Charmonium Spectroscopy, the "XYZ" States, and the Role of BESIII

Ryan Mitchell Indiana University SLAC Seminar October 15, 2013

Ryan Mitchell

- I. An Introduction to Charmonium
- II. The Original Era of Discovery: *establishing the quark model states*
- III. From Discovery to Precision: the quark model states at BESIII

I. An Introduction to Charmonium

II. The Original Era of Discovery: *establishing the quark model states*

III. From Discovery to Precision: the quark model states at BESIII

I. An Introduction to Charmonium

II. The Original Era of Discovery: establishing the quark model states

III. From Discovery to Precision: the quark model states at BESIII

I. An Introduction to Charmonium

II. The Original Era of Discovery: *establishing the quark model states*

III. From Discovery to Precision: the quark model states at BESIII

Ryan Mitchell

Charmonium and the Role of BESIII

6

Ryan Mitchell

Ryan Mitchell

Ryan Mitchell

Charmonium and the Role of BESIII

9

I. An Introduction to Charmonium

II. The Original Era of Discovery: *establishing the quark model states*

III. From Discovery to Precision: the quark model states at BESIII

- I. An Introduction to Charmonium
- II. The Original Era of Discovery: *establishing the quark model states*
- III. From Discovery to Precision: the quark model states at BESIII

IV. A New Era of Discovery: beyond the quark model and the role of BESIII

- I. An Introduction to Charmonium
- II. The Original Era of Discovery: *establishing the quark model states*
- III. From Discovery to Precision: the quark model states at BESIII

IV. A New Era of Discovery: beyond the quark model and the role of BESIII

HYBRID CHARMONIUM?

I. An Introduction to Charmonium

II. The Original Era of Discovery: *establishing the quark model states*

III. From Discovery to Precision: the quark model states at BESIII

Why charmonium?

It is one of the simplest bound states of QCD.

(like positronium or Hydrogen in QED)

Potential models:

Ryan Mitchell

I. An Introduction to Charmonium

II. The Original Era of Discovery: *establishing the quark model states*

III. From Discovery to Precision: the quark model states at BESIII

I. An Introduction to Charmonium

II. The Original Era of Discovery: establishing the quark model states

III. From Discovery to Precision: the quark model states at BESIII

summer 1974 preprint, published later as **RMP 47, 277 (1975)**

3.8 Search for charm Ψ΄′(1³D₁) $2M_{C}$ $\psi'(2^{3}S_{1})$ L C 0- states $\eta_c'(2^1S_0)$ 3.6 **Production:** *"Once the energies of the electron-positron"* colliding beams are high enough, pair production of charmed MASS [GeV/c²] h_c(1 particles, and resonant production of ϕ_c are expected to proceed without inhibition." 3.4 A Pro but no us=K+ 3.2 $d=\pi^+$ $d\bar{u}=\pi$ "**\$**c" A Solu quark. J/ψ(1³S₁) sd=K° states 3.0 $\eta_{c}(1^{1}S_{0})$ dc=D 1+-0++ 1++ 1-- 0^{-+} sc=F JPC

November (1974) Revolution

Ryan Mitchell

November (1974) Revolution

November (1974) Revolution

Theoretical Ideas on J/ψ **and** ψ' **:**

```
Baryon-AntiBaryon bound states
   (PRL34, 36 (1975))
Spin-1 meson alternative to GIM
   (PRL34, 37 (1975))
Three charm quarks (partners to u, d, s)
   (PRL34, 41 (1975))
Lighter Z<sub>0</sub>
   (PRL34, 56 (1975))
Charmonium
   (PRL34, 43 (1975), PRL34, 46 (1975))
```


Ryan Mitchell

I. An Introduction to Charmonium

II. The Original Era of Discovery: establishing the quark model states

III. From Discovery to Precision: the quark model states at BESIII

III. From Discovery to Precision

I. An Introduction to Charmonium

II. The Original Era of Discovery: *establishing the quark model states*

III. From Discovery to Precision: the quark model states at BESIII

III. From Discover to Droof

Google satellite image of BEPC-II

Ryan Mitchell

III. From Discovert to Droot

Charmonium and the Role of BESIII

III. From Discovert to Droot

Ryan Mitchell

Charmonium and the Role of BESIII

III. From Discovenue to Drace

Ryan Mitchell

Charmonium and the Role of BESIII

III. From Discovente D

Ryan Mitchell

III. From Discovert to Dro

Ryan Mitchell

III. From Discovert to Dread

Charmonium and the Role of BESIII

Ryan Mitchell

BES III Detector

BES III Detector

Select data samples (2008-present):

