CERN: the next 60 years (the FCC study)

Michael Koratzinos, UNIGE and CERN

Picture courtesy: Jörg Wenninger

3rd International Conference on New Frontiers in Physics 2014
Acknowledgements

• I would like to thank
 – the pioneers of the Higgs factory: Roy Aleksan, Alain Blondel, John Ellis, Patrick Janot, Frank Zimmermann
 – The whole FCC community
 – In particular A. Blondel, F. Gianotti, M. Benedikt, F. Zimmermann, D. Schulte, L. Rossi, G. Kirby for the liberal use of material

Do not miss: S. Vlachos, “FCC-hh”, this conference

Also see: G. Bruno, “CERN achievements in Relativistic Heavy Ion Collisions”, this conference
A. Levy, “Overview of physics potential at CLIC”, this conference
M. Bataglia, “WIMP Dark Matter at colliders from 14 to 100 TeV”, this conference
Before I start...

• This is a talk about the FCC project. I have no crystal ball about which projects will materialise the next 60 years.

• There are other excellent projects at CERN and outside that might well be the ones that get the go-ahead, depending on what Nature has in store for us: CLIC at CERN, the ILC in Japan, CEPC in China...
“...we chose these things not because they are easy, but because they are hard, because that goal will serve to measure and organize the best of our energies and skills, because that challenge is one that we are willing to accept, one we are unwilling to postpone, and one which we intend to win”: J.F. Kennedy, president of the US, 1962
CERN’s 60th anniversary

• CERN deservedly celebrates 60 years of existence
• It has been a tremendous ride and its founding fathers would be very proud (major discoveries – neutral currents, W, Z, Higgs bosons, the establishment of the SM through LEP measurements, etc., plus major technological achievements – SPS, ISR, LEP, LHC, etc.)
• This stellar performance makes the next 60 years even more difficult as expectations are, rightly, very high
• CERN cannot rest on its laurels. It needs to define a future which is
 – Ambitious
 – With excellent scientific value
 – Will make future generations of scientists dream
The Standard Model - circa 1954

(empty)
The Standard Model - circa 2014

Completed!
The backdrop

- The Standard Model is complete, but it is not a complete theory
- Major problems:
 - What is the origin of lepton/baryon asymmetry?
 - What is the origin of dark matter?
 - What is the nature of neutrinos?
 - What is the solution to the hierarchy problem?
 - (plus even more profound questions)
Is 60 years an exaggeration?

The 27-km project: LEP and the LHC:
- LEP first discussions: 1975-76, approved six years later (1981)
- The LHC approved programme stretches to 2025 with the HL project stretching to 2035…

PRELIMINARY PERFORMANCE ESTIMATES FOR A LEP PROTON COLLIDER

S. Myers and W. Schnell

1. Introduction

This analysis was stimulated by news from the United States where very large \(p\bar{p} \) and \(pp \) colliders are actively being studied at the moment. Indeed, a first look at the basic performance limitations of possible \(p\bar{p} \) or \(pp \) rings in the LEP tunnel seems overdue, however far off in the future a
The physics case - the experimentalist’s point of view

- “Regardless of the (outcome of the LHC), [...] the directions for future high-Energy colliders are clear:
 - highest precision \rightarrow to probe E scales potentially up to $O(100)$ TeV and smallest couplings (e+e- collider)
 - highest energy \rightarrow to explore directly new territories and get crucial information to interpret results from indirect probes (pp collider)”

- This calls for an approach similar to the LEP-LHC approach: a new tunnel than can host a variety of circular colliders (pp, ee, ep, ...)

M. Koratzinos, ICNFP2014, 5/8/2014
The view of a theoretical physicist

In my view, the scientific questions at stake in our field today are the most difficult and profound ones we have faced since the 1930’s.

Clearly, how to proceed will depend on first LHC13 results. But in every scenario I can imagine, we will need the 100 TeV pp machine.

The scale of our vision and ambition — both theoretically and experimentally — must be commensurate with the...

* Circular e+e− machine

Higgs Factory plays very important, complementary role

Looking for $\frac{h^2}{\lambda^2}$, $(\lambda\Delta)^2$, ...

