Highlights from Super-Kamiokande

S. Moriyama
ICRR, University of Tokyo
2014/8/2
ICNFP 2014 @ Crete, Greece
Super-Kamiokande detector

50,000ton water Cherenkov detector (22.5 kton fiducial mass)

11,129 20” PMTs for inner detector

1885 8” PMTs for outer detector

1000m underground
(2700 m water equivalent)

<table>
<thead>
<tr>
<th>Year</th>
<th>SK-I</th>
<th>SK-II</th>
<th>SK-III</th>
<th>SK-IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Original configuration

half # of ID PMTs

Full recovery of ID PMTs

Electronics/DAQ upgraded
Physics at Super-K

- Neutrino Physics
 - Massive neutrinos beyond the SM
 - Δm^{2}_{ij} & θ_{ij} measured/acc. improved
 - $\text{MH, } \theta_{23} \text{ oct. (}\gtrsim \pi/2\text{), and } \mathcal{CP} \text{ (atm. } \nu\text{)}$
 - Matter effects (solar ν)
 - τ appearance
 - sterile, exotics...

- Search for proton decay
 - General prediction of GUT

- Astrophysical objects
 - Supernova physics
 - Dark matter annihilation

\[P(\nu_a \rightarrow \nu_b) \neq P(\bar{\nu}_a \rightarrow \bar{\nu}_b) \]
\[\mathcal{CP} \text{ phase } \delta \neq 0, \pi \]
Atmospheric neutrinos:
π, K decay \rightarrow\text{nuclear interactions}

Wide range of L and E enables us to study neutrino oscillations.
Mass hierarchy, $\theta_{23} \geq \pi/2$, and CP

- MH: utilize resonance effect in $\nu_\mu \leftrightarrow \nu_e$ (driven by θ_{13})
 - presence of e^- (no e^+) in the Earth: $V = \pm \sqrt{2}G_F n_e \pm(\cdot)$ for $\nu_e(\bar{\nu}_e)$

$$i \partial_x \Psi(x) = \frac{\Delta m^2}{4E} \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{pmatrix} \Psi(x) + \begin{pmatrix} \frac{V}{2} & 0 \\ 0 & -\frac{V}{2} \end{pmatrix} \Psi(x) = \frac{\Delta M^2}{4E} \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{pmatrix} \Psi(x)$$

- ν_e ($\bar{\nu}_e$) undergoes resonance only for normal (inverted) hierarchy @2-10GeV

- θ_{23} octant: Strength of the resonance

$$P(\nu_\mu \leftrightarrow \nu_e) = \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 \left(\frac{1.27 \Delta m^2_{12} L}{E} \right).$$

- CP violation: interference term btw Δm^2_{12} & Δm^2_{23}

$$\frac{\Phi(\nu_e)}{\Phi_0(\nu_e)} - 1 \approx P_2 \cdot (r \cdot \cos^2 \theta_{23} - 1) - r \cdot \sin \tilde{\theta}_{13} \cdot \cos^2 \tilde{\theta}_{13} \cdot \sin 2\theta_{23} \cdot (\cos \delta \cdot R_2 - \sin \delta \cdot I_2) + 2 \sin^2 \tilde{\theta}_{13} \cdot (r \cdot \sin^2 \theta_{23} - 1)$$
The size of the resonance effect is sensitive to $\sin^2\theta_{23}$ and MH. Broad range of data useful for MH. 1d figures are the ratio to 2 flavor oscillation.
Signatures in the three flavor oscillation

downward ~1000km

\[P(\nu_\mu \rightarrow \nu_\mu) \]

upward ~10000km

\[P(\nu_\mu \rightarrow \nu_e) \]

assuming normal MH

effect of CPV

The low energy electron events (between \(\Delta m^2_{12} \) & \(\Delta m^2_{23} \)) are affected by CP violation phase.