- * more than a billion J/ψ decays
- * 106 million $\psi(2S)$ decays (+ more)
- * ~2.9 fb^{-1} at $\psi^{\prime\prime}$
- * ~500 pb⁻¹ at 4.009 GeV
- * XYZ data

MARK I Detector

<image>

Select data samples (2008-present):

- * more than a billion J/ψ decays
- * 106 million $\psi(2S)$ decays (+ more)
- * ~2.9 fb⁻¹ at $\psi^{\prime\prime}$
- * ~500 pb⁻¹ at 4.009 GeV
- * XYZ data

BES III Detector

A few BESIII charmonium results from 2012:

1. Measurements of the mass and width of the $\eta_c(1S)$ using the decay $\psi(2S) \rightarrow \gamma \eta_c(1S)$ PRL 108, 222002 (2012)

2. First observation of the M1 transition $\psi(2S) \rightarrow \gamma \eta_c(2S)$ PRL 109, 042003 (2012)

3. Study of $\psi(2S) \rightarrow \pi^0 h_c(1P)$, $h_c(1P) \rightarrow \gamma \eta_c(1S)$ via $\eta_c(1S)$ exclusive decays **PRD 86,092009 (2012)**

A few BESIII charmonium results from 2012:

1. Measurements of the mass and width of the $\eta_c(1S)$ using the decay $\psi(2S) \rightarrow \gamma \eta_c(1S)$ PRL 108, 222002 (2012)

2. First observation of the M1 transition $\psi(2S) \rightarrow \gamma \eta_c(2S)$ PRL 109, 042003 (2012)

3. Study of $\psi(2S) \rightarrow \pi^0 h_c(1P)$, $h_c(1P) \rightarrow \gamma \eta_c(1S)$ via $\eta_c(1S)$ exclusive decays **PRD 86, 092009 (2012)**

II. The Original Era of Discovery

Mass and Width of the $\eta_c(1S)$

Ryan Mitchell

A few BESIII charmonium results from 2012:

1. Measurements of the mass and width of the $\eta_c(1S)$ using the decay $\psi(2S) \rightarrow \gamma \eta_c(1S)$ PRL 108, 222002 (2012)

2. First observation of the M1 transition $\psi(2S) \rightarrow \gamma \eta_c(2S)$ PRL 109, 042003 (2012)

3. Study of $\psi(2S) \rightarrow \pi^0 h_c(1P)$, $h_c(1P) \rightarrow \gamma \eta_c(1S)$ via $\eta_c(1S)$ exclusive decays **PRD 86, 092009 (2012)**

A few BESIII charmonium results from 2012:

1. Measurements of the mass and width of the $\eta_c(1S)$ using the decay $\psi(2S) \rightarrow \gamma \eta_c(1S)$ PRL 108, 222002 (2012)

2. First observation of the M1 transition $\psi(2S) \rightarrow \gamma \eta_c(2S)$ PRL 109, 042003 (2012)

3. Study of $\psi(2S) \rightarrow \pi^0 h_c(1P)$, $h_c(1P) \rightarrow \gamma \eta_c(1S)$ via $\eta_c(1S)$ exclusive decays PRD 86,092009 (2012)

I. An Introduction to Charmonium

II. The Original Era of Discovery: *establishing the quark model states*

III. From Discovery to Precision: the quark model states at BESIII

IV. A New Era of Discovery: *beyond the quark model and the role of BESIII*

- I. An Introduction to Charmonium
- II. The Original Era of Discovery: *establishing the quark model states*
- III. From Discovery to Precision: the quark model states at BESIII

IV. A New Era of Discovery: beyond the quark model and the role of BESIII

- I. An Introduction to Charmonium
- II. The Original Era of Discovery: *establishing the quark model states*
- III. From Discovery to Precision: the quark model states at BESIII

IV. A New Era of Discovery: beyond the quark model and the role of BESIII

HYBRID CHARMONIUM?

