Soft and Hard QCD in protonnucleus collisions at the LHC

Prof. Brian A. Cole Columbia University

for the ATLAS collaboration

p-A collisions: goals

Probe nuclear PDFs ⇒ But not with precision of DIS Study saturation effects at low x Probe initial- or final-state parton interactions in nucleus. ⇒ probe factorization breaking in hard-scattering processes due to nucleus

Note: initial goals focused on hard processes ...

proton-nucleus collisions: Geometry

p+Pb collisions controlled by geometry

- Impact parameter (b)
- Or number of soft scatterings in the nucleus
 - \Rightarrow Number of participants: N_{part} = N_{coll} + 1
- Can be estimated using Glauber model
 Semi-classical, Eikonal model
 - Key parameter is nucleon-nucleon σ_{inel}

Glauber-Gribov model

Several authors have argued that the Glauber model needs correction @ high energy

 due to off-shell intermediate states
 included in Glauber-Gribov framework

 Particular Glauber-Gribov model:

 Color-fluctuation model (Strikman et al)
 Fluctuations in proton color configuration, frozen during collision, changing σ_{inel},

Model assumption:

$$P(\sigma_{\text{tot}}) = \rho\left(\frac{\sigma_{\text{tot}}}{\sigma_{\text{tot}} + \sigma_0}\right) \exp\left\{-\frac{(\sigma_{\text{tot}}/\sigma_0 - 1)^2}{\Omega^2}\right\}$$

- Ω can be estimated from p-p diffraction data: $\Rightarrow \Omega = 0.55 - 1$

Soft physics

Soft production, Npart scaling

- ~ 30 years of soft particle production phenomenology:
 - particle multiplicities in p+A, A+A collisions increase $\propto N_{part}$
 - For fixed-target h+A and d+Au at RHIC.
 - ⇒Consequence of the coherence of soft multiple scattering (time dilation)

New physics at LHC energies ⇒e.g. saturation?

from PHOBOS experiment at RHIC

p+Pb E_T measurement

p+Pb event activity/centrality

Forward (p)-backward (Pb) E_T correlation
 ⇒ backward direction more sensitive to effects of
 the proton multiple scattering in nucleus

 Clear correlation between charged particle
 multiplicity (|η| < 2.5) and E_T^{Pb} (-4.9 < η < -3.2)
 <p>– But much weaker than in Pb+Pb collisions

Centrality in Pb+Pb, p+Pb

3.2 < |η| < 4.9

Measured using forward calorimeter(s)
 ⇒In p+Pb, on Pb-going side only
 Centrality:

 percentile divisions of distributions

 \Rightarrow Smaller \rightarrow higher E_T, smaller b, more central

p+Pb Glauber (Gribov) analysis

 GG color-fluctuation model significantly broadens P(N_{part})
 ⇒changes estimated ⟨Npart⟩ vs centrality

10

ATLAS p+Pb dN/dη

Centrality dependence of dN/dη (left) and ratio to most peripheral (right)
 Rapid growth in multiplicity at all η
 Especially in the most central bin
 But, largest increase is in Pb-going direction

ATLAS p+Pb dN/dη

- Evaluate perparticipant pair multiplicity as a function of N_{part}
- Pure Glauber shows a rapid growth vs N_{part} in central collisions
- Glauber-Gribov with Ω = 0.55 compatible with N_{part} scaling
 - ⇒Cannot yet determine whether N_{part} scaling observed at lower energy persists @ LHC

Hard processes

p-A: nuclear geometry

- Starting point, nuclear nucleon density distribution: $\rho(r)$
- •Then, assuming straight-line trajectory at impact parameter b,

electron or proton passes through "thickness"

$$T(b) = \int_{-\infty}^{\infty} dz \,
ho(\sqrt{b^2+z^2})$$

T(b) has dimensions 1/L²
 T(b) x cross-section = # of something
 ⇒e.g. N_{coll} = T(b)σ_{inel}

p-A: nuclear geometry

•Then, hard processes occur in p-A collisions at a rate/event:

$${\color{black} -} E \, {d^3 n^{pA(b)} \over dp^3} = T(b) imes E \, {d^3 \sigma^{pp} \over dp^3}$$

-Assuming factorization -Neglecting nuclear PDF modifications •Measure deviation from naive expectation $\Rightarrow R_{pPb} \equiv \frac{1}{T_{Pb}} \frac{dn_{pPb}/dp_T}{d\sigma_{np}/dp_T}$

• Sometimes useful to compare central and peripheral: $\Rightarrow R_{\rm CP} = \frac{N_{\rm coll}^{\rm periph}}{N_{\rm coll}} \frac{dn/dp_{\rm T}|_{\rm cent}}{dn/dp_{\rm T}|_{periph}}$

Z production in p+Pb

Inclusive cross-sections

Combined cross-section

16

p+Pb Z yields vs centrality

p+Pb Jet production

Inclusive jet yields (left) and jet R_{pPb} (right)
 − compared to pQCD w/ EPS09 (Armesto)
 ⇒Generally good agreement.

