b)
multiplicity, for pairs of charged particles with 1 < pT < 3 GeV/c. For the low-multiplicity
selection (Noffline

trk < 35), the dominant features are the correlation peak near (Dh, Df) = (0, 0)
for pairs of particles originating from the same jet and the elongated structure at Df ⇡ p for
pairs of particles from back-to-back jets. To better illustrate the full correlation structure, the jet
peak has been truncated. High-multiplicity events (Noffline

trk � 110) also show the same-side jet
peak and back-to-back correlation structures. However, in addition, a pronounced “ridge”-like
structure emerges at Df ⇡ 0 extending to |Dh| of at least 4 units. This observed structure is
similar to that seen in high-multiplicity pp collision data at

p
s = 7 TeV [17] and in AA collisions

over a wide range of energies [3–10].

As a cross-check, correlation functions were also generated for tracks paired with ECAL pho-
tons, which originate primarily from decays of p0s, and for pairs of ECAL photons. These
distributions showed similar features as those seen in Fig. 1, in particular the ridge-like corre-
lation for high multiplicity events.

To investigate the long-range, near-side correlations in finer detail, and to provide a quanti-
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Figure 26: (a) Distribution of a test-statistic q = �2ln(L0�/L0+) of the pseudoscalar boson
hypothesis tested against the SM Higgs boson hypothesis. Distributions for the SM Higgs
boson are represented by the yellow histogram and for the alternative JP hypotheses by the
blue histogram. The arrow indicates the observed value. (b) Average expected and observed
distribution of �2D ln L as a function of fa3. The horizontal lines at �2D lnL = 1 and 3.84
represent the 68% and 95% CL, respectively.
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boson hypothesis (alternative hypothesis). The black point represents the observed value.
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• Search for strongly 

produced resonances 
decaying into dijets or 
quantum gravity 
effects, such as black 
holes

• Very large cross 
sections; current limits 
in 4-5 TeV range
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Exotic NP:  Dijet Resonances
• Search for strongly 

produced resonances 
decaying into dijets or 
quantum gravity 
effects, such as black 
holes

• Very large cross 
sections; current limits 
in 4-5 TeV range

• Effective integrated luminosity at 13 TeV: <100/pb
• "Discovery" literally is possible on Day 1 of  the LHC 

operations at 13 TeV!
• Don’t underestimate the power of  high energy!
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• Current limits on Z’/W’:

• M(Z’) > 2.6-3.0 TeV 
(depending on the model)

• M(W’) > 3.2 TeV 
(SSM W’)

• Produced in qq fusion; 
equivalent 13 TeV 
luminosity: 1/fb

• Can improve on the 
present limits with the 
pilot run

• Discovery in 2015 with 
>2/fb at 25ns or with 
additional 50ns running
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• Discoveries are of  course the most exciting prospect 

of  the LHC Run 2, but are not what we usually publish!
• We have discovered two particles so far (one 

fundamental, or so it seems, and one composite) 
• But we published nearly 300 physics papers;

most of  them are on measurements

• Whenever a new energy frontier is reached, it’s very 
important to continue precision measurement 
program to ensure that the SM doesn’t break down, 
as we cross next energy threshold

• We did it going from 2 TeV to 7 TeV, and from 7 TeV to 
8 TeV; we are going to do it at 13 TeV
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• W/Z cross section, W asymmetry
• tt cross section in dilepton and lepton + jets channel

• Diboson cross sections
• These (rough) results can appear literally after days 

of  running
• 8 TeV W/Z cross section measurement was based on a special run 

with ~20/pb recorded

• Inclusive jet cross section
• If  the jet energy scale is understood early on

• Precision measurements (leading to interesting 
constraints on new physics) will take longer...
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CMS Results, 14 TeV and beond 

Jets 

Jan 13, 2014 
CMSDAS Jan 2013 

■  Probe the hard scatter: 
◆  The hard scatter: jet PT and 
η, dijet correlations, dijet 
mass,… 

Excellent agreement with QCD 

Syst. Unc. 
(~10%)  
dominated 
by JES (1-2%) 
& PDFs 
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4 5 Results

|h| < 1 region for pT > 0.6 GeV/c. For the multiplicity range studied here, little or no depen-
dence of the tracking efficiency on multiplicity is found and the rate of misreconstructed tracks
remains at the 1–2% level.

