QCD in dense matter - prospects for and beyond NJL-kind effective models

THOMAS KLÄHN

Collaborators: D. Zablocki, J. Jankowski, C.D. Roberts, R. Lastowiecki, D.B. Blaschke
QCD Phase Diagram

- dense baryonic matter

HIC in collider experiments
Won't cover the whole diagram
Hot and ‘rather’ symmetric

NS as a 2nd accessible option
Cold and ‘rather’ asymmetric

Problem is more complex than
It looks at first gaze

www.gsi.de
QCD Phase Diagram

- dense baryonic matter

HIC in collider experiments
Won't cover the whole diagram
Hot and ‘rather’ symmetric

NS as a 2nd accessible option
Cold and ‘rather’ asymmetric

Problem is more complex than
It looks at first gaze
Neutron Stars

- Variety of scenarios regarding inner structure: with or without QM
- Question whether/how QCD phase transition occurs is not settled
- Most honest approach: take both (and more) scenarios into account and compare to available data
Neutron Stars = Quark Cores?

Variety of scenarios regarding inner structure: with or without QM

Question whether/how QCD phase transition occurs is not settled

Most honest approach: take both (and more) scenarios into account and compare to available data.
Neutron Stars = Quark Cores?

Variety of scenarios regarding inner structure: with or without QM

Question whether/how QCD phase transition occurs is not settled

Most honest approach: take both (and more) scenarios into account and compare to available data

Hybrid Star
- Inner Crust
 - heavy ions
 - relativistic electron gas
 - superfluid neutrons
- Inner Core
 - (neutrons, protons)
 - electrons, muons
 - hyperons
 - bosonic condensates
 - deconfined quark matter

Neutron Star
- Outer Crust
 - ions
 - electron gas
- Core
 - neutrons, protons
 - electrons, muons
 - superconducting protons
 - strange quark matter

Strange Star
Neutron Stars = Quark Cores?

- Variety of scenarios regarding inner structure: with or without QM
- Question whether/how QCD phase transition occurs is not settled
- Most honest approach: take both (and more) scenarios into account and compare to available data

Hybrid Star
- Inner Crust
 - heavy ions
 - relativistic electron gas
 - superfluid neutrons
- Inner Core
 - (neutrons, protons)
 - electrons, muons
 - hyperons
 - bosonic condensates
 - deconfined quark matter

Neutron Star

Strange Star
- Outer Crust
 - ions
 - electron gas
- Core
 - neutrons, protons
 - electrons, muons
 - superconducting protons
 - strange quark matter
Neutron Stars = Quark Cores?

Variety of scenarios regarding inner structure: with or without QM

Question whether/how QCD phase transition occurs is not settled

Most honest approach: take both (and more) scenarios into account and compare to available data
Neutron Star Data

- Data situation in general terms is good (masses, temperatures, ages, frequencies)
- Ability to explain the data with different models in general is good, too.
 ... which sounds good, but becomes tiresome if everybody explains everything ...
- For our purpose only a few observables are of real interest
- Most promising: High Massive NS with 2 solar masses (Demorest et al., Nature 467, 1081-1083 (2010))
NS masses and the (QM) Equation of State

- NS mass is sensitive mainly to the sym. EoS (In particular true for heavy NS)

- Folcloric: QM is soft, hence no NS with QM core

- Fact: QM is softer, but able to support QM core in NS

- Problem: (transition from NM to) QM is barely understood

\[M(n) \text{ correlated to } E_0(n) \]

stiff: higher \(M_{\text{max}} \) at smaller densities

soft: smaller \(M_{\text{max}} \) at higher densities
NS masses and the (QM) Equation of State

- NS mass is sensitive mainly to the sym. EoS (In particular true for heavy NS)

- Folcloric:
 QM is soft, hence no NS with QM core

- Fact:
 QM is softer, but able to support QM core in NS

- Problem:
 (transition from NM to) QM is barely understood

(plied “universal” $\beta^2 E_S$ (error bars!))
NS masses and the (QM) Equation of State

