High-p_T probes of excited nuclear medium in the LHC era

Jan Rak

3rd International Conference on New Frontiers in Physics
28 July 2014 to 6 August 2014
Large Hadron Collider (LHC) CERN

LHC RUN I 2010-2013

\begin{align*}
p + p & \quad \sqrt{s} = 0.9, \ 2.76, \ 7.0, \ 8.0 \text{ TeV} \\
p + Pb & \quad \sqrt{s_{NN}} = 5.02 \text{ TeV} \\
Pb + Pb & \quad \sqrt{s_{NN}} = 2.76 \text{ TeV}
\end{align*}

- Circular tunnel 27 km in circumference (old LEP). 25 ns bunch spacing \(\Rightarrow \) 2835 bunches with \(10^{11} \) p/bunch
- Design Luminosity: \(10^{34} \text{ cm}^{-2}\text{s}^{-1} \Rightarrow 100 \text{ fb}^{-1}/\text{year} \), Stored energy/beam: 350 MJ, \(\sqrt{s} \) up to 14 TeV
1st Rutherford scattering

High transverse momentum physics always played an important role when probing the structure of matter.

High-\(p_T\) actually invented in 1906 by Sir Rutherford. He studied the scattering of \(\alpha\) and \(\beta\) radiation on thin sheet of mica \textit{[Phil. Mag. 12, 134 (1906)]} and observed a rare but violent scattering of \(\alpha\) particles.

Rutherford remarked about this observation:

\textit{“It was as if one had fired a large naval shell at a piece of tissue paper and it had bounced back.”}

\textbullet\textsuperscript{\textup{Nuclear Physics.}}

\[
\left(\frac{d\sigma}{d\Omega} \right)_{\text{Rutherford}} = \frac{\alpha^2}{4E^2 \sin^4 \left(\frac{\theta}{2} \right)}
\]

Note power \(n = 4\)
Limited transverse momentum

1971 CERN Intersecting Storage Rings (ISR), $\sqrt{s} \sim 20-60$ GeV

p_T pseudorapidity η

Soft particle production - “longitudinal phase space” – dominant effect when increasing \sqrt{s}.

“Simple expressions for the fluxes of secondaries produced by protons colliding either with another proton beam (ISR) or with a proton at rest are derived using the general empirical properties of strong interactions."

$$\frac{df (p_T)}{dp_T} = \frac{p_T}{b^2} e^{-p_T/b} \quad \text{with} \quad b \sim 1/6 \quad \langle p_T \rangle = 2b \approx 0.33 \text{ GeV/c}$$
Early ISR era

The mean transverse momentum as a function of \sqrt{s} scales.

\[\langle p_T \rangle \text{ GeV/c} \]

\[\sqrt{s} \text{ GeV} \]

The independency of $\langle p_T \rangle$ on \sqrt{s} indicates the fundamental scale in the problem $\frac{\hbar c}{\langle p_T \rangle} \approx 0.6 \text{ fm}$, proton transverse size \Rightarrow

Landau: Hydrodynamical Model of Particle production

For an overview see: Phys.Rev., 1973, D8, 859-874
Why there were some people were studying “high-p_T” physics in the 1960’s?

They were looking for a ‘left handed’ intermediate boson W^\pm, the proposed carrier of the weak interaction [T. D. Lee and C.-N. Yang, PRL. 4, 307 (1960)]

The W^\pm would be visible above the background as a peak at lepton transverse momentum

$$p_T^e \geq \frac{1}{2} M_W$$

Cocconi: $$\frac{dN}{dp_T} \approx e^{-p_T/b}$$

In the mean time: discovery of DIS at SLAC

Stanford Linear Accelerator Center (SLAC)
electron beams up to 20 GeV.

First results in 1968 – discovery of DIS.

- Around \(q^2 \sim 1 \text{ GeV}/c \) elastic and inelastic
cross sections are about equal.

