Search for exotics in the rare decay $B \to J/\psi K K K$ @ BABAR

Elisabetta Precence, Forschungszentrum Jülich GmbH, Germany, for the Babar Collaboration

Motivation

Three body decay
Cabibbo and color suppressed
Predicted $B^+ \to J/\psi K^+$

Possibility to proceed as quasi 2-body decay

Transition $B \to \psi(2S)$ promising place to search for $\psi(2S)$ exotic states

If any $\psi(2S)$ exists, it is expected below 4.3 GeV/c^2 (2D threshold)

Analysis strategy @ BABAR

- e^+e^- collider, 424 fb^-1 integrated lumi., run @ $E_{cm} = 10.56$ GeV
- J/ψ mass constraint, reconstructed to e^+e^- and $\mu^+\mu^-$
- K^+ reconstructed to $K^0 K^+$ in $[1.004;1.034]$ GeV/c^2
- ϕ, reconstructed to $\pi^+\pi^-$ in $[0.485;0.515]$ GeV/c, no PID
- 860 000 generated MC events, EVGens, PHSP model:
- MC simulations used to validate the fit procedure
- ϕ and J/ψ are 2 vectors, then can be polarized. MC simulations for 2 extreme cases are generated (100% transv- and long-polarized) to evaluate effects on the efficiency change

Kinematic variables:

- $m_{bc} = \sqrt{E^2_{beam} - p^2_{beam}}$
- $\Delta E = E^*_{beam} - \sqrt{s}$

Goals of this analysis

- Measure the Branching Fraction (BF) of:
 - $B^+ \to J/\psi K K^+$ in all $K K^+$ range available, [0.98, 1.69] GeV/c^2
 - $B^+ \to J/\psi K K^+$ in all $K K^+$ range available, [0.98, 1.69] GeV/c^2
 - $B^+ \to J/\psi K'$ in the $K K'$ range [1.004;1.034] GeV/c^2, where ϕ lies
 - $B^+ \to J/\psi K$ in the $K K$ range [1.004;1.034] GeV/c^2, where ϕ lies

- Search for $B^+ \to J/\psi K'$: no signal expected $bd \to \psi(2S)$ with rescattering of ϕ into $\psi(2S)$

- Search for resonant states in the invariant mass distributions:
 $J/\psi KK$, $J/\psi K K^+$ (charged and neutral B channels)

Unbinned maximum likelihood m_{bc} fit
Best B candidate with ΔE minimum, $|\Delta E| = 30$ Mev for B^+, $|\Delta E| = 25$ MeV for B^0

Observation of:

- $B^+ \to J/\psi K K'$, $B^+ \to J/\psi K K^+$, $B^0 \to J/\psi \phi K^0$, $B^0 \to J/\psi \phi K^0$

Significance >5s for all these decay modes

Approach followed for searching new resonances in J/ψ, $J/\psi K$, $K K K$

- Mass resolution at J/ψ mass threshold: 2 MeV/c^2
- Additional selection cut $m_{bc}>527$: signal box, small background.
- Purity of B^+ sample: 89.2%; purity of B^0 sample: 82.0%
- Efficiency study in all inv mass range: loss of efficiency at the threshold, due to the very low momentum kaons
- Fit function: sum of 2 incoherent Breit-Wigner (BW) functions + PHSP.
- The fit function is weighted by 2D-efficiency map from the MC
- PHSP Dalitz plots. We fit the Dalitz projections: mass and width fixed
- No main structure observed: in J/ψ inv mass enhancements <2σ
- χ^2 of the fit is better when adding 2 BWs to PHSP.

Complicated decay dynamics in the system of J/ψ due to the presence of 2 vectors.

We would need a full Dalitz plot analysis and more statistics for best understanding

Results

- m_{bc} distribution

Channel Fit $x(4140)$ $x(4270)$ fit

<table>
<thead>
<tr>
<th>Channel</th>
<th>B^+</th>
<th>B^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^+ \to J/\psi K K^+$</td>
<td>$x(4140)$</td>
<td>$x(4270)$</td>
</tr>
<tr>
<td>$B^+ \to J/\psi K K^+$</td>
<td>$x(4140)$</td>
<td>$x(4270)$</td>
</tr>
<tr>
<td>$B^0 \to J/\psi K K^+$</td>
<td>$x(4140)$</td>
<td>$x(4270)$</td>
</tr>
</tbody>
</table>

Conclusions

- New BF measurements performed for the first time
- K^+ non-resonant contribution to $B^0 \to J/\psi K K^+$
- UL at 90% c.l for $B^+ \to J/\psi K K^+$
- UL for the existence of the $X(4140)$ and the $X(4270)$

[1] previously addressed at JGU University of Mainz, DE