- NS mass is sensitive mainly to the sym. EoS (In particular true for heavy NS)

- Folkloric: QM is soft, hence no NS with QM core

- Fact: QM is softer, but able to support QM core in NS

- Problem: (transition from NM to) QM is barely understood

\(M(n)\) correlated to \(E_0(n)\)

- stiff: higher \(M_{max}\) at smaller densities
- soft: smaller \(M_{max}\) at higher densities
NS masses and the (QM) Equation of State

- NS mass is sensitive mainly to the sym. EoS (In particular true for heavy NS)

- Folcloric: QM is soft, hence no NS with QM core

- Fact: QM is softer, but able to support QM core in NS

- Problem: (transition from NM to) QM is barely understood

- traditional: two-phase construction

“masquerade” problem: quark and hadron eos almost identical!
NS masses and the (QM) Equation of State

- NS mass is sensitive mainly to the sym. EoS (In particular true for heavy NS)
- Folcloric: QM is soft, hence no NS with QM core
- Fact: QM is softer, but able to support QM core in NS
- Problem: (transition from NM to) QM is barely understood

Dense Nuclear Matter in terms of Quark DoF is barely understood
Problem is attacked in vacuum Faddeev Equations

\[
\begin{align*}
\Psi^a & = \Gamma^a \\
p_q & = p_d
\end{align*}
\]

Baryons as composites of confined quarks and diquarks

Bethe Salpeter Equations
NS masses and the (QM) Equation of State

- NS mass is sensitive mainly to the sym. EoS (In particular true for heavy NS)

- Folcloric: QM is soft, hence no NS with QM core

- Fact: QM is softer, but able to support QM core in NS

- Problem: (transition from NM to) QM is barely understood

Dense Nuclear Matter in terms of Quark DoF is barely understood

Problem is attacked in vacuum

Faddeev Equations

Baryons as composites of confined quarks and diquarks

Bethe Salpeter Equations
QCD in dense matter

- LQCD fails in dense (like DENSE) matter (Fermion-sign problem)
- Perturbative QCD fails in non-perturbative domain
 DCSB is explicitly not covered by perturbative approach:

\[
B(p^2) = m \left(1 - \frac{\alpha_s}{\pi} \ln \left[\frac{p^2}{m^2} \right] \right) \lim_{m_0 \to 0} \sum_s (p^2, m_0^2) = 0
\]

- Solution: ‘some’ non-perturbative approach ‘as close as possible’ to QCD
 some = solvable; as close as possible = if possible DCSB, if possible confinement
- State of the art: Nambu-Jona-Lasinio model(s) (+bag models, +hybrids)
NJL type models

- S: DCSB
- V: renormalizes μ
- D: diquarks \rightarrow 2SC, CFL
- TD Potential minimized in mean-field approximation
- Effective model by its nature; can be motivated (1g-exchange) doesn’t have to though and can be extended (KMT, PNJL)
- possible to describe nucleons; not to be confused with confinement!

Effective Lagrangian

$$\mathcal{L}_{\text{int}} = G_S \eta_D \sum_{a,b=2,5,7} (\bar{q} i \gamma_5 \tau_a \lambda_b C \bar{q}^T) (q^T C i \gamma_5 \tau_a \lambda_a q)$$

$$+ G_S \sum_{a=0}^8 [(\bar{q} \tau_a q)^2 + \eta_V (\bar{q} i \gamma_0 q)^2]$$

Thermodynamical potential

$$\Omega(T, \mu) = \frac{\phi_u^2 + \phi_d^2 + \phi_s^2}{8 G_S} + \frac{\Delta_{ud}^2 + \Delta_{us}^2 + \Delta_{ds}^2}{4 G_D}$$

$$\quad - \int \frac{d^3 p}{(2\pi)^3} \sum_{n=1}^{18} \left[E_n + 2 T \ln \left(1 + e^{-E_n/T}\right) \right] + \Omega_{\text{lep}} - \Omega_0$$
Conclusion: NS may or may not support a significant QM core. Other interaction channels won’t change this if their coupling strengths are not precisely known.
Beyond NJL

- NJL model can be understood as an approximate solution of Dyson-Schwinger equations.