Simulations of pp, pPb and peripheral PbPb collisions using the PYTHIA, HIJING and HYDJET
event generators, respectively, yield efficiency correction factors that vary due to the different
kinematic and mass distributions for the particles produced in these generators. Applying
the resulting correction factors from one of the generators to simulated data from one of the
others gives associated yield distributions that agree within 5%. Systematic uncertainties due
to track quality cuts are examined by loosening or tightening the track selections on dz/s(dz)
and dxy/s(dxy) from 2 to 5. The associated yields are found to be insensitive to these track
selections within 2%.
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Figure 1: 2-D two-particle correlation functions for 5.02 TeV pPb collisions for pairs of charged
particles with 1 < pT < 3 GeV/c. Results are shown (a) for low-multiplicity events (Noffline

trk <
35) and (b) for a high-multiplicity selection (Noffline

trk � 110). The sharp near-side peaks from jet
correlations have been truncated to better illustrate the structure outside that region.

5 Results

Figure 1 compares 2-D two-particle correlation functions for events with low (a) and high (b)
multiplicity, for pairs of charged particles with 1 < pT < 3 GeV/c. For the low-multiplicity
selection (Noffline

trk < 35), the dominant features are the correlation peak near (Dh, Df) = (0, 0)
for pairs of particles originating from the same jet and the elongated structure at Df ⇡ p for
pairs of particles from back-to-back jets. To better illustrate the full correlation structure, the jet
peak has been truncated. High-multiplicity events (Noffline

trk � 110) also show the same-side jet
peak and back-to-back correlation structures. However, in addition, a pronounced “ridge”-like
structure emerges at Df ⇡ 0 extending to |Dh| of at least 4 units. This observed structure is
similar to that seen in high-multiplicity pp collision data at

p
s = 7 TeV [17] and in AA collisions

over a wide range of energies [3–10].

As a cross-check, correlation functions were also generated for tracks paired with ECAL pho-
tons, which originate primarily from decays of p0s, and for pairs of ECAL photons. These
distributions showed similar features as those seen in Fig. 1, in particular the ridge-like corre-
lation for high multiplicity events.

To investigate the long-range, near-side correlations in finer detail, and to provide a quanti-
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Figure 26: (a) Distribution of a test-statistic q = �2ln(L0�/L0+) of the pseudoscalar boson
hypothesis tested against the SM Higgs boson hypothesis. Distributions for the SM Higgs
boson are represented by the yellow histogram and for the alternative JP hypotheses by the
blue histogram. The arrow indicates the observed value. (b) Average expected and observed
distribution of �2D ln L as a function of fa3. The horizontal lines at �2D lnL = 1 and 3.84
represent the 68% and 95% CL, respectively.
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!  CMS was first to measure W/Z, tt, single-top-quark cross 
sections at 8 TeV
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4 5 Results

|h| < 1 region for pT > 0.6 GeV/c. For the multiplicity range studied here, little or no depen-
dence of the tracking efficiency on multiplicity is found and the rate of misreconstructed tracks
remains at the 1–2% level.

Simulations of pp, pPb and peripheral PbPb collisions using the PYTHIA, HIJING and HYDJET
event generators, respectively, yield efficiency correction factors that vary due to the different
kinematic and mass distributions for the particles produced in these generators. Applying
the resulting correction factors from one of the generators to simulated data from one of the
others gives associated yield distributions that agree within 5%. Systematic uncertainties due
to track quality cuts are examined by loosening or tightening the track selections on dz/s(dz)
and dxy/s(dxy) from 2 to 5. The associated yields are found to be insensitive to these track
selections within 2%.
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Figure 1: 2-D two-particle correlation functions for 5.02 TeV pPb collisions for pairs of charged
particles with 1 < pT < 3 GeV/c. Results are shown (a) for low-multiplicity events (Noffline

trk <
35) and (b) for a high-multiplicity selection (Noffline

trk � 110). The sharp near-side peaks from jet
correlations have been truncated to better illustrate the structure outside that region.