State	m (MeV)	Γ (MeV)	J^{PC}	Process (mode)	Experiment $(\#\sigma)$	Year	Status
X(3872)	3871.52 ± 0.20	1.3 ± 0.6 (<2.2)	1++/2-+	$B \to K(\pi^+\pi^- J/\psi)$ $p \bar{p} \to (\pi^+\pi^- J/\psi) + \cdots$	Belle [85, 86] (12.8), <i>BABAR</i> [87] (8.6) CDF [88–90] (np), DØ [91] (5.2)	2003	OK
				$B \to K(\omega J/\psi)$ $B \to K(D^{*0}\bar{D^0})$ $B \to K(\gamma J/\psi)$	Belle [92] (4.3), <i>BABAR</i> [93] (4.0) Belle [94, 95] (6.4), <i>BABAR</i> [96] (4.9) Belle [92] (4.0), <i>BABAR</i> [97, 98] (3.6)		EPJ C71, 1534 (2011)
				$B \to K(\gamma \psi(2S))$	BABAR [98] (3.5), Belle [99] (0.4)		
<i>X</i> (3915)	3915.6 ± 3.1	28 ± 10	0/2?+	$B \to K(\omega J/\psi)$ $e^+e^- \to e^+e^-(\omega J/\psi)$	Belle [100] (8.1), <i>BABAR</i> [101] (19) Belle [102] (7.7)	2004	ОК
X (3940)	3942^{+9}_{-8}	37^{+27}_{-17}	??+	$e^+e^- \rightarrow J/\psi(D\bar{D}^*)$ $e^+e^- \rightarrow J/\psi(\ldots)$	Belle [103] (6.0) Belle [54] (5.0)	2007	NC!
G(3900)	3943 ± 21	52 ± 11	1	$e^+e^- \to \gamma(D\bar{D})$	BABAR [27] (np), Belle [21] (np)	2007	OK
Y(4008)	4008^{+121}_{-49}	226 ± 97	1	$e^+e^- \rightarrow \gamma (\pi^+\pi^- J/\psi)$	Belle [104] (7.4)	2007	NC!
$Z_1(4050)^+$	4051^{+24}_{-43}	82^{+51}_{-55}	?	$B \to K(\pi^+ \chi_{c1}(1P))$	Belle [105] (5.0)	2008	NC!
Y(4140)	4143.4 ± 3.0	15^{+11}_{-7}	$\dot{3}_{5+}$	$B \to K(\phi J/\psi)$	CDF [106, 107] (5.0)	2009	NC!
X(4160)	4156^{+29}_{-25}	139^{+113}_{-65}	$?^{?+}$	$e^+e^- \to J/\psi(D\bar{D}^*)$	Belle [103] (5.5)	2007	NC!
$Z_2(4250)^+$	4248^{+185}_{-45}	177^{+321}_{-72}	?	$B \to K(\pi^+ \chi_{c1}(1P))$	Belle [105] (5.0)	2008	NC!
Y(4260)	4263 ± 5	108 ± 14	1	$e^+e^- \rightarrow \gamma (\pi^+\pi^- J/\psi)$	BABAR [108, 109] (8.0) CLEO [110] (5.4) Belle [104] (15)	2005	ОК
				$e^+e^- \to (\pi^+\pi^-J/\psi)$	CLEO [111] (11)		
				$e^+e^- o (\pi^0\pi^0 J/\psi)$	CLEO [111] (5.1)		
Y(4274)	$4274.4_{-6.7}^{+8.4}$	32^{+22}_{-15}	$\dot{3}_{+}$	$B \to K(\phi J/\psi)$	CDF [107] (3.1)	2010	NC!
<i>X</i> (4350)	$4350.6^{+4.6}_{-5.1}$	$13.3^{+18.4}_{-10.0}$	0,2++	$e^+e^- \rightarrow e^+e^-(\phi J/\psi)$	Belle [112] (3.2)	2009	NC!
<i>Y</i> (4360)	4353 ± 11	96 ± 42	1	$e^+e^- \rightarrow \gamma(\pi^+\pi^-\psi(2S))$	BABAR [113] (np), Belle [114] (8.0)	2007	OK
$Z(4430)^+$	4443_{-18}^{+24}	107^{+113}_{-71}	?	$B \to K(\pi^+ \psi(2S))$	Belle [115, 116] (6.4)	2007	NC!
X(4630)	4634^{+9}_{-11}	92^{+41}_{-32}	1	$e^+e^- \to \gamma(\Lambda_c^+\Lambda_c^-)$	Belle [25] (8.2)	2007	NC!
Y(4660)	4664 ± 12	48 ± 15	1	$e^+e^- \rightarrow \gamma(\pi^+\pi^-\psi(2S))$	Belle [114] (5.8)	2007	NC!
$Y_b(10888)$	10888.4 ± 3.0	$30.7^{+8.9}_{-7.7}$	1	$e^+e^- \to (\pi^+\pi^-\Upsilon(nS))$	Belle [37, 117] (3.2)	2010	NC!

