Hot and Cold Nuclear Matter Effects in p-Pb Collisions at the LHC

1 August 2014
Why Run pA Collisions?

Traditional Heavy-Ion Playbook:
- AA – Create a Quark Gluon Plasma (QGP)
- pp – Establish baseline for observables
- pA – Control environment to isolate initial state effects
 - Energy density not high enough to create thermalized medium
 - Additional nuclear matter can alter incoming wavefunction
 - Referred to as “cold nuclear matter” effects

ALICE p-Pb Collision 5.02 TeV
Why Run pA Collisions?
the best laid plans…

Traditional Heavy-Ion Playbook:
• AA – Create a Quark Gluon Plasma (QGP)
• pp – Establish baseline for observables
• pA – Control environment to isolate initial state effects
 • Energy density not high enough to create thermalized medium
 • Additional nuclear matter can alter incoming wavefunction
 • Referred to as “cold nuclear matter” effects

However, pA collisions themselves presented interesting phenomena!
• Collective effects:
 Is there a thermalized medium created in pA?
• High p_T enhancement:
 vs suppression seen in AA
• Understanding heavy flavor
 test of pQCD, shadowing/antishadowing
• Electroweak bosons
 pQCD candlestick, initial state nuclear modification

ALICE p-Pb Collision 5.02 TeV
September 2012 pilot run
• 4h data taking, 1 μb⁻¹ per experiment

January 2013 production run
• 3 weeks data taking
• 35 nb⁻¹ to ATLAS, CMS, ALICE
• Reversed beam (2/3 p-Pb, 1/3 Pb-p)

\(\sqrt{s_{NN}} = 5.02 \text{ TeV} \)
• Asymmetric center-of-mass
 • 4 TeV proton beam
 • 1.57 TeV/nucleon Pb beam
• \(\Delta y = 0.465 \) in direction of proton beam
Collective Flow
Important Distinction:
- a system of individual particles and
- a medium in which individual degrees of freedom do not matter anymore – thermodynamic regime

- Thermodynamic concepts are used for systems with large numbers of particles (>10^4) in local thermal equilibrium
 - Central Pb-Pb (0-5%) collisions (LHC): \(\frac{dN_{\text{ch}}}{d\eta} \approx 1600 \)
 - High mult p-Pb (0-5%) collisions (LHC): \(\frac{dN_{\text{ch}}}{d\eta} \approx 45 \)
 - pp collisions (LHC): \(\frac{dN_{\text{ch}}}{d\eta} \approx 6 \)

- Lifetime of system must be long enough to establish equilibrium between constituents
 - Simulations show typically 3-6 interactions sufficient
Collectivity and Equilibrium

Important Distinction:
- a system of individual particles and
- a medium in which individual degrees of freedom do not matter anymore – thermodynamic regime

- Thermodynamic concepts are used for systems with large numbers of particles (>10⁴) in local thermal equilibrium
 - Central Pb-Pb (0-5%) collisions (LHC): \(\frac{dN_{\text{ch}}}{d\eta} \approx 1600 \)
 - High mult p-Pb (0-5%) collisions (LHC): \(\frac{dN_{\text{ch}}}{d\eta} \approx 45 \)
 - pp collisions (LHC): \(\frac{dN_{\text{ch}}}{d\eta} \approx 6 \)

- Lifetime of system must be long enough to establish equilibrium between constituents
 - Simulations show typically 3-6 interactions sufficient

Success of hydro models describing flow effects in Pb-Pb supports idea of matter in local thermal (kinetic) equilibrium

Success of thermal models describing hadron yields in Pb-Pb supports idea of matter in local thermal (chemical) equilibrium
Collectivity and Equilibrium

Important Distinction:
- a system of individual particles and
- a medium in which individual degrees of freedom do not matter anymore – thermodynamic regime

- Thermodynamic concepts are used for systems with large numbers of particles (>10^4) in local thermal equilibrium
 - Central Pb-Pb (0-5%) collisions (LHC): dN_{ch}/d\eta \approx 1600
 - High mult p-Pb (0-5%) collisions (LHC): dN_{ch}/d\eta \approx 45
 - pp collisions (LHC): dN_{ch}/d\eta \approx 6

- Lifetime of system must be long enough to establish equilibrium between constituents
 - Simulations show typically 3-6 interactions sufficient