5 Results

Figure 1 compares 2-D two-particle correlation functions for events with low (a) and high (b)
multiplicity, for pairs of charged particles with 1 < pT < 3 GeV/c. For the low-multiplicity
selection (Noffline

trk < 35), the dominant features are the correlation peak near (Dh, Df) = (0, 0)
for pairs of particles originating from the same jet and the elongated structure at Df ⇡ p for
pairs of particles from back-to-back jets. To better illustrate the full correlation structure, the jet
peak has been truncated. High-multiplicity events (Noffline

trk � 110) also show the same-side jet
peak and back-to-back correlation structures. However, in addition, a pronounced “ridge”-like
structure emerges at Df ⇡ 0 extending to |Dh| of at least 4 units. This observed structure is
similar to that seen in high-multiplicity pp collision data at

p
s = 7 TeV [17] and in AA collisions

over a wide range of energies [3–10].

As a cross-check, correlation functions were also generated for tracks paired with ECAL pho-
tons, which originate primarily from decays of p0s, and for pairs of ECAL photons. These
distributions showed similar features as those seen in Fig. 1, in particular the ridge-like corre-
lation for high multiplicity events.

To investigate the long-range, near-side correlations in finer detail, and to provide a quanti-
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hypothesis tested against the SM Higgs boson hypothesis. Distributions for the SM Higgs
boson are represented by the yellow histogram and for the alternative JP hypotheses by the
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!  CMS was first to measure W/Z, tt, single-top-quark cross 
sections at 8 TeV
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4 5 Results

|h| < 1 region for pT > 0.6 GeV/c. For the multiplicity range studied here, little or no depen-
dence of the tracking efficiency on multiplicity is found and the rate of misreconstructed tracks
remains at the 1–2% level.

Simulations of pp, pPb and peripheral PbPb collisions using the PYTHIA, HIJING and HYDJET
event generators, respectively, yield efficiency correction factors that vary due to the different
kinematic and mass distributions for the particles produced in these generators. Applying
the resulting correction factors from one of the generators to simulated data from one of the
others gives associated yield distributions that agree within 5%. Systematic uncertainties due
to track quality cuts are examined by loosening or tightening the track selections on dz/s(dz)
and dxy/s(dxy) from 2 to 5. The associated yields are found to be insensitive to these track
selections within 2%.
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Figure 1: 2-D two-particle correlation functions for 5.02 TeV pPb collisions for pairs of charged
particles with 1 < pT < 3 GeV/c. Results are shown (a) for low-multiplicity events (Noffline

trk <
35) and (b) for a high-multiplicity selection (Noffline

trk � 110). The sharp near-side peaks from jet
correlations have been truncated to better illustrate the structure outside that region.

5 Results

Figure 1 compares 2-D two-particle correlation functions for events with low (a) and high (b)
multiplicity, for pairs of charged particles with 1 < pT < 3 GeV/c. For the low-multiplicity
selection (Noffline

trk < 35), the dominant features are the correlation peak near (Dh, Df) = (0, 0)
for pairs of particles originating from the same jet and the elongated structure at Df ⇡ p for
pairs of particles from back-to-back jets. To better illustrate the full correlation structure, the jet
peak has been truncated. High-multiplicity events (Noffline

trk � 110) also show the same-side jet
peak and back-to-back correlation structures. However, in addition, a pronounced “ridge”-like
structure emerges at Df ⇡ 0 extending to |Dh| of at least 4 units. This observed structure is
similar to that seen in high-multiplicity pp collision data at

p
s = 7 TeV [17] and in AA collisions

over a wide range of energies [3–10].