Ryan Mitchell

- I. An Introduction to Charmonium
- II. The Original Era of Discovery: *establishing the quark model states*
- III. From Discovery to Precision: the quark model states at BESIII

IV. A New Era of Discovery: beyond the quark model and the role of BESIII

HYBRID CHARMONIUM?

Most XYZ states were discovered at **Belle** and **BaBar** using e⁺e⁻ collisions in the bottomonium region...

Most XYZ states were discovered at **Belle** and **BaBar** using e⁺e⁻ collisions in the bottomonium region...

For example in B decays...

Most XYZ states were discovered at **Belle** and **BaBar** using e⁺e⁻ collisions in the bottomonium region...

For example in B decays...

Ryan Mitchell

Most XYZ states were discovered at **Belle** and **BaBar** using e⁺e⁻ collisions in the bottomonium region...

For example in B decays...

X(3872) Properties:

- * very narrow (< 1.2 MeV)
- * has $J^{PC} = 1^{++}$ (LHCb)
- * too light to be the $\chi_{c1}(2P)$
- * confirmed by many experiments
- * mass is right at D*D mass

D*D molecule?

Ryan Mitchell

Most XYZ states were discovered at **Belle** and **BaBar** using e⁺e⁻ collisions in the bottomonium region...

For example in B decays...

Other B decays: $B^{\pm} \rightarrow K^{\pm}(\pi^{+}\pi^{-}J/\psi)$ $B \rightarrow K(\omega J/\psi)$ $B \rightarrow K(\pi^{+}\chi_{c1}(1P))$ $B \rightarrow K(\pi^{+}\psi(2S))$

Ryan Mitchell

Most XYZ states were discovered at **Belle** and **BaBar** using e⁺e⁻ collisions in the bottomonium region...

For example in B decays...

- * has an electric charge
 - \Rightarrow needs at least four quarks!
- * (not confirmed by BaBar)

Most XYZ states were discovered at Belle and BaBar using e^+e^- collisions in the bottomonium region.

Most XYZ states were discovered at **Belle** and **BaBar** using e⁺e⁻ collisions in the bottomonium region...

And in Initial State Radiation (ISR)...

PRL 95, 142001 (2005)

Ryan Mitchell

Most XYZ states were discovered at **Belle** and **BaBar** using e⁺e⁻ collisions in the bottomonium region...

And in Initial State Radiation (ISR)...

Y(4260), Y(4360) Properties:

- * not predicted in the quark model
- * tight upper limits on open charm decays

Theoretical Ideas on Y(4260), Y(4360):

- DD* bound states (Y(4360) = $D_sD_s^*$) (NPA815, 53 (2009))
- J/ ψ f₀ bound state (with KK $\rightarrow \pi\pi$) (PRD80, 094012 (2009))
- Tetraquarks (or two diquarks) (PRD72, 031502(R) (2005))

Hadrocharmonium (PLB666, 344 (2008))

Hybrid Charmonium (PLB628, 215 (2005), PRD78, 094504 (2008), PLB625, 212 (2005))

