Measurements of heavy-flavour decay leptons with ALICE

Shingo Sakai for the ALICE collaboration, INFN-Frascati

3rd International Conference on New Frontiers in Physics
Kolympari-Crete-Chania Greece
2nd August 2014
Heavy-Flavour (HF) in pp, p-Pb & Pb-Pb

- **Heavy-flavour (charm & beauty) in pp collisions**
 - test for perturbative QCD (pQCD)
 - produced on a short timescale in hard partonic scatterings
 - reference for Pb-Pb collisions

- **Heavy-flavour in heavy-ion collisions**
 - created in initial parton-parton scattering
 - traverse and interact with the hot & dense QCD matter
 - a good probe to study the properties of the medium
 - nuclear modification factor
 - Sensitive to colour charge and mass dependence of in-medium parton energy loss
 - azimuthal anisotropy in non-central collisions
 - strong coupling, participation in the collective expansion of medium
 - energy loss at high p_T

- **Heavy-flavour in p-A collisions**
 - control measurement for heavy-ion collisions to disentangle initial from final state effects
Charm & Beauty Energy Loss

- In-medium parton energy loss
 - Radiative energy loss (Djordjevic et al. PLB 632, 81)
 - gluon bremsstrahlung
 - smaller energy loss for heavy than for light quarks
due to “dead cone” effect (Dokshitzer & Kharzeev, PLB 519 (2001) 199.)
 - energy loss depends on the colour charge and is
larger for gluons than for quarks
 - Collisional energy loss (Adil & Vitev PLB 649, 139)
 - energy loss via elastic scattering
- Experimental observable = nuclear modification factor:

\[R_{AA}(p_T) = \frac{d N_{AA}/dp_T}{\langle T_{AA} \rangle \times d\sigma_{pp}/dp_T} \]

Hierarchy in g, light quarks, c, b quark energy loss reflected into

\[E_{\text{loss}}(g) > E_{\text{loss}}(u,d,s) > E_{\text{loss}}(c) > E_{\text{loss}}(b) \rightarrow R_{AA}^{\pi} < R_{AA}^{D} < R_{AA}^{B} \]
Electron reconstruction & identification (mid-rapidity)
- ITS: track & vertex reconstruction
- TPC: tracking & PID via dE/dx
- TOF: time of flight
- TRD: transition radiation
- EMCal: energy (E/p), trigger
- background: conversion & Dalitz decay
 - estimated by two method: cocktail (MC) & invariant mass

Muon Spectrometer (-4 < η < -2.5)
- tracking and trigger of muons
- background: dominated by μ from π, K decaying upstream from the absorber
 - estimated via fast MC based on measured π & K spectra at mid-rapidity
HF -> e,μ production in pp collisions

- Heavy-flavour production (c+b, b) at mid-rapidity and forward rapidity (c+b) well described by pQCD calculations
- Reference for Pb-Pb collisions
 - due to limited statistics of pp collisions at 2.76 TeV, a pQCD-based √s-extrapolation of the cross section measured at 7 TeV is performed for HF->e & b (arXiv 1107.3243)
 - for HF->μ the pp reference is taken from the measurement at 2.76 TeV
HF production in Pb-Pb collisions

- R_{AA} of HF-e (mid-rapidity: $|y|<0.6$) & HF-μ (forward-rapidity: $2.5<y<4.0$) in most-central & mid-central collisions
 - strong suppression ($p_T>3$ GeV/c) of HFE & HFM in central collisions
 - similar suppression of HFE & HFM in different rapidity regions
- Suggest significant energy loss of c and b quarks in the medium
R$_{AA}$ of beauty decay electrons

- Charm & beauty separation is crucial to understand HF energy loss in the hot & dense QCD matter
- Beauty-decay electrons in Pb-Pb via impact parameter measurement
 - $c\tau \sim 500\mu$m for B hadron
- A hint of beauty suppression in central collisions (0-20%)
v_2 of HF->e and HF->μ

\[dN/d(\varphi-\psi_{RP}) = N_0 \{1 + \ldots + 2v_2 \cos(2(\varphi-\psi_{RP})) + \ldots \} \]