Jet R_{CP}

Inclusive jet production agrees with pQCD

- Does the centrality dependence make sense?
- -e.g. the Z results above.

• Study R_{CP} using the full ATLAS calorimeter

 $R_{ ext{CP}} = rac{N_{ ext{coll}}^{ ext{periph}}}{N_{ ext{coll}}^{ ext{cent}}} rac{dn/dp_{ ext{T}}|_{ ext{cent}}}{dn/dp_{ ext{T}}|_{periph}}$

 @ moderate pT, midrapidity and backward
 ⇒ Results make sense
 But @ higher pT, forward
 ⇒ Strong reduction ??

19

Jet R_{pPb}

If inclusive R_{pPb} ~ 1 and R_{CP} shows such effects, necessarily
peripheral enhancement
central suppression
⇒Exactly what we observe in the R_{pPb}
⇒?!??

 This was also observed in preliminary PHENIX jet measurement.

Plot vs jet energy

• When plotted vs $E = p_T \cosh(y)$:

- -forward results fall on a single curve.
- -But not mid-rapidity or backward
 - ⇒Suggests that the forward centrality variation is due to the x_p of the parton from the proton

p+Pb jets: geometric explanation?

- Proton spatial configuration (size) depends on x of quark entering hard scattering
 - ⇒protons w/ large(r) x partons have a reduced soft cross-section

Calculation:

Alvioli, Frankfurt, Strikman arXiv:1402.2868

- Reduced cross-section for proton shifts N_{coll} distribution to smaller values
 - ⇒Suggestive, but conditional probabilities are "backwards" compared to data ...
 - ⇒Calculation analogous to data underway.

Soft physics reprise: two-particle correlations

proton-lead collisions @ LHC

 Study angular correlations between pairs of particles to look for saturation, other effects.

$$\stackrel{-}{} C_2 \equiv rac{N_{ ext{pair}}(\Delta\eta,\Delta\phi)}{N_1 \ N_2}$$

in chosen (lower) p_T bins

ATLAS 2-particle correlations

"low multiplicity"

"high multiplicity"

Study azimuthal (Δφ) and longitudinal (Δη) correlations between pairs of particles
 ⇒usual correlations in low-multiplicity events
 ⇒additional "ridge" in high-multiplicity events

ATLAS 2-particle correlations

"low multiplicity"

"high multiplicity"

 Study azimuthal (Δφ) and longitudinal (Δη) correlations between pairs of particles
 ⇒usual correlations in low-multiplicity events (jets)

ATLAS 2-particle correlations

"low multiplicity"

"high multiplicity"

Study azimuthal (Δφ) and longitudinal (Δη) correlations between pairs of particles
 ⇒usual correlations in low-multiplicity events
 ⇒additional "ridge" in high-multiplicity events

2-particle correlations, subtracted

• Use the peripheral p+Pb data to subtract uninteresting part of the correlation

⇒Result looks remarkably similar to Pb+Pb!

Explained by saturation?

 Theoretical calculations of the effects of saturation in the color glass condensate framework can reproduce the ATLAS data.
 ⇒But, alternatively, ...

Pb+Pb elliptic flow

 Elliptic flow in Pb+Pb collisions arises from strong coupling, low viscosity (η/s) of the quark-gluon plasma

- Behaves like a (nearly ideal) fluid under pressure

⇒Modulation due to asymmetric velocity boost from pressure acting in long and short directions

Higher Flow Harmonics

Major paradigm shift in the field in last 3 years

 Higher flow harmonics arising from initial-state fluctuations in transverse positions of participants

$$rac{dN}{d\phi dp_T d\eta} = rac{dN}{2\pi dp_T d\eta} \left(1 + \sum_{m{n}} 2 m{v_n} \cos\left[m{n}(\phi - m{\psi_n})
ight]
ight)$$

Frequently measured using pairs of particles

Fluctuations, Fourier amplitudes

Increasing momenta

p+Pb vn using 2013 data

Use minimum-bias + high-multiplicity trigger data

Observe significant values for v₂, v₃, v₄, even v₅

• Weakly varying with centrality (ΣE_T)

Compare p+Pb, Pb+Pb vn

Right panels adjust p+Pb p_T scale by 4/5 to account for difference in <p_T> (Teany et al)