- Above \(q^2 \sim 1 \text{ GeV}/c \) \(\sigma_{el} \) drops
significantly whereas \(\sigma_{inel} \) remains
approx const.

1) Mott, helicity cons.

\[
\left(\frac{d\sigma}{dQ^2} \right)_{\text{Mott}} = \frac{4\pi\alpha^2}{Q^4} \cos^2 \frac{\theta}{2}
\]

2) Inelastic, spin-\(\frac{1}{2} \), recoil \(E'/E \) and magnetic term

\[
\frac{d^2\sigma}{dQ^2d\nu} = \frac{4\pi\alpha^2}{Q^4} \frac{E'}{E} \left[W_2 \cos^2(\theta/2) + 2W_1 \sin^2(\theta/2) \right]
\]

2nd : Discovery of Hard Scattering in p+p collisions

At the same time:
CERN-ISR breaking of $e^{-6 p_T}$

Discovery of high-p_T production in p-p
 - Due to the point-like constituent (parton).
 - No scale (point-like) \rightarrow conformal theory
 - Beginning of scaling era \rightarrow QCD

\[\text{Rutherford scatt.} \]

\[\text{Power law:} \quad \frac{dN}{dp_T} \approx p_T^{-n} \]

\[\text{Cocconi:} \quad \frac{dN}{dp_T} \approx e^{-p_T/b} \]

8/4/14
Birth of QCD

There were 4 key experimental observations that made the composite theory of hadrons believable

1. discovery of point-like constituents in DIS
2. complementary discovery of dilepton production in p+A collisions
 Drell-Yan annihilation \(q + \bar{q} \rightarrow \mu^+ + \mu^- \)
3. observation of enhanced particle production at large \(p_T \) in p-p collisions at ISR in experiments searching for single \(e^\pm \) from the \(W^\pm \) decays.
4. the observation of the \(J/\psi \) at BNL-AGS and SLAC.

These discoveries turned Gell-Mann and Zweig’s quarks from mere mathematical concepts to the fundamental constituents of matter \(\Rightarrow \) QCD.

High-\(p_T \) sector \(\Rightarrow \) pQCD
$p + p \rightarrow a + X$ kinematics is completely fixed by the two dimensional quantities s and p_T and two angles ϕ and ϑ.

Dims of the invariant xsection

$[\sigma] = \text{GeV}^{-2}$ and $E \frac{d^3 \sigma}{d^3 p} = \text{GeV}^{-4}$

Any combination of p_T, s or x_T preserving dimensions yields

$$E \frac{d^3 \sigma}{d^3 p} = \frac{p_T^4}{s^4} g(x_T, \vartheta) = \frac{p_T^4}{256} \frac{x_T^8}{p_T^8} g(x_T, \vartheta) = \frac{1}{p_T^4} g(x_T, \vartheta)$$

Conformal limit $E \frac{d^3 \sigma}{d^3 p} \propto \frac{1}{p_T^4}$ or $\frac{1}{\sqrt{s}} g(x_T, \vartheta)$

LO QED-like vector boson exchange (glue, γ) ⇒ power low p_T^{-n} with $n = 4$

$g(x_T, \vartheta)$ universal \sqrt{s} independent function

$x_T \equiv 2p_T / \sqrt{s}$ rel. p_T wrt. beam mom $\sqrt{s} / 2$

However

- Running $\alpha(Q^2)$
- PDF and FF scaling violation
- k_T smearing and higher-twist phenom.