Success of hydro models describing flow effects in Pb-Pb supports idea of matter in local thermal (kinetic) equilibrium

Success of thermal models describing hadron yields in Pb-Pb supports idea of matter in local thermal (chemical) equilibrium

\rightarrow Equilibrium in smaller systems such as p-Pb??
Radial and Elliptic Flow from expanding medium

Isotropic Radial Flow:
- Medium expansion driving p_T distributions
- lower p_T particles \rightarrow higher p_T (mass hierarchy)

Anisotropic Elliptic Flow:
- Geometrically asymmetric pressure gradient
- Momentum anisotropy \rightarrow spatial anisotropy
- Long-range azimuthal correlations
- Quantified by Fourier decomposition of the azimuthal angle wrt reaction plane (x-z)

$$\frac{d^3N}{dp_T d\eta d\phi} = \frac{d^2N}{dp_T d\eta} \frac{1}{2\pi} \left[1 + 2v_1 \cos(\phi - \Psi_1) + 2v_2 \cos 2(\phi - \Psi_2) + \ldots \right]$$

$\nabla p_x > \nabla p_y$
• Hydrodynamic models (EPOS, Krakow) agree better than QCD based DPMJET.

• Blast-wave fit (simplified hydro model) to combined data also reasonable.
 - 2 essential parameters: T_{kin}, β
- Blast-wave fit (simplified hydro model) to combined data also reasonable.
 - 2 essential parameters: T_{kin}, β

- p-Pb (and Pb-Pb) consistent with collective expansion!

- PYTHIA8 with color reconnection shows similar trend (w/o hydrodynamic flow)
 - Mimicking flow-like patterns (even in pp!)
Two Particle Correlations

- Two particle correlations contain:
 - "jet like" correlations (all systems)
 - collective flow (only expected in AA)
 - hydrodynamic expansion
 - result of initial collision geometry
- Double ridge understood in AA
- Near-side ($\Delta\phi \sim 0$), long-range (large $\Delta\eta$) shoulders in high multiplicity pp and pA
 - indicates medium-like expansion?

\[\text{pp} \quad [1009.4122] \quad \text{p-Pb} \quad [1210.5482] \quad \text{Pb-Pb} \]
Double Ridge in p-Pb

- Long range, non jet-like correlations in p-Pb
- Fourier decomposition dominated by v_2, v_3
 - looks like medium-induced flow!

$$v_n = \langle \cos n(\phi - \Psi_n) \rangle$$

Angular Correlations

Elliptic Flow:
- Mass ordering observed by CMS, ALICE
 - also seen at RHIC
- Similar behavior in Pb-Pb
- Hydrodynamic signature?
 - $p = \beta \gamma m$

$$v_n = \left\langle \cos n(\phi - \Psi_n) \right\rangle$$
Angular Correlations
mass ordering

Elliptic Flow:
- Mass ordering observed by CMS, ALICE
 - also seen at RHIC
- Similar behavior in Pb-Pb
- Hydrodynamic signature?
 - $p = \beta \gamma m$

\[v_n = \langle \cos n(\phi - \Psi_n) \rangle \]
Angular Correlations

Elliptic Flow:
- Mass ordering observed by CMS, ALICE
 - also seen at RHIC
- Similar behavior in Pb-Pb
- Hydrodynamic signature?
 - $p = \beta \gamma m$

Elliptic Flow:
- Mass ordering observed by CMS, ALICE
- also seen at RHIC
- Similar behavior in Pb-Pb
- Hydrodynamic signature?
 - $p = \beta \gamma m$
Intermediate/High p_T and Jets
Nuclear Modification Factor
Nuclear Modification Factor

AA example

\[R_{AA} = \frac{dN_{AA} / dp_T}{\langle N_{coll} \rangle dN_{pp} / dp_T} \]

- Quantifies spectral modification due to nuclear effects
 - How different are AA collisions compared to a superposition of \(N_{coll} \) pp collisions?
- \(R_{AA} \approx 1 \rightarrow \) no modification from \(N_{coll} \) independent pp hard scatterings – no medium effects!