II. The Original Era of Discovery

Theoretical Ideas on J/ψ **and** ψ' **:**

Baryon-AntiBaryon bound states (PRL34, 36 (1975))
Spin-1 meson alternative to GIM (PRL34, 37 (1975))
Three charm quarks (partners to u, d, s) (PRL34, 41 (1975))
Lighter Z ₀ (PRL34, 56 (1975))
Charmonium (PRL34, 43 (1975), PRL34, 46 (1975))

Theoretical Ideas on Y(4260), Y(4360):

- DD* bound states ($Y(4360) = D_sD_s^*$) (NPA815, 53 (2009))
- J/ ψ f₀ bound state (with KK $\rightarrow \pi\pi$) (PRD80, 094012 (2009))
- Tetraquarks (or two diquarks) (PRD72, 031502(R) (2005))

Hadrocharmonium (PLB666, 344 (2008))

Hybrid Charmonium (PLB628, 215 (2005), PRD78, 094504 (2008), PLB625, 212 (2005))

How can BESIII contribute?

 $\Rightarrow \text{ tune the } e^+e^- \text{ collision energies} \\ \text{ to directly produce large samples} \\ \text{ of } \mathbf{Y(4260)} \text{ and } \mathbf{Y(4360)} \text{ decays!} \\ \end{cases}$

IV. A New Era of Discovery

BESIII Initial Round of Data-taking

BESIII Initial Round of Data-taking

BESIII Initial Round of Data-taking

IV. A New Era of Discovery

IV. A New Era of Discovery

Viewpoint: New Particle Hints at Four-Quark Matter

Eric Swanson, University of Pittsburgh, Pittsburgh, PA 15260, USA Published June 17, 2013 | Physics 6, 69 (2013) | DOI: 10.1103/Physics.6.69

Ryan Mitchell

BESIII Initial Round of Data-taking

BESIII Additional Round of Data-taking

BESIII Additional Round of Data-taking

Ryan Mitchell

35

30

25

20

15

-10

|5

3.60

Ryan Mitchell

 $e^+e^- \rightarrow \pi^+\pi^-h_c(1P)$ at BESIII

⇒ "Charged Charmoniumlike Structure"

(this time close to D*D* threshold)

 $M = 4022.9 \pm 0.8 \pm 2.7 \text{ MeV}$ $\Gamma = 7.9 \pm 2.7 \pm 2.6 \text{ MeV}$

Ryan Mitchell

The $Z_c(3900)$ is close to DD^* threshold...

Ryan Mitchell

The $Z_c'(4020)$ is close to D^*D^* threshold...

IV. A New Era of Discovery

One more: Search for $Y(4260) \rightarrow \gamma X(3872)...$

Ryan Mitchell

IV. A New Era of Discovery

The role of **BESIII**:

We are working on connections!

Ryan Mitchell

Charmonium and the Role of BESIII

I. An Introduction to Charmonium

II. The Original Era of Discovery: *establishing the quark model states*

III. From Discovery to Precision: the quark model states at BESIII

IV. A New Era of Discovery: *beyond the quark model and the role of BESIII*

I. An Introduction to Charmonium

II. The Original Era of Discovery: establishing the quark model states

III. From Discovery to Precision: the quark model states at BESIII

IV. A New Era of Discovery: *beyond the quark model and the role of BESIII*

I. An Introduction to Charmonium

II. The Original Era of Discovery: *establishing the quark model states*

III. From Discovery to Precision: the quark model states at BESIII

IV. A New Era of Discovery: *beyond the quark model and the role of BESIII*

- I. An Introduction to Charmonium
- II. The Original Era of Discovery: *establishing the quark model states*
- III. From Discovery to Precision: the quark model states at BESIII

IV. A New Era of Discovery: beyond the quark model and the role of BESIII

- I. An Introduction to Charmonium
- II. The Original Era of Discovery: *establishing the quark model states*
- III. From Discovery to Precision: the quark model states at BESIII

IV. A New Era of Discovery: beyond the quark model and the role of BESIII

HYBRID CHARMONIUM?

I. An Introduction to Charmonium

II. The Original Era of Discovery: *establishing the quark model states*

III. From Discovery to Precision: the quark model states at BESIII

IV. A New Era of Discovery: beyond the quark model and the role of BESIII

HYBRID CHARMONIUM?