As a cross-check, correlation functions were also generated for tracks paired with ECAL pho-
tons, which originate primarily from decays of p0s, and for pairs of ECAL photons. These
distributions showed similar features as those seen in Fig. 1, in particular the ridge-like corre-
lation for high multiplicity events.

To investigate the long-range, near-side correlations in finer detail, and to provide a quanti-
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hypothesis tested against the SM Higgs boson hypothesis. Distributions for the SM Higgs
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!  Most precise 
determination of the 
top-quark mass in a 
single experiment
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4 5 Results

|h| < 1 region for pT > 0.6 GeV/c. For the multiplicity range studied here, little or no depen-
dence of the tracking efficiency on multiplicity is found and the rate of misreconstructed tracks
remains at the 1–2% level.

Simulations of pp, pPb and peripheral PbPb collisions using the PYTHIA, HIJING and HYDJET
event generators, respectively, yield efficiency correction factors that vary due to the different
kinematic and mass distributions for the particles produced in these generators. Applying
the resulting correction factors from one of the generators to simulated data from one of the
others gives associated yield distributions that agree within 5%. Systematic uncertainties due
to track quality cuts are examined by loosening or tightening the track selections on dz/s(dz)
and dxy/s(dxy) from 2 to 5. The associated yields are found to be insensitive to these track
selections within 2%.
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Figure 1: 2-D two-particle correlation functions for 5.02 TeV pPb collisions for pairs of charged
particles with 1 < pT < 3 GeV/c. Results are shown (a) for low-multiplicity events (Noffline

trk <
35) and (b) for a high-multiplicity selection (Noffline

trk � 110). The sharp near-side peaks from jet
correlations have been truncated to better illustrate the structure outside that region.

5 Results

Figure 1 compares 2-D two-particle correlation functions for events with low (a) and high (b)
multiplicity, for pairs of charged particles with 1 < pT < 3 GeV/c. For the low-multiplicity
selection (Noffline

trk < 35), the dominant features are the correlation peak near (Dh, Df) = (0, 0)
for pairs of particles originating from the same jet and the elongated structure at Df ⇡ p for
pairs of particles from back-to-back jets. To better illustrate the full correlation structure, the jet
peak has been truncated. High-multiplicity events (Noffline

trk � 110) also show the same-side jet
peak and back-to-back correlation structures. However, in addition, a pronounced “ridge”-like
structure emerges at Df ⇡ 0 extending to |Dh| of at least 4 units. This observed structure is
similar to that seen in high-multiplicity pp collision data at

p
s = 7 TeV [17] and in AA collisions

over a wide range of energies [3–10].

As a cross-check, correlation functions were also generated for tracks paired with ECAL pho-
tons, which originate primarily from decays of p0s, and for pairs of ECAL photons. These
distributions showed similar features as those seen in Fig. 1, in particular the ridge-like corre-
lation for high multiplicity events.

To investigate the long-range, near-side correlations in finer detail, and to provide a quanti-
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Figure 26: (a) Distribution of a test-statistic q = �2ln(L0�/L0+) of the pseudoscalar boson
hypothesis tested against the SM Higgs boson hypothesis. Distributions for the SM Higgs
boson are represented by the yellow histogram and for the alternative JP hypotheses by the
blue histogram. The arrow indicates the observed value. (b) Average expected and observed
distribution of �2D ln L as a function of fa3. The horizontal lines at �2D lnL = 1 and 3.84
represent the 68% and 95% CL, respectively.
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(blue) band represents the 1s, 2s, and 3s around the median expected value for the SM Higgs
boson hypothesis (alternative hypothesis). The black point represents the observed value.
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!  Very nice measurement, 
previously reported only 
as an evidence by both 
ATLAS and CMS


!  Use W(lν) decays for 
both W’s; maximum 
sensitivity is in the eµ 
channel


!  Selection based on  
BDT in jet and b-jet 
multiplicity categories


!  Observed 6σ excess 
(5.4σ expected)