* Tera Z particularly exciting + powerful probe!
CERN’s neighbourhood

• It would be beneficial to have a new, bigger tunnel in the Geneva region to host a suite of accelerators
 – Presence of a large laboratory with all necessary infrastructure
 – Amenable local population

• Does a larger tunnel fit in the area? (constraints from geology, hydrology, environment)

• Pre-feasibility study was initiated by the Director of Accelerators in 2012
Following a recommendation of the European Strategy report, in Fall 2013 CERN Management set up the FCC project, with the main goal of preparing a Conceptual Design Report by the time of the next European strategy update (~2018).

FCC kick-off meeting took place on 12-15 February 2014 at University of Geneva.

The paper that started it all: arXiv:1112.2518 [hep-ex]

First international discussions: HF2012 at Fermilab:
http://indico.fnal.gov/conferenceDisplay.py?confId=5775

Very successful, almost 350 participants, strong international interest

Links established with similar studies in China and in the US, already a series of successful workshops.
....“to propose an ambitious post-LHC accelerator project at CERN by the time of the next Strategy update”:

d) **CERN should undertake design studies for accelerator projects in a global context,**

- **with emphasis on proton-proton and electron-positron high-energy frontier machines.**
- **These design studies should be coupled to a vigorous accelerator R&D programme, including high-field magnets and high-gradient accelerating structures,**
- **in collaboration with national institutes, laboratories and universities worldwide.**

Forming an international collaboration to study:

- **pp-collider (FCC-hh)** → defining infrastructure requirements
- **e^+e^- collider (FCC-ee)** as potential intermediate step → Study Z, W, H, top
- **p-e (FCC-he)** option
- **80-100 km infrastructure in Geneva area**
FCC Kick-off Meeting

Kick-off Meeting of the Future Circular Colliders Design Study
12 - 15 February 2014, University of Geneva / Switzerland
341 registered participants
FCC-hh
The hadron collider: FCC-hh

The name of the game of a hadron machine is energy reach.

\[E \propto B_{dipole} \times \rho_{bending} \]

Luminosity is (to first order) less of a problem – simply run at a tolerable pileup.

To go to 100 TeV from the current 14 TeV of the LHC we need to increase the diameter by a factor of \(\sim 3-4 \) and the field from 8 T to 16-20 T.
High field dipole magnets

15 T with Nb3Sn and Nb-Ti (preliminary, project goal 16 T)

Quench protection!

20 T with HTS and Nb3Sn

FCC-hh: main parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>LHC</th>
<th>HL-LHC</th>
<th>FCC-hh</th>
</tr>
</thead>
<tbody>
<tr>
<td>c.m. energy [TeV]</td>
<td>14</td>
<td>14</td>
<td>100</td>
</tr>
<tr>
<td>dipole magnet field [T]</td>
<td>8.33</td>
<td>8.33</td>
<td>16 (20)</td>
</tr>
<tr>
<td>circumference [km]</td>
<td>27</td>
<td>27</td>
<td>100 (83)</td>
</tr>
<tr>
<td>luminosity [10^{34} cm^{-2}s^{-1}]</td>
<td>1</td>
<td>5</td>
<td>5 [→20?]</td>
</tr>
<tr>
<td>bunch spacing [ns]</td>
<td>25</td>
<td>25</td>
<td>25(5)</td>
</tr>
<tr>
<td>events / bunch crossing</td>
<td>27</td>
<td>125</td>
<td>170 (34)</td>
</tr>
<tr>
<td>bunch population [10^{11}]</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>norm. transverse emitt. [mm]</td>
<td>3.75</td>
<td>2.5</td>
<td>2.2 (0.44)</td>
</tr>
<tr>
<td>IP beta-function [m] 0.55</td>
<td>0.55</td>
<td>0.15</td>
<td>1.1</td>
</tr>
<tr>
<td>IP beam size [mm]</td>
<td>16.7</td>
<td>7.1</td>
<td>6.8 (3)</td>
</tr>
<tr>
<td>synchrotron rad. [W/m/aperture]</td>
<td>0.17</td>
<td>0.33</td>
<td>28 (44)</td>
</tr>
<tr>
<td>critical energy [keV]</td>
<td>0.044</td>
<td>0.044</td>
<td>4.3 (5.5)</td>
</tr>
<tr>
<td>total syncrotron rad. power [MW]</td>
<td>0.0072</td>
<td>0.0146</td>
<td>4.8 (5.8)</td>
</tr>
<tr>
<td>Total energy stored (beam) [GJ]</td>
<td>0.4</td>
<td>0.4</td>
<td>0.8</td>
</tr>
<tr>
<td>Total energy stored (magnets) [GJ]</td>
<td>9</td>
<td>9</td>
<td>150 – 200</td>
</tr>
</tbody>
</table>
Cross sections vs \sqrt{s}

\rightarrow With 100000/fb at $\sqrt{s}=100$ TeV expect: 10^{12} top, 10^{10} Higgs bosons, 10^8 m=1 TeV stop pairs, ...