Quark

Gluon

q-g-Vertex
Beyond NJL

- NJL model can be understood as an approximate solution of Dyson-Schwinger equations.

\[g^2 D_{\mu\nu}(k) = \left(\delta_{\mu\nu} - \frac{k_\mu k_\nu}{k^2} \right) \frac{G(k^2)}{k^2} \]

\[\Gamma^a_\mu(k,p)_{\text{bare}} = \gamma_\mu \frac{\lambda^a}{2} \]
single particle: quark self energy

Inverse Quark Propagator:
\[
S(p; \mu)^{-1} = Z_2(i \vec{\gamma} \vec{p} + i \gamma_4 (p_4 + i \mu) + m_{\text{bm}}) + \Sigma(p; \mu)
\]
\[
= i \gamma p \quad \text{revokes Poincaré covariance}
\]

Renormalised Self Energy:
\[
\Sigma(p; \mu) = Z_1 \int \frac{d^4q}{q^2} \delta^4(\mu) D_{\rho\sigma}(p-q, \mu) \frac{\lambda^a}{2} \gamma_\rho S(q, \mu) \Gamma_\sigma^a(q, p; \mu)
\]

Loss of Poincaré covariance increases complexity
\[
\rightarrow \text{technically and numerically more challenging} \rightarrow \text{no surprise, though}
\]

General Solution:

Vacuum: \(\mu = 0 \)
\[
S(p^2)^{-1} = i \gamma \ p \ A(p^2) + B(p^2)
\]

Medium: \(\mu \neq 0 \)
\[
S(p^2, p_4; \mu)^{-1} = i \vec{\gamma} \vec{p} \ A(p^2, p_4, \mu) + i \gamma_4 (p_4 + i \mu) \ C(p^2, p_4, \mu) + B(p^2, p_4, \mu)
\]

Similar structured equations in vacuum and medium, but in medium:

1. one more gap
2. gaps are complex valued
3. gaps depend on (4-)momentum, energy and chemical potential
Effective gluon propagator

\[S(p;\mu)^{-1} = Z_2 (i \gamma \vec{p} + i \gamma_4 (p_4 + i \mu) + m_{\text{bm}}) + \Sigma(p;\mu) \]

\[\Sigma(p;\mu) = Z_1 \int_q g^2 (\mu) D_{\rho\sigma} (p-q,\mu) \frac{\Lambda^2}{2} \gamma_\rho S(q,\mu) \Gamma_\sigma^a (q,p;\mu) \]

Ansatz for self energy (rainbow approximation, effective gluon propagator(s))

\[Z_1 \int_q g^2 D_{\mu\nu} (p-q) \frac{\lambda^a}{2} \gamma_\mu S(q) \Gamma_\nu^a (q,p) \rightarrow \int_q G ((p-q)^2) D_{\mu\nu}^\text{free} (p-q) \frac{\lambda^a}{2} \gamma_\mu S(q) \frac{\lambda^a}{2} \gamma_\nu \]

Specify behaviour \(G(k^2) \)

\[\frac{G(k^2)}{k^2} = 8 \pi^4 D^4(k) + \frac{4 \pi^2}{\omega^6} D k^2 e^{-k^2/\omega^2} + 4 \pi \frac{\gamma m \pi}{\frac{1}{2} \ln \left[\tau + \left(1 + k^2/\Lambda^2_{\text{QCD}} \right)^2 \right]} \]

Infrared strength running coupling for large k (zero width + finite width contribution)