Pb+Pb v₂ and v₄ multiplied by 0.66 to match p+Pb

Compare p+Pb and Pb+Pb

⇒Good agreement between p+Pb and Pb+Pb when including p_T and v₂, v₄ rescaling

Summary (soft)

- Analysis of centrality/geometry p+Pb collisions requires understanding Glauber-Gribov effects
 - In particular, impact of event-to-event fluctuations in the proton configuration
- Multiplicity measurements show growth in dN/dη with ΣE_T^{Pb} over the full η range
 - But much faster at backward (Pb-going)
- Interpretation of multiplicity vs N_{part} depends on choice of geometry model
 - But Glauber-Gribov, Ω = 0.55 more consistent with previous measurements.
 - Important to constrain description of cross-section fluctuations using p-p diffraction data

 Clear evidence for collective dynamics similar to that observed in Pb+Pb in p+Pb collisions

Summary (2)

- Inclusive Z cross-section shows ~ 20% excess relative to pQCD (not including NPDF)
- Z/N_{chg} ratio vs centrality makes sense
 - For all geometric models
- Inclusive jet R_{pPb} shows little/no nuclear effect

 consistent with pQCD + EPS09.
- Centrality-dependent R_{CP}, R_{pPb} shows strong reduction in jet yield in central collisions
 - -At high pT, more forward rapidities
 - -variation scales with jet energy
- Suggestion that observed behavior can result from correlation between proton configuration and x_p

 \Rightarrow Probing the structure of the proton not nucleus?

p+Pb charged particle R_{pPb}

Puzzle from the Hard Probes 2013 conference:

- CMS observes unexpected enhancement in highpT charged particle yield in p+Pb relative to p+p
- Recently submitted paper from ALICE shows no such effect (over narrower p_T) range
- Preliminary result from ATLAS at QM2014 shows an enhancement similar to result from CMS
 - ⇒Experimental disagreement? Explanation?

p+Pb charged particle R_{pPb}

• Enhanced R_{pPb} seen in all centrality bins.

R_{CP} (integrated over y*) shows similar features as the jet R_{CP}

p+Pb charged particle R_{pPb}

p-p charged particle cross-section measured at 2.76 TeV, 7 TeV, interpolated to 5.02 TeV – Three different interpolation methods tested
R_{pPb} measured using PYTHIA baseline shows same result obtained with interpolated p-p.

Charged particle Rppb

Good agreement on (almost) minimum-bias charged particle RpPb ⇒Beware differences in event selection

p+Pb 2-particle correlations

 Good statistical precision on development of the ridge(s) out to high event multiplicities

Peripheral subtraction

 Apply peripheral subtraction to remove recoil contribution

Charged R_{pPb}

p+Pb v1

- Observe non-zero v₁₁ in p+Pb collisions
 - Similar to Pb+Pb, changes sign with increasing pT
 - Extract v₁ using same procedure applied to Pb+Pb
 - ⇒Observe that v₁ factorizes
 - ⇒Evolution from negative v₁ below ~ 2 GeV to positive above

p+Pb R_{pPb} scaling

scaling with p_T cosh(y) less clean in R_{pPb}

 Errors larger, p-p interpolation, p+Pb y shift, ...
 ⇒but still present for both peripheral and central collisions

Pb+Pb q₂-selected 2-particle correlations

p+Pb 2-particle $\Delta \phi$ vs p_T

 Clearly see the symmetric ridges even for pT > 9 GeV!

Peripheral subtraction

Scale up the peripheral conditional yield to match more central bin in the jet peak

49

p+Pb Z spectra: centrality dependence

- Plot 1/N_{coll} dN/dy in different p+Pb centrality bins
 - Top: Glauber
 - Bottom: Glauber-Gribov CF, Ω = 0.55
 - ⇒Observe centrality dependence
 - ⇒Interpretation depends on the geometric model

Glauber-Gribov Ω = 0.55

p+Pb 2-particle v_n(рт)

Observe significant values for n = 2,3,4,5
 For n = 2,3 to 10 GeV
 ⇒ Why to such high p_T?

Event activity dependence

Compare two ways of selecting event activity
 – Yield similar results

 $\Rightarrow Weak dependence on v_2, v_3, v_4 with activity$ $\Rightarrow Ridge yield scales w/ multiplicity but not v_n$

p+Pb multi-particle correlations

hydrodynamic calculations by Bozek, Broniowski arXiv: 1304.3044

4-particle correlations using cumulants

- c₂{4} negative for global flow-like correlation
 - ⇒First demonstration of multi-particle behavior of the ridge(s)