M. Koratzinos, ICNFP2014, 5/8/2014
A 100 TeV pp collider is the instrument to explore the O(10 TeV) E-scale directly.

Discovery of squarks and gluinos: up to ~ 15 TeV

The naturalness problem:

\[\Delta M_H^2 \sim \left(\frac{H}{H} \right)^2 + \left(\frac{H}{H} \right)^2 + \left(\frac{W}{W} \right)^2 + \ldots \sim \Lambda^2 \]

- Only Higgs and nothing else at ~O(1 TeV) → \(10^{-2}\) fine-tuning
- Only Higgs and nothing else at ~O(10 TeV) → \(10^{-4}\) fine-tuning
First ideas about detector layout: a-la CMS + LHCb

- Need BL$^2 \sim 10 \times$ ATLAS/CMS to achieve 10% muon momentum resolution at 10-20 TeV
- Solenoid: $B=5\,T$, $R_{in}=5-6\,m$, $L=24\,m \Rightarrow$ size is $x2$ CMS. Stored energy: $\sim 50 \, GJ$
- $> 5000 \, m^3$ of Fe in return joke \Rightarrow alternative: thin (twin) lower-B solenoid at larger R to capture return flux of main solenoid
- Forward dipole à la LHCb: $B \sim 10 \, Tm$
- Calorimetry: $\geq 12 \, \lambda$ for shower containment; W takes less space but requires 50ns integration for slow neutrons; speed advantageous for 5ns option (\Rightarrow Si active medium ?)
FCC-ee (the project formerly known as TLEP)
The electron-positron collider: main design considerations

- Here the name of the game is **luminosity**
- The energy reach of circular colliders is rather limited due to synchrotron radiation issues.
- A circular collider of 80-100 kms would comfortably run at the t-tbar threshold (E_{CM} 350GeV) but not too much higher
- A high luminosity circular collider is very efficient in ‘burning up’ the beams (beam lifetimes are a few minutes). This necessitates the use of continuous top-up injection

Considerable experience in circular colliders ensures that their performance can be predicted with high reliability
Luminosity of a circular lepton collider

\[\mathcal{L} = \text{const} \times \frac{P_{\text{tot}}}{E_0^3} \frac{\rho}{\xi_y} \frac{R_{\text{hg}}}{\beta_y} \]

The maximum luminosity is bound by the total power dissipated, the maximum achievable beam-beam parameter, the bending radius, the beam energy, the amount of vertical squeezing \(\beta_y^* \), and the hourglass effect, a geometrical factor (which is a function of \(\sigma_z \) and \(\beta_y^* \))

\[\mathcal{L} = 6.0 \times 10^{34} \left(\frac{P_{\text{tot}}}{50 \text{MW}} \right) \left(\frac{\rho}{10 \text{km}} \right) \left(\frac{120 \text{GeV}}{E_0} \right)^3 \left(\frac{\xi_y}{0.1} \right) \left(\frac{R_{\text{hg}}}{0.83} \right) \left(\frac{1 \text{mm}}{\beta_y^*} \right) \text{cm}^{-2} \text{s}^{-1} \]
Two limits for the beam-beam parameter

- At low energies the beam-beam parameter ξ saturates at the so-called beam-beam limit.
- At high energies, the “beamstrahlung” limit arrives first.