Results at finite densities obtained for
1st term (Munczek/Nemirowsky (1983)) → Klähn et al. (2010)
2nd term → Chen et al. (2008, 2011)
NJL model: \[g^2 D_{\rho\sigma} (p-q) = \frac{1}{m_G^2} \delta_{\rho\sigma} \]
delta function in configuration(!) space
NJL model within DS framework

\[B(p) = m + \frac{16}{3m_G^2} \int \frac{d^4 q}{(2\pi)^4} \frac{B(q)}{q^2 A^2(q) + \tilde{q}_4^2 C^2(q) + B^2(q)}, \]

\[\tilde{p}_4 A(p) = \tilde{p}_4^2 + \frac{8}{3m_G^2} \int \frac{d^4 q}{(2\pi)^4} \frac{\tilde{p}_4 q A(q)}{q^2 A^2(q) + \tilde{q}_4^2 C^2(q) + B^2(q)}, \]

\[\tilde{p}_4^2 C(p) = \tilde{p}_4^2 + \frac{8}{3m_G^2} \int \frac{d^4 q}{(2\pi)^4} \frac{\tilde{p}_4 \tilde{q}_4 C(q)}{q^2 A^2(q) + \tilde{q}_4^2 C^2(q) + B^2(q)}. \]

\[\frac{8}{3m_G^2} \int \frac{d^4 q}{(2\pi)^4} \frac{\tilde{q}_4 C(q)}{q^2 + \tilde{q}_4^2 C^2(q) + B^2(q)} = iK \]

\[\tilde{p}_4^2 C = \tilde{p}_4^2 + i\tilde{p}_4 K \]

\[\Rightarrow \tilde{p}_4 C = p_4 + i(\mu + K) \]

\[B = m + \frac{16}{3m_G^2} \int \frac{d^4 q}{(2\pi)^4} \frac{B}{q^2 + \tilde{q}_4^2 + B^2} \]

To satisfy these equations, all gap solutions have to be momentum independent. Simplest solution: A=1

Renormalization of chem. pot. due to vector interaction

mass gap equation

This is a 1 to 1 reproduction of the (basic) NJL model
NJL model within DS framework

\[\frac{8}{3m_G^2} \int \frac{d^4 q}{(2\pi)^4} \frac{\tilde{q}_4 C(q)}{q^2 + \tilde{q}_4^2 C^2(q) + B^2(q)} = iK \]

\[\tilde{p}_4^2 C = \tilde{p}_4^2 + i\tilde{p}_4 K \]

\[\Rightarrow \tilde{p}_4 C = p_4 + i(\mu + K) \]

\[B = m + \frac{16}{3m_G^2} \int \frac{d^4 q}{(2\pi)^4} \frac{B}{q^2 + \tilde{q}_4^2 + B^2} \]

Renormalization of chem. pot. due to vector interaction

mass gap equation

This is a 1 to 1 reproduction of the (basic) NJL model
NJL model within DS framework

\[P[S] = \text{Tr} \ln[S^{-1}] - \frac{1}{2} \text{Tr} [\Sigma S] \]

Steepest descent approximation

\[P(\mu) = \int \frac{d^4 p}{(2\pi)^4} \text{Tr} \ln S^{-1}(\vec{p}^2, \vec{p}_4) + \frac{3}{4} m_G^2 K^2 - \frac{3}{8} m_G^2 B^2 \]

1 to 1 NJL (regularization issue ignored)

\[\frac{8}{3 m_G^2} \int \frac{d^4 q}{(2\pi)^4} \frac{\tilde{q}_4 C(q)}{\vec{q}^2 + \tilde{q}_4^2 C^2(q) + B^2(q)} = iK \]

Renormalization of chem. pot. due to vector interaction

\[\tilde{p}_4^2 C = \tilde{p}_4^2 + i\tilde{p}_4 K \]

\[\Rightarrow \tilde{p}_4 C = p_4 + i(\mu + K) \]

mass gap equation

\[B = m + \frac{16}{3 m_G^2} \int \frac{d^4 q}{(2\pi)^4} \frac{B}{\vec{q}^2 + \tilde{q}_4^2 + B^2} \]