$n^{++} \rightarrow n \left(x_T, \sqrt{s} \right)$
Relativistic Heavy Ion Collider

RHIC – first Heavy Ion Collider
Brookhaven Nat. Lab

$\sqrt{s} = 500 \text{ GeV}$ p-p polarized

$\sqrt{s_{NN}} = 200 \text{ GeV}$ Au=Au

Low $p_T \sim e^{-a \cdot p_T}$ $a = 5.56 \pm 0.02 \text{ (GeV/c)}^{-1}$

High $p_T \sim p^{-n_T}$ $n = 8.10 \pm 0.05$ at $p_T > 4 \text{ GeV/c}$

Better than 30% agreement to NLO

PHENIX; Phys. Rev., 2007, C76, 034904
Inclusive charged distributions (INEL)

\[n = 6.63 \pm 0.12 \pm 0.01 \]

Power low fit (3-10 GeV/c):

\[\frac{1}{N_{\text{evt}}} \frac{1}{(2\pi p_T)} \left(\frac{d^2N_{\text{ch}}}{d\eta dp_T} \right) (\text{GeV/c})^2 \]

Phys. Lett., 2010, B693, 53-68

ALICE
High-p_T region $\rightarrow x_T$ scaling

No scale $E \frac{d^3 \sigma}{d^3 p} \propto \frac{1}{\sqrt{s}^{n++}} g(x_T)$

The ratio of $E \frac{d^3 \sigma}{d^3 p}$ at two different $\sqrt{s_1}$ and $\sqrt{s_2}$

$g(x_T)$ cancels out

$$\left(\frac{\sqrt{s_1}}{\sqrt{s_2}} \right)^n (x_T, \sqrt{s}) = \frac{E \frac{d^3 \sigma}{d^3 p}(x_T, \sqrt{s_2})}{E \frac{d^3 \sigma}{d^3 p}(x_T, \sqrt{s_1})} \Rightarrow$$

$$\Rightarrow n_{\text{eff}}(x_T) = -\frac{\ln\left(d\sigma^{\text{inv}}(x_T, \sqrt{s_1}) / d\sigma^{\text{inv}}(x_T, \sqrt{s_2}) \right)}{\ln(\sqrt{s_1} / \sqrt{s_2})}$$

Prediction Arleo, Brodsky et. al. based on higher-twist dynamics. No room to discuss.

Nucl. Phys., 2011, A855, 461-464
$E \frac{d^3 \sigma}{d^3 p} \propto \frac{1}{\sqrt{s}} g(\frac{2p_T}{\sqrt{s}})$

$n = 4.9$ almost at conformal limit

"universal" $g(x_T)$

$g(x_T, \theta)$ scaled empirically $(\sqrt{s})^{4.9}$

Scaling holds in $\sqrt{s} = 0.2-7$ TeV!

Factor of 2 deviation from NLO

JHEP, 2011, 1108, 086
NLO doesn’t work at LHC?

\[\pi^0 @ \sqrt{s} = 7 \text{ TeV} \]

\[\pi^0 @ \sqrt{s} = 0.9 \text{ TeV} \]

\[\eta @ \sqrt{s} = 7 \text{ TeV} \]

Identified particles even worse. NLO discrepancies factor >3!
RHIC better then 30%!
NLO doesn’t work at LHC?

Suspect: too-hard gluon-to-hadron FFs as the probable source of the problem,

Justify the need to refit the FFs using the available LHC and Tevatron data in a region of transverse momenta, $p_T > 10$ GeV/c,
Unitarity in pQCD

pQCD (mini)jet production x-section is larger than total inelastic p-p x-section for $p_{T_{\text{min}}} \sim 5-7$ GeV at the LHC!

DGLAP PDF evolution

Possible solutions:

– Multi Parton Interaction
– Saturation - Color Glass Condensate – Larry MCLERRAN Thursday July 31st

$\sigma_{\text{hard}} > \sigma_{\text{inel}}$ at $p_T \sim 5-7$ GeV

[H. Jung et al, arXiv:1209.6265]
high-p_T spectrum components in p-p

High-p_T (hard) region
- Power law exponent at LHC h^\pm
 - almost at the conformal limit $n=4.9$
- Old good x_T scaling holds.
- pQCD NLO seems to have more difficulties with increasing \sqrt{s}?
- And violates the unitarity.

Low-p_T (soft) region
- Exponential $\sim \exp(-6p_T)$ holds not only in p-p but in DIS or e^+e^- annihilation.
- Origin remains mysterious.