Characteristic Heavy Ion \(R_{AA} \):
- Energy dependent suppression
- Centrality dependent suppression
Nuclear Modification Factor

pA analog

$R_{pA} = \frac{dN_{pA}}{dN_{pp}} / \frac{p_{T}}{p_{T}}$

- Quantifies spectral modification due to nuclear effects
 - How different are pA collisions compared to a superposition of N_{coll} pp collisions?
 - $R_{pA} \approx 1 \rightarrow$ no modification from N_{coll} independent pp hard scatterings – no cold nuclear effects!

Characteristic Heavy Ion R_{AA}:
- Energy dependent suppression
- Centrality dependent suppression

pA reveals “Cronin Effect”:
- Hardening of pT spectrum
- Typically attributed to multiple scattering of p in nucleus
- Glauber model – number of binary collisions:
 p-$Pb < N_{coll} > = 6.9 \pm 0.6$
Mass Dependent Cronin Effect:

- Strong particle species dependence
- No Cronin peak for π, K
 - evolves with increasing mass
- Radial flow picture predicts mass dependent hardening of p_T spectrum
Mass Dependent Cronin Effect:

- Strong particle species dependence
- No Cronin peak for π, K
 - evolves with increasing mass
- Radial flow picture predicts mass dependent hardening of p_T spectrum
- Qualitatively consistent picture at RHIC
- Another hydrodynamic thumbprint in pA?
Surprise at high p_T:

- CMS observes charged particle enhancement
- ATLAS confirms observation!
- ALICE sees different trend…
Surprise at high p_T:
- CMS observes charged particle *enhancement*
- ATLAS confirms observation!
- ALICE sees different trend

- All experiments agree on jet R_{pA} nearly consistent with unity
 - could it be jet fragmentation?
Charged Hadron $R_{p\text{Pb}}$ explanations?

- PDFs modification expected in nucleus
- However, anti-shadowing cannot explain rise
Moreover, “disagreement” is possibly overstated:

- ALICE’s pT reach is limited,
- All systematic uncertainties are large.
Moreover, “disagreement” is possibly overstated:
- ALICE’s pT reach is limited,
- All systematic uncertainties are large.
- pp reference interpolated from 2.76 TeV and 7 TeV
- Need 5 TeV pp reference!
Moreover, “disagreement” is possibly overstated:
 - ALICE’s pT reach is limited,
 - All systematic uncertainties are large.
 - pp reference interpolated from 2.76 TeV and 7 TeV
 - Need 5 TeV pp reference!
Heavy Flavor
Precise measurements of quarkonia are crucial to understand hot and cold nuclear matter and to probe de-confinement in QGP matter.

Two major effects in AA collisions:
- Thermal dissociation (breakup)
- Statistical regeneration (recombination)

However, must disentangle pA effects:
- PDF modifications in nuclei (shadowing)
- Gluon saturation
- Energy loss
- Nuclear absorption

In addition, HF can help constrain nuclear PDFs
Rapidity dependence of R_{pPb}:
- Suppression in positive-y (low-x in Pb nucleus)
- Little modification at negative-y

Described reasonably well by models:
- NLO with ESP09 shadowing
- Coherent energy loss (w/wo ESP09)
- CGC models, less well
Quarkonia

\(J/\psi - p_T \)

Rapidity dependence of \(R_{pPb} \):
- Suppression in positive-\(y \) (low-\(x \) in Pb nucleus)
- Little modification at negative-\(y \)

\(p_T \) dependence of \(R_{pPb} \):
- Suppression at low \(p_T \)

Described reasonably well by models:
- NLO with ESP09 shadowing
- Coherent energy loss (w/wo ESP09)
- CGC models, less well
Quarkonia

\(J/\psi \)

Rapidity dependence of \(R_{pPb} \):
- Suppression in positive-\(y \) (low-\(x \) in Pb nucleus)
- Little modification at negative-\(y \)

\(p_T \) dependence of \(R_{pPb} \):
- Suppression at low \(p_T \)

Described reasonably well by models:
- NLO with ESP09 shadowing
- Coherent energy loss (w/wo ESP09)
- CGC models, less well

- LHCb recently joined p-Pb activities
Rapidity dependence of R_{pPb}:
- ψ' is more suppressed than J/ψ
- Models predict similar behavior for J/ψ and ψ'
- Ratio of R_{pA} for ψ' to J/ψ similar at RHIC
 - RHIC: 200 GeV, d+Au
- Hints at final state effect?
- Unexpected since charmonia formation time larger than $c\bar{c}$ crossing time in nucleus
Quarkonia