- Positive v_2 measured
 - 3σ effect in $2<p_T<3$ GeV/c in 20-40% centrality class
- Measurement indicates centrality dependence of strength of v_2
 - Increase of v_2 from central (0-10%) to mid-central (20-40%) collisions
- v_2 of HF->e at mid-rapidity and HF->μ at forward-rapidity compatible within uncertainties
 - No significant rapidity dependence
- Suggests that charm quarks take part in the collective expansion in medium
Comparison with models

- Theoretical calculations predict strong suppression of HF->e yield at high p_T in Pb-Pb collisions
- Significantly different strength of HF->e v_2 in models especially at low p_T
- Simultaneous description of R_{AA} and v_2 constraints models
Heavy-flavour in p-A collisions
- control measurement for heavy-ion collisions to disentangle initial (cold nuclear matter effects) from final state effects

Cold nuclear matter effects
- nuclear modification of Parton distribution Functions (PDF): shadowing or gluon saturation
 - K.J. Eskola et al., JHEP 0904(2009)65
 - H. Fuji & K. Watanabe, NPA 915 (2013) 1
- energy loss
 - I. Vitev et al., PRC 75(2007) 064906
- k_T broadening
- multiple collisions
 - A.M. Glenn et al., PLB 644(2007)119
HF production in p-Pb collisions at mid-rapidity

- R_{pPb} of HF-\rightarrowe and b-\rightarrowe are consistent with unity within uncertainties
- Suppression of HF-\rightarrowe & b-\rightarrowe ($R_{AA}<1$) in Pb-Pb collisions is due to interaction with the hot and dense medium
HF production in p-Pb collisions at forward rapidity

- $R_{p\text{Pb}}$ of HF-μ at forward ($2.5<y_{\text{CMS}}<3.54$) and backward ($-4<y_{\text{CMS}}<-2.96$) rapidity
 - forward (proton going): consistent with unity
 - backward (Pb going): consistent with unity, however, slightly larger 1 for $p_T<4$ GeV/c

- Strong suppression of HF-μ in Pb-Pb collisions is due to interaction with the hot and dense medium
Comparison with models in p-Pb collisions

- Comparison with MNR pQCD calculations for heavy-flavour production with EPS09 parametrization of shadowing
 - EPS09: JHEP 0904 (2009) 065
 - calculations in agreement with data (HF->e & HF->µ) within uncertainties in different rapidity regions
 - seems to under-predict \(R_{pPb} \) of HF->µ at low \(p_T \)

\[R_{pPb} \text{ vs. } p_T (GeV/c) \]

\(p_{Pb} s_{NN} = 5.02 \text{ TeV, } \mu^\pm \rightarrow c,b \) decays

2.5<\(y_{\text{cms}} <3.54 \)

\(R_{pPb} \text{ vs. } p_T (GeV/c) \]

\(p_{Pb} s_{NN} = 5.02 \text{ TeV, } \mu^\pm \rightarrow c,b \) decays

-4<\(y_{\text{cms}} <2.96 \)
Azimuthal correlations of HF->e - hadron in p-Pb collisions (I)

- Azimuthal correlation between HF->e and hadrons
 - trigger particle: heavy flavour decay electrons
 - clear correlation on near & away side: jet like structure
- Enhancement in high (0-20%) w.r.t. low-multiplicity (60-100%) collisions
Azimuthal correlations of HF->e - hadron in p-Pb collisions (2)

- Subtract low mult. correlations from high mult. to remove jet contributions
- Observed long-range ridge structures on the near-side and away-side in heavy-flavour production in p-Pb collisions
 - similar structure observed hadron-hadron correlations: PLB 719(2013)29-41 [ALICE]
- Possible origins:
 - Color Glass Condensate (CGC) in the initial state
 - collective (hydrodynamic) expansion in the final state
Summary