Maybe due to the: “effective event horizon introduced by the confining string, in analogy to the Hawking-Unruh effect”

[Kharzeev at. al. arXiv:1407.4087]
Relativistic Heavy Ion Collisions

- Two discoveries based on the analysis of the high-p_T tail already discussed.
- The next discovery came from the analysis of the high-p_T yield in A-A collisions.

\[R_{AA}(p_T) = \frac{d^2N^{AA}}{dp_Td\eta} \langle N_{binary} \rangle d^2N^{pp} / dp_Td\eta \]
RHIC $\sqrt{s} = 200 \, \pi^0$ and $h^+ + h^-$ data

1. Strong suppression (x5) in central Au+Au coll.
2. No suppression in peripheral Au+Au coll.
3. No suppression (Cronin enhancement) in control d+Au exp.

Convincing evidence for the deconfined nuclear matter
The question at RHIC: is the $R_{AA}(p_T)$ const or rising with p_T?

The question at LHC: does $R_{AA}(p_T)$ grow saturates or turn down?
Dipole picture

Let me pick one:
And see Boris’s talk on Saturday Aug. 2nd

• Dipole survives even in a dense medium due to color transparency.
• However the dipole is expanding enhancing attenuation. At higher \(p_T \) expansion is Lorentz-delayed so transparency must rise with \(p_T \).
• According this picture the \(R_{AA} \) rises due to the color transparency.

Vacuum + induced energy loss

Solid lines includes an initial state interactions in nuclear collisions.

\[R_{AA} \text{ rises due to the color transparency.} \]
39 to 2760 GeV from RHIC to LHC!

PhD of N. Novitzky.

R_{AA} compared to
- pQCD MC
- GLV model
- Dipole model

Quantum Coherence in action?
Summary

High-\(p_T\) in proton-proton collisions

– Conformal limit \(n=4\) almost reached in \(h^\pm\) production at LHC.
– NLO pQCD has increasing difficulties with rising \(\sqrt{s}\).
– pQCD unitarity violation waiting for satisfactory resolution.

High-\(p_T\) in Heavy Ion collisions

– Deconfined nuclear medium clearly seen in the jet suppression.
– The features of \(R_{AA}\) at high-\(p_T\) very interesting program for LHC run-2.
– Color transparency and coherence in action?
backups
Large Transverse Momentum – Hard scattering

“Hard” means large momentum transfer, either

– a violent scatter or
– creation of a system of large mass

Hard scattering

– Exchange of colors
– Interaction of point-like constituents (q or g)

\[M_{\text{inv}} = \sqrt{x_1 x_2 \sqrt{s}} \]

HS probes the virtual field
In 1971 the CERN Intersecting Storage Rings (ISR), being the first hadron-hadron collider, became operational. With $\sqrt{s} \sim 20$–60 GeV it was supposed to be a “next generation” as compared to the fixed target machine at Fermilab.
The physics aims of the LHC project are:

- to discover crucial missing elements of the Standard Model, namely the Higgs boson,
- search for possible new fundamental interactions,
- search for possible generations of quarks or leptons,
- search for particles responsible for the Dark Matter in the Universe
- explore the Quantum ChromoDynamics phases of matter in the Ultra-Relativistic Heavy Ion Collision (URHIC).

\[
p + p \quad \sqrt{s} = 0.9, \ 2.76, \ 7.0, \ 8.0 \text{ TeV} \\
p + Pb \quad \sqrt{s_{NN}} = 5.02 \text{ TeV} \\
Pb + Pb \quad \sqrt{s_{NN}} = 2.76 \text{ TeV}
\]

- Circular tunnel 27 km in circumference (old LEP). 25 ns bunch spacing ⇒ 2835 bunches with \(10^{11}\) p/bunch
- Design Luminosity: \(10^{34}\text{cm}^{-2}\text{s}^{-1}\) ⇒ 100 fb\(^{-1}\)/year, Stored energy/beam: 350 MJ, \(\sqrt{s}\) up to 14 TeV