Beamstrahlung: is the synchrotron radiation emitted by an incoming electron in the collective electromagnetic field of the opposite bunch at an interaction point. The main effect at circular colliders at high energy is decreasing the beam lifetime.
Main baseline parameters

- This is work in progress and rapidly evolving

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Z</th>
<th>W</th>
<th>H</th>
<th>t</th>
<th>LEP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>E (GeV)</td>
<td>45</td>
<td>80</td>
<td>120</td>
<td>175</td>
<td>104</td>
</tr>
<tr>
<td>I (mA)</td>
<td>1400</td>
<td>152</td>
<td>30</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>No. bunches</td>
<td>16’700</td>
<td>4’490</td>
<td>1’330</td>
<td>98</td>
<td>4</td>
</tr>
<tr>
<td>Power (MW/beam)</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>11</td>
</tr>
<tr>
<td>E loss/turn (GeV)</td>
<td>0.03</td>
<td>0.33</td>
<td>1.67</td>
<td>7.55</td>
<td>3.34</td>
</tr>
<tr>
<td>Total RF voltage(GV)</td>
<td>2.5</td>
<td>4</td>
<td>5.5</td>
<td>11</td>
<td>3.5</td>
</tr>
<tr>
<td>(\beta^*_{x/y}) (mm)</td>
<td>500 / 1</td>
<td>500 / 1</td>
<td>500 / 1</td>
<td>1000 / 1</td>
<td>1500 / 50</td>
</tr>
<tr>
<td>(\varepsilon_x) (nm)</td>
<td>29</td>
<td>3.3</td>
<td>1</td>
<td>2</td>
<td>30-50</td>
</tr>
<tr>
<td>(\varepsilon_y) (pm)</td>
<td>60</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>~250</td>
</tr>
<tr>
<td>(\xi_x)</td>
<td>0.03</td>
<td>0.06</td>
<td>0.09</td>
<td>0.09</td>
<td>0.07</td>
</tr>
<tr>
<td>(\xi_y)</td>
<td>0.03</td>
<td>0.06</td>
<td>0.09</td>
<td>0.09</td>
<td>0.07</td>
</tr>
<tr>
<td>L ((10^{34} \text{ cm}^{-2}\text{s}^{-1}))</td>
<td>28</td>
<td>12</td>
<td>6.0</td>
<td>1.8</td>
<td>0.012</td>
</tr>
<tr>
<td>Number of IPs</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Lumi lifetime (mins)</td>
<td>213</td>
<td>52</td>
<td>21</td>
<td>24</td>
<td>310</td>
</tr>
</tbody>
</table>
STATISTICS

\[(e^+e^- \rightarrow ZH, \ e^+e^- \rightarrow W^+W^-, \ e^+e^- \rightarrow ZH, [e^+e^- \rightarrow tt\bar{t}])\]

<table>
<thead>
<tr>
<th></th>
<th>TLEP-4 IP, per IP</th>
<th>statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>circumference</td>
<td>100 km</td>
<td></td>
</tr>
<tr>
<td>max beam energy</td>
<td>175 GeV</td>
<td></td>
</tr>
<tr>
<td>no. of IPs</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Luminosity/IP at 350 GeV c.m.</td>
<td>1.8x10^{34} cm^{-2}s^{-1}</td>
<td>(10^6) tt pairs</td>
</tr>
<tr>
<td>Luminosity/IP at 240 GeV c.m.</td>
<td>5.9x10^{34} cm^{-2}s^{-1}</td>
<td>2 (10^6) ZH evts</td>
</tr>
<tr>
<td>Luminosity/IP at 160 GeV c.m.</td>
<td>1.2x10^{35} cm^{-2}s^{-1}</td>
<td>(10^8) WW pairs</td>
</tr>
<tr>
<td>Luminosity/IP at 90 GeV c.m.</td>
<td>2.8x10^{35} cm^{-2}s^{-1}</td>
<td>(10^{12}) Z decays</td>
</tr>
</tbody>
</table>

A real Z, W, H, t factory!

Alain Blondel FCC-ee for LHCb 1st April 2014
First look at the physics case of TLEP

The TLEP Design Study Working Group
Physics capabilities teaser

Physics case published: JHEP01 (2014) 164

Main strength is the capability to study all known particles (W, Z, Higgs, top, ...) with very high precision. For example: repeat the whole LEP physics programme in a few minutes. Also sensitivity to very rare processes (small couplings).

This represents a formidable challenge to theory: with statistical errors reduced by a factor of as much as 100 compared to LEP, theory needs to follow...