"  σ = 23.4+5.5

-5.4 pb


!  Feynman diagrams:


!  Vtb > 0.78 @ 95% CL

!  Prominently featured 

at the EPS 2013


Observation of tW Production 
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1 Introduction

Electroweak production of single top quarks has been first observed at the Tevatron by the D0
[1] and CDF [2] experiments. Single-top-quark production proceeds mainly via three processes:
the t-channel exchange of a virtual W boson, the s-channel production and decay of a virtual
W boson, and the associated production of a top quark and a W boson (tW). The latter chan-
nel, which has a negligible production cross section at the Tevatron, represents a significant
contribution to single-top-quark production at the Large Hadron Collider (LHC). Associated
tW production is a very interesting production mechanism because of its interference with top
quark pair production [3–5], its sensitivity to new physics [6–8] and its role as a background
to several SUSY and Higgs searches. The ATLAS and Compact Muon Solenoid (CMS) experi-
ments have measured the cross section for t-channel production [9–12] while evidence for tW
associated production has been presented by the ATLAS [13] and CMS experiments [14]. This
analysis presents the first observation of tW production by the CMS experiment in pp collisions
at

p
s = 8 TeV.

Figure 1: Leading order Feynman diagrams for single-top-quark production in the tW mode,
the charge-conjugate modes are implicitly included.

The theoretical prediction of the cross section for tW in pp collisions at
p

s = 8 TeV, assuming
a top-quark mass (mt) of 172.5 GeV, is 22.2 ± 0.6 ± 1.4 pb [15], computed at approximate next-
to-next leading order. The first uncertainty corresponds to scale variation and the second to
parton distribution function (pdf) sets.
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Figure 2: Feynman diagrams for tW single-top-quark production at next-to-leading order that
are removed from the signal definition in the DR scheme, the charge-conjugate modes are im-
plicitly included.

The Feynman diagrams for tW production are shown for leading order (LO) in Figure 1 and
at next-to-leading order (NLO) in Figure 2. These NLO diagrams present a conceptual issue,
as at NLO the definition of tW production in perturbative QCD mixes with top quark pair
production (tt) [3–5]. Two schemes for describing the tW signal have been proposed: “diagram
removal” (DR) [3], where the doubly resonant NLO diagrams, such as those in Figure 2, are
excluded from the definition of the signal; and “diagram subtraction” [3, 16], in which the
differential cross section is modified with a gauge-invariant subtraction term, which locally
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Figure 5: Distribution of BDT discriminant for data and simulation separated in the 1j1t signal
region (left) and the 2j1t (center) and 2j2t (right) control regions for events in all three dilepton
channels.
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Figure 6: Distribution of BDT discriminant for data and simulation separated in the 1j1t signal
region (left) and the 2j1t (center) and 2j2t (right) control regions for events in the eµ channel.
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Figure 7: Distribution of BDT discriminant for data and simulation separated in the 1j0t (left)
and 2j0t (right) control regions for events in all three dilepton channels.

5

BDT Discriminant
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

M
C

D
at

a

0
0.5

1
1.5

2

Ev
en

ts

0

100

200

300

400

500

600

700 Data
tW
tt

*+jetsγZ/
Other
Syst

 = 8 TeVsCMS Preliminary, 
/ee channelsµµ/µ e-112.2 fb

1j1t

BDT Discriminant
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

M
C

D
at

a

0
0.5

1
1.5

2

Ev
en

ts

0

200

400

600

800

1000

1200

1400 Data
tW
tt

*+jetsγZ/
Other
Syst

 = 8 TeVsCMS Preliminary, 
/ee channelsµµ/µ e-112.2 fb

2j1t

BDT Discriminant
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

M
C

D
at

a

0
0.5

1
1.5

2

Ev
en

ts

0

100

200

300

400

500

600

700

800

900 Data
tW
tt

*+jetsγZ/
Other
Syst

 = 8 TeVsCMS Preliminary, 
/ee channelsµµ/µ e-112.2 fb

2j2t

Figure 5: Distribution of BDT discriminant for data and simulation separated in the 1j1t signal
region (left) and the 2j1t (center) and 2j2t (right) control regions for events in all three dilepton
channels.