J/ψ vs ψ'

Rapidity dependence of R_{pPb}:
- ψ' is more suppressed than J/ψ
- Models predict similar behavior for J/ψ and ψ'
- Ratio of R_{pA} for ψ' to J/ψ similar at RHIC
 - RHIC: 200 GeV, d+Au
- Hints at final state effect?
- Unexpected since charmonia formation time larger than $c\bar{c}$ crossing time in nucleus

p_T dependence of relative R_{pPb}:
- Constant, within uncertainties
Y(1S) agrees with NLO (+ nuclear modification)

- Similar to J/ψ though different PDF scale
• Y(1S) agrees with NLO (+ nuclear modification)
 • Similar to J/ψ though different PDF scale

• Y(2S) less suppressed with respect to Y(1S) in p-Pb than PbPb
• Varies with event multiplicity
• Do excited states add multiplicity (event selection bias)?
• Or does activity suppress excited states (à la Pb-Pb)?
Electroweak Bosons
Z\(^0\) Production

Z → μμ candidate in p-Pb

Why measure Z bosons in p-Pb?

- Sensitive to nuclear PDF modifications
 - but not final state effects
- Clean probe to understand p-Pb scaling properties
Why measure Z bosons in p-Pb?

- Sensitive to nuclear PDF modifications but not final state effects
- Clean probe to understand p-Pb scaling properties

- ATLAS sees ~3500 Z^{0}
- Seem to observe modification to simple pp,pn scaling
Z0 Production

CMS, ATLAS

- Sensitive to nuclear PDF modifications but not final state effects
- Clean probe to understand p-Pb scaling properties
- CMS sees \sim1600 Z0
- Better agreement with modified nucleus predictions

ATLAS sees \sim3500 Z0
- Seem to observe modification to simple pp,pn scaling
• Sensitive to nuclear PDF modifications but not final state effects
• Clean probe to understand p-Pb scaling properties
• CMS sees ~1600 Z^0
• Better agreement with modified nucleus predictions

• Forward/backward asymmetry to constrain nuclear PDFs
Z^0 Production

LHCb

- Sensitive to nuclear PDF modifications but not final state effects
- Clean probe to understand p-Pb scaling properties
- LHCb sees \(~15\) Z^0

- Forward/backward asymmetry to constrain nuclear PDFs
Z⁰ Production

centrality calibrator

- Production is expected to not be modified by any medium effects
- Scales with number of binary collisions
- Can be used to constrain centrality approaches
Z\(^0\) Production

centrality calibrator

- Production is expected to not be modified by any medium effects
- Scales with number of binary collisions
- Can be used to constrain centrality approaches

"Yesterday's sensation is today's calibration"

– M Tannenbaum
Cross section of muons from W decays
Electroweak medium-blind probes
Consistent with binary scaling expectation
W Production
$W \rightarrow \mu \nu$

Charge Asymmetry

- Showing some deviations from *unmodified* PDFs
- Modified PDFs do a better job
- Some hint of different u,d modification (not in EPS09)?
• **p-Pb** contains lots of interesting physics
 • not simply a sidecar for AA!

• Thermalized medium-like features observed for most particles at low p_T
 • Elliptic flow, radial flow, thermal fits…

• No indication of *quenching* at high p_T
 • Hadrons, jets, heavy flavor
 • However, *enhancement* at high p_T still unexplained

• Quarkonia measurements provide essential control baseline for Pb-Pb

• Electroweak bosons constrain nPDFs and centrality estimators
Coordinate System

\[\sqrt{s_{NN}} = 5.02 \text{ TeV} \]

\[|\Delta y_{\text{c.m.}}| = 0.465 \]

p-Pb
- \(p \) 4 TeV
- \(\eta_{\text{lab}} < 0 \)
- \(y > 0 \)
- \(\eta_{\text{cms}} > 0 \)

Pb-p
- \(\text{Pb} \) 1.58 ATeV
- \(\eta_{\text{lab}} > 0 \)
- \(y < 0 \)
- \(\eta_{\text{cms}} < 0 \)

The direction of the proton is always at positive \(y \equiv y_{\text{c.m.}} \) and positive \(\eta_{\text{c.m.}} \)
Color Reconnection