Example: invisible widths:

- Higgs BR$_{exotic}$ measured to 0.16% (4 IPs)
- Z invisible width (ΔN_{ν} from LEP 0.008):
 - Z lineshape: N_{ν} measured to 0.0001 (stat)\pm0.004(syst)
 - tagged Z (1 year at ECM 160GeV plus data from 240 and 359GeV) ΔN_{ν}=0.0008
 - Dedicated run at 105 GeV: ΔN_{ν}=0.0004

$N_{\nu} = \frac{\gamma Z(\text{inv})}{\gamma Z \rightarrow ee, \mu\mu} \frac{\Gamma_{\nu}}{\Gamma_{e,\mu}} (SM)$
Other possibilities
FCC-he

- Based on LHeC – TDR published
- Two options:
 - (1) FCC-ee ring,
 - (2) ERL – energy recovery linac
Ions at the FCC

- Centre-of-mass energy per nucleon-nucleon collision:
 \[
 \sqrt{s_{NN}} = \sqrt{\frac{Z_1 Z_2}{A_1 A_2}} \sqrt{s_{pp}}
 \]
 \[
 \sqrt{s_{PbPb}} = 39 \text{ TeV} \quad \text{for} \quad \sqrt{s_{pp}} = 100 \text{ TeV}
 \]
 \[
 \sqrt{s_{pPb}} = 63 \text{ TeV}
 \]

- First (conservative) estimates of luminosity: \(x5\) LHC (after LS2)

- Physics opportunities with heavy ion beams at the FCC (AA, pA) are investigated by a dedicated WG within the FCC-hh group: next WS in September at CERN (https://indico.cern.ch/event/331669)

- Main directions:
 - Quark-Gluon Plasma studies: larger size, higher temperature, new hard probes available (e.g. top quarks)
 - Saturation of small-x gluon densities (with pA): reach down to \(x \sim 10^{-6}\) (one order of magnitude small than at LHC)
 - Photon-induced collisions (\(\gamma+\gamma, \gamma+A\)): saturation and EW studies

- More details:
 https://indico.cern.ch/event/282344/session/16/contribution/109

Andrea Dainese
The study
Future Circular Colliders - Conceptual Design Study

Study coordination, M. Benedikt, F. Zimmermann

<table>
<thead>
<tr>
<th>Hadron collider</th>
<th>Hadron injectors and injectors</th>
<th>Infrastructure, cost estimates</th>
<th>Technology</th>
<th>Physics and experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. Schulte</td>
<td>B. Goddard</td>
<td>P. Lebrun</td>
<td>High Field Magnets</td>
<td>Hadrons</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L. Bottura</td>
<td>A. Ball,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Superconducting RF</td>
<td>F. Gianotti,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E. Jensen</td>
<td>M. Mangano</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cryogenics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L. Tavian</td>
<td>e+ e-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Specific Technologies</td>
<td>A. Blondel,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JM. Jimenez</td>
<td>J. Ellis, P. Janot</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>e- p</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M. Klein</td>
</tr>
</tbody>
</table>

e- p option
Integration aspects: O. Brüning

Operation aspects,
energy efficiency, safety, environment: P. Collier

Planning (Implementation roadmap, financial planning, reporting)
F. Sonnemann, J. Gutleber
CERN and FCC timelines

- LHC and HL-LHC operation until ~2035
- Must start now developing FCC concepts to be ready in time
• This programme stretches way into the future (provided that it gets the go-ahead)
• But you can help shape the future today by joining in one or more of the working groups

Public site: http://cern.ch/fcc
FCC collaboration site: http://cern.ch/fcc/collaboration
Indico site: http://indico.cern.ch/category/5153/
Conclusions

• The FCC project might well shape the next 60 years of CERN

• It offers unique opportunities to further explore Nature...
 – ...by increasing the Energy frontier (through the 100TeV hadron collider)
 – ...and by changing the game of precision physics by offering unprecedented statistics at an E_{CM} of 90 GeV (Z), 160 GeV (W), 240 GeV (ZH) and 350 GeV (tt) (with a high luminosity e^+e^- collider)
Is history repeating itself…?

When **Lady Margaret Thatcher** visited CERN in 1982, she asked the then CERN Director-General **Herwig Schopper** how big the next tunnel after LEP would be.

Dr. Schopper’s answer was **there would be no bigger tunnel at CERN**.

Lady Thatcher replied that she had obtained **exactly the same answer from Sir John Adams when the SPS was built 10 years earlier**, and therefore she did not believe him.

Was lady Thatcher right?

Herwig Schopper, private communication, 2013; courtesy F. Zimmermann
End

Thank you