BDT Discriminant
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

M
C

D
at

a

0
0.5

1
1.5

2

Ev
en

ts

0

50

100

150

200

250

300

350

400 Data
tW
tt

*+jetsγZ/
Other
Syst

 = 8 TeVsCMS Preliminary, 
 channelµ , e-112.2 fb

1j1t

BDT Discriminant
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

M
C

D
at

a

0
0.5

1
1.5

2

Ev
en

ts

0

100

200

300

400

500

600

700

800 Data
tW
tt

*+jetsγZ/
Other
Syst

 = 8 TeVsCMS Preliminary, 
 channelµ , e-112.2 fb

2j1t

BDT Discriminant
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

M
C

D
at

a

0
0.5

1
1.5

2

Ev
en

ts

0

100

200

300

400

500

Data
tW
tt

*+jetsγZ/
Other
Syst

 = 8 TeVsCMS Preliminary, 
 channelµ , e-112.2 fb

2j2t

Figure 6: Distribution of BDT discriminant for data and simulation separated in the 1j1t signal
region (left) and the 2j1t (center) and 2j2t (right) control regions for events in the eµ channel.

BDT Discriminant
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

M
C

D
at

a

0
0.5

1
1.5

2

Ev
en

ts

0

200

400

600

800

1000

1200

1400

1600

1800
Data
tW
tt

*+jetsγZ/
Other
Syst

 = 8 TeVsCMS Preliminary, 
/ee channelsµµ/µ e-112.2 fb

1j0t

BDT Discriminant
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

M
C

D
at

a

0
0.5

1
1.5

2

Ev
en

ts

0

100

200

300

400

500

600

700

800

900
Data
tW
tt

*+jetsγZ/
Other
Syst

 = 8 TeVsCMS Preliminary, 
/ee channelsµµ/µ e-112.2 fb

2j0t

Figure 7: Distribution of BDT discriminant for data and simulation separated in the 1j0t (left)
and 2j0t (right) control regions for events in all three dilepton channels.
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4 5 Results

|h| < 1 region for pT > 0.6 GeV/c. For the multiplicity range studied here, little or no depen-
dence of the tracking efficiency on multiplicity is found and the rate of misreconstructed tracks
remains at the 1–2% level.

Simulations of pp, pPb and peripheral PbPb collisions using the PYTHIA, HIJING and HYDJET
event generators, respectively, yield efficiency correction factors that vary due to the different
kinematic and mass distributions for the particles produced in these generators. Applying
the resulting correction factors from one of the generators to simulated data from one of the
others gives associated yield distributions that agree within 5%. Systematic uncertainties due
to track quality cuts are examined by loosening or tightening the track selections on dz/s(dz)
and dxy/s(dxy) from 2 to 5. The associated yields are found to be insensitive to these track
selections within 2%.
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Figure 1: 2-D two-particle correlation functions for 5.02 TeV pPb collisions for pairs of charged
particles with 1 < pT < 3 GeV/c. Results are shown (a) for low-multiplicity events (Noffline

trk <
35) and (b) for a high-multiplicity selection (Noffline

trk � 110). The sharp near-side peaks from jet
correlations have been truncated to better illustrate the structure outside that region.

5 Results

Figure 1 compares 2-D two-particle correlation functions for events with low (a) and high (b)
multiplicity, for pairs of charged particles with 1 < pT < 3 GeV/c. For the low-multiplicity
selection (Noffline

trk < 35), the dominant features are the correlation peak near (Dh, Df) = (0, 0)
for pairs of particles originating from the same jet and the elongated structure at Df ⇡ p for
pairs of particles from back-to-back jets. To better illustrate the full correlation structure, the jet
peak has been truncated. High-multiplicity events (Noffline

trk � 110) also show the same-side jet
peak and back-to-back correlation structures. However, in addition, a pronounced “ridge”-like
structure emerges at Df ⇡ 0 extending to |Dh| of at least 4 units. This observed structure is
similar to that seen in high-multiplicity pp collision data at

p
s = 7 TeV [17] and in AA collisions

over a wide range of energies [3–10].