This is a 1 to 1 reproduction of the (basic) NJL model
Model 1 (Munczek/Nemirowsky)

\[
f_1(|\vec{p}|; \mu) = \frac{1}{4\pi} \int_{-\infty}^{\infty} d\rho_4 \, tr_D(-\gamma_4) S(p; \mu)
\]

Wigner Phase

\[
\vec{p}^2 = \mu^2 - 2\eta^2
\]

\[
\mu^2 \geq 2\eta^2 \quad \text{to obtain} \quad f_1(\vec{p}^2 = 0) = 1
\]

\((\eta = 1.09 \text{ GeV}) \)

small' chem. Potential: \[f_1(\vec{p}^2 = 0, \mu < \eta) \propto \mu \]

\[
P(\mu < \eta) = P_0 + \int_0^\mu \, d\mu' \, n(\mu') \propto P_0 + \text{const} \times \mu^5
\]

\[
\mu^2 \geq 2\eta^2 \quad \text{to obtain} \quad f_1(\vec{p}^2 = 0) = 1
\]

model is scale invariant regarding \(\mu/\eta \)

\[
P(\mu) \propto \mu^5 \quad \text{well satisfied up to} \quad \mu/\eta \approx 1
\]

\[
\mu^2 \geq 2\eta^2 \quad \text{to obtain} \quad f_1(\vec{p}^2 = 0) = 1
\]

model is scale invariant regarding \(\mu/\eta \)

\[
P(\mu) \propto \mu^5 \quad \text{well satisfied up to} \quad \mu/\eta \approx 1
\]

\[
\mu^2 \geq 2\eta^2 \quad \text{to obtain} \quad f_1(\vec{p}^2 = 0) = 1
\]

model is scale invariant regarding \(\mu/\eta \)

\[
P(\mu) \propto \mu^5 \quad \text{well satisfied up to} \quad \mu/\eta \approx 1
\]

\[
\mu^2 \geq 2\eta^2 \quad \text{to obtain} \quad f_1(\vec{p}^2 = 0) = 1
\]

model is scale invariant regarding \(\mu/\eta \)

\[
P(\mu) \propto \mu^5 \quad \text{well satisfied up to} \quad \mu/\eta \approx 1
\]

\[
\mu^2 \geq 2\eta^2 \quad \text{to obtain} \quad f_1(\vec{p}^2 = 0) = 1
\]

model is scale invariant regarding \(\mu/\eta \)

\[
P(\mu) \propto \mu^5 \quad \text{well satisfied up to} \quad \mu/\eta \approx 1
\]

\[
\mu^2 \geq 2\eta^2 \quad \text{to obtain} \quad f_1(\vec{p}^2 = 0) = 1
\]

model is scale invariant regarding \(\mu/\eta \)

\[
P(\mu) \propto \mu^5 \quad \text{well satisfied up to} \quad \mu/\eta \approx 1
\]
Model 2

\[f_1(|\vec{p}|; \mu) = \frac{1}{4\pi} \int_{-\infty}^{\infty} dp_4 \text{tr}_D (-\gamma_4) S(p; \mu) \]

Wigner Phase Less extreme, but again, 1 particle number density distribution different from free Fermi gas distribution

Chen et al. (TK) PRD 78 (2008)
Conclusions

NJL model is a powerful tool to explore possible features of dense QCD

It possibly might be a too powerful tool for unambiguous predictions

NJL mf approximation is a gluon mf approximation in DSE

NB: Momentum independent gap solutions in their very nature result in a quasi particle picture → no confinement

Accounting for momentum dependent gap solutions enriches the model space significantly

Conclusions

NJL model is a powerful tool to explore possible features of dense QCD

It possibly might be too powerful for unambiguous predictions.

NJL mf approximation is a gluon mf approximation in DSE.

NB: Momentum independent gap solutions in their very nature result in a quasi particle picture → no confinement.

Accounting for momentum dependent gap solutions enriches the model space significantly.

Thank you!