- **Heavy-flavour production in pp collisions**
 - pQCD calculations describe data within uncertainties

- **Heavy-flavour production in Pb-Pb collisions**
 - Strong suppression of heavy-flavour yield at high p_T
 - clear indication for substantial energy loss of heavy-flavour in the hot and dense medium
 - Non-zero v_2 in low p_T
 - suggests that charm quarks take part in the collective expansion of the medium

- **Heavy-flavour production in p-Pb collisions**
 - R_{ppb} is consistent with unity
 - confirms that the suppression observed in Pb-Pb is due to interactions with the hot and dense medium
 - Long-range ridge structures
 - the mechanisms (CGC or hydro) proposed for light-hadron correlations affect also HF

- Heavy flavours observed to be significantly affected by hot and dense QCD medium (energy loss and v_2)

- Constraining the models with our data and learn mechanism of HF productions
Heavy flavour study via electrons

- **Signal Electrons:**
 - From semileptonic decay of charm & beauty hadrons

- **Background Electrons:**
 - From photon conversions
 - From Dalitz decays of neutral mesons
 - From quarkonia decays

- **Background subtraction**
 - **Cocktail method**
 - Background calculated using measured hadron production cross section
 - **Invariant mass method – electrons from ‘photonic’ sources**
 - Reconstruction of electron pairs from the decays of neutral mesons & photon conversions

 - **Heavy Flavour decay Electrons (HFE) dN/dp_T obtained via subtraction of the background from the inclusive electron spectrum**

<table>
<thead>
<tr>
<th>Branching Ratios:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c \rightarrow e + X$</td>
</tr>
<tr>
<td>$b \rightarrow e + X$</td>
</tr>
<tr>
<td>$b \rightarrow c \rightarrow e + X$</td>
</tr>
</tbody>
</table>
Beauty decay electron separation
- Impact parameter method

- Separation based on displacement from primary vertex
 - Preferential selection via their large impact parameter (d_0)
 - $c\tau \sim 500\mu m$ for B hadron
 - $|d_0|>250\mu m$ ($p_T \sim 2.5$ GeV/c) (p_T dependent cut)
 - ITS ; impact parameter resolution $< 75 \mu m$ for $p_T > 1$ GeV/c

- Remaining backgrounds estimated based on measured π^0, η & D

- use in pp & p-Pb analysis
Azimuthal anisotropy

- Elliptic flow
- Transfer initial spatial anisotropy to momentum anisotropy
 - macroscopic: hydro model
 => pressure gradient
 - microscopic
 => scattering in the medium
- At low p_T, heavy flavour v_2 gives information about the coupling of heavy quarks with the medium and possibly their thermalization in the medium
- Path-length dependence of energy loss at high p_T

\[
dN/d(\varphi-\psi_{RP}) = N_0\{1+\ldots+2v_2\cos(2(\varphi-\psi_{RP})) +\ldots\}
\]
Azimuthal anisotropy of electrons

- Elliptic flow (v_2); $dN/d(\phi-\psi) = N (1 + 2v_2^{\text{obs}} \cos(2(\phi-\psi_{\text{EP}})))$
- Event plane determined with the VZERO detectors ($2.8<\eta<5.1$, $-3.7<\eta<-1.7$)
- HFE v_2 obtained by subtraction of the background electron v_2:

$$v_2^{\text{HFE}} = \frac{(1 + R) v_2^{\text{inclusive}} - v_2^{\text{background}}}{R}, \quad R = \frac{N_{\text{HFE}}}{N_{\text{background}}}$$
\(R_{pPb} \) of HF->e

- Compatible with unity within uncertainties
- Similar behaviour observed at PHENIX for d-Au at \(\sqrt{s_{NN}} = 0.2 \) TeV