As a cross-check, correlation functions were also generated for tracks paired with ECAL pho-
tons, which originate primarily from decays of p0s, and for pairs of ECAL photons. These
distributions showed similar features as those seen in Fig. 1, in particular the ridge-like corre-
lation for high multiplicity events.

To investigate the long-range, near-side correlations in finer detail, and to provide a quanti-
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Figure 26: (a) Distribution of a test-statistic q = �2ln(L0�/L0+) of the pseudoscalar boson
hypothesis tested against the SM Higgs boson hypothesis. Distributions for the SM Higgs
boson are represented by the yellow histogram and for the alternative JP hypotheses by the
blue histogram. The arrow indicates the observed value. (b) Average expected and observed
distribution of �2D ln L as a function of fa3. The horizontal lines at �2D lnL = 1 and 3.84
represent the 68% and 95% CL, respectively.
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!  Very nice measurement, 
previously reported only 
as an evidence by both 
ATLAS and CMS


!  Use W(lν) decays for 
both W’s; maximum 
sensitivity is in the eµ 
channel


!  Selection based on  
BDT in jet and b-jet 
multiplicity categories


!  Observed 6σ excess 
(5.4σ expected)

"  σ = 23.4+5.5

-5.4 pb


!  Feynman diagrams:


!  Vtb > 0.78 @ 95% CL

!  Prominently featured 

at the EPS 2013


Observation of tW Production 
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1 Introduction

Electroweak production of single top quarks has been first observed at the Tevatron by the D0
[1] and CDF [2] experiments. Single-top-quark production proceeds mainly via three processes:
the t-channel exchange of a virtual W boson, the s-channel production and decay of a virtual
W boson, and the associated production of a top quark and a W boson (tW). The latter chan-
nel, which has a negligible production cross section at the Tevatron, represents a significant
contribution to single-top-quark production at the Large Hadron Collider (LHC). Associated
tW production is a very interesting production mechanism because of its interference with top
quark pair production [3–5], its sensitivity to new physics [6–8] and its role as a background
to several SUSY and Higgs searches. The ATLAS and Compact Muon Solenoid (CMS) experi-
ments have measured the cross section for t-channel production [9–12] while evidence for tW
associated production has been presented by the ATLAS [13] and CMS experiments [14]. This
analysis presents the first observation of tW production by the CMS experiment in pp collisions
at

p
s = 8 TeV.

Figure 1: Leading order Feynman diagrams for single-top-quark production in the tW mode,
the charge-conjugate modes are implicitly included.

The theoretical prediction of the cross section for tW in pp collisions at
p

s = 8 TeV, assuming
a top-quark mass (mt) of 172.5 GeV, is 22.2 ± 0.6 ± 1.4 pb [15], computed at approximate next-
to-next leading order. The first uncertainty corresponds to scale variation and the second to
parton distribution function (pdf) sets.
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Figure 2: Feynman diagrams for tW single-top-quark production at next-to-leading order that
are removed from the signal definition in the DR scheme, the charge-conjugate modes are im-
plicitly included.

The Feynman diagrams for tW production are shown for leading order (LO) in Figure 1 and
at next-to-leading order (NLO) in Figure 2. These NLO diagrams present a conceptual issue,
as at NLO the definition of tW production in perturbative QCD mixes with top quark pair
production (tt) [3–5]. Two schemes for describing the tW signal have been proposed: “diagram
removal” (DR) [3], where the doubly resonant NLO diagrams, such as those in Figure 2, are
excluded from the definition of the signal; and “diagram subtraction” [3, 16], in which the
differential cross section is modified with a gauge-invariant subtraction term, which locally
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Figure 5: Distribution of BDT discriminant for data and simulation separated in the 1j1t signal
region (left) and the 2j1t (center) and 2j2t (right) control regions for events in all three dilepton
channels.
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Figure 6: Distribution of BDT discriminant for data and simulation separated in the 1j1t signal
region (left) and the 2j1t (center) and 2j2t (right) control regions for events in the eµ channel.
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Figure 7: Distribution of BDT discriminant for data and simulation separated in the 1j0t (left)
and 2j0t (right) control regions for events in all three dilepton channels.
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Figure 5: Distribution of BDT discriminant for data and simulation separated in the 1j1t signal
region (left) and the 2j1t (center) and 2j2t (right) control regions for events in all three dilepton
channels.
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Figure 6: Distribution of BDT discriminant for data and simulation separated in the 1j1t signal
region (left) and the 2j1t (center) and 2j2t (right) control regions for events in the eµ channel.
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Figure 7: Distribution of BDT discriminant for data and simulation separated in the 1j0t (left)
and 2j0t (right) control regions for events in all three dilepton channels.
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Planning is Crucial
• What did it take to 

discover Higgs boson in 
July 2012?
• MC generation started in 

Nov 2011
• Gambled on 8 TeV

• Allowed CMS to analyze all five 
main channels for discovery 
paper

• ATLAS had just two; third 
added for paper

• Strong case made to the 
machine
• Prevailed and convinced the 

community to run at 8 TeV in 
2012

• Early pileup mitigation 
studies
• Started in January 2012

• Allowed to be prepared for 
early LHC data

• Without any of  these 
crucial steps, the 
discovery would not 
have been possible that 
early

• Planning is everything, 
and needs to be done in 
advance, for both bunch 
spacing options in 
parallel!

45

Greg Landsberg CMSDAS 2014
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To boldly go where no one has gone before...
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To explore strange new worlds...
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Photo taken this morning at 07:32, "Sun dogs"

A frozen planet with three suns?
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Future Physics Plans - Dec 9th 2013 !15

SMP+FSQ+BPH: "
• integrated lumi is not an issue here, cross section will be high enough."
• Essential is a low PU run early both for physics analyses (inclusive X-sec, etc.) and for 

MC tuning as we have done in 2009/2010. Only a (very) low int. lumi is needed!"
• inclusive Xsec (W, Z, VV) accessible with 0.1-1.0fb-1"

• aQGC limits, VV scattering need > 5 fb-1"

TOP"

•first ttbar X-sec can be obtained with few pb-1."

• important to develop a dynamical trigger strategy: simple paths up to the 1st 
fb-1, more complex (b-tag, MET, combined, etc.) for later on."

HIG"

•“re-discovery” with first 5-10 fb-1 (but BSM heavy Higgs searches probably 
earlier)."

•maintaining trigger performance is a must (actively working on it)

(VERY!) Broad PAG plans
SM/Precision Physics HPA (to be detailed and discussed)

Luca Malgeri
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B2G:"

•Crucial for B2G to develop non-isolated lepton trigger and merged hadronic tops (boosted 
top) "

•priority analyses:"
• l+j and dilepton, single lepton"
•Z’->ttbar, W’->tb"

•request a flexible approach to reco (computing train?) such that new development, especially in 
jet substructure, may go in production quickly"

EXO:"
•Natural high priority analysis:"

-Z’,W’"
-di-jet, di-photon"
-VV resonance"

•On the trigger side, the long-lived paths should be rethought"
SuSy:"
•exceeding 8 TeV reach after 2-5 fb-1 of 13TeV data "
•natural SuSy will still be under the spot (Mgluino <1.5 TeV, Mstop<800 GeV)  but if 
nothing pops up, next frontier is small mass splitting, long-lived, stealth (a nightmare 
for trigger)

Searches/HPA (to be detailed and discussed)

(VERY!) Broad PAG plans

Luca Malgeri