1d figures are the ratio to 2 flavor oscillation.
Data set and recent improvements

- 1775 days of SK-IV, in total, 4581.4 days, ~40,000 ev
- $\nu_e/\bar{\nu}_e$ enriched samples to enhance MH sensitivity.
 - ν_e CC produces more $\pi^+ \rightarrow$ more μ decays, etc.

<table>
<thead>
<tr>
<th></th>
<th>ν_e CC</th>
<th>anti-ν_e CC</th>
<th>others</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-GeV 1 ring ν_e like</td>
<td>60%</td>
<td>10%</td>
<td>30%</td>
<td>100%</td>
</tr>
<tr>
<td>Multi-GeV 1 ring anti-ν_e like</td>
<td>57%</td>
<td>34%</td>
<td>9%</td>
<td>100%</td>
</tr>
</tbody>
</table>

- “Multi-ring others” which fails both μ/e selection added.
- Treatment of systematic errors improved.
Fixed θ_{13}, results with SK only

- Normal hierarchy slightly favored at $\chi^2_{\text{IH}} - \chi^2_{\text{NH}} = 0.9$
- $\theta_{23} > \pi/2$ slightly ($\sim 1\sigma$ level) preferred.
- Driven by excess of up-going e-like events consistent with the effects of θ_{13}.
- $\delta_{CP} \sim 3\pi/2$ is slightly preferred by excess in Multi-Ring e-like $\overline{\nu}_e$ and deficit in Multi-GeV 1R μ-like. Consistent with sensitivity.
Including the external T2K result

• T2K’s published constraints on $\Delta m^2_{23}/\theta_{23}$ could enhance mass hierarchy determination power.
 – Matter effect for T2K is small since baseline \sim295km.

• Preference of NH is strengthened: $\chi^2_{IH} - \chi^2_{NH} = 1.2$

• T2K favors $\theta_{23} = \pi/2 + \epsilon$ because of max. red. of ν_μ obs.

• Preference of $\delta_{CP} \sim 3\pi/2$ strengthened, but CP conservation ($\delta_{CP} = 0$ and π) is still allowed at 90% C.L.
Solar ν observation by ν+e scattering:
Motivation of the measurement

See the clear evidence that the neutrino flavor conversion is indeed due to neutrino oscillations.

Spectrum distortion

Vacuum oscillation dominant
Matter oscillation dominant
Solar best fit
Super-K

Super-K can search for the spectrum “upturn” expected by neutrino oscillation MSW effect

Day-Night flux asymmetry

Expected

Regenerate ν_e by earth matter effect

Solar ν observation by ν+e scattering:
Solar best fit

MoWvaWon	
 of	
 the	
 measurement

See the clear evidence that the neutrino flavor conversion is indeed due to neutrino oscillations.
D/N effect as a direct confirmation of matter effect on neutrino oscillations

PRL 112, 091805 (2014) uses 1306d data: this results uses 1669d data.
D/N effect as a direct confirmation of matter effect on neutrino oscillations

PRL 112, 091805 (2014) uses 1306d data; this results uses 1669d data.
Day/night differences

Expected time variation as a func. of $\cos \theta_z$

<table>
<thead>
<tr>
<th>Energy (MeV)</th>
<th>Amplitude fit</th>
<th>Straight calc. $(D-N)/((D+N)/2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Δm^2_{21}</td>
<td>Δm^2_{21} = 7.50x10^{-5} eV²</td>
</tr>
<tr>
<td>SK-I</td>
<td>-2.0±1.8±1.0%</td>
<td>-1.9±1.7±1.0%</td>
</tr>
<tr>
<td>SK-II</td>
<td>-4.4±3.8±1.0%</td>
<td>-4.4±3.6±1.0%</td>
</tr>
<tr>
<td>SK-III</td>
<td>-4.2±2.7±0.7%</td>
<td>-3.8±2.6±0.7%</td>
</tr>
<tr>
<td>SK-IV</td>
<td>-3.6±1.6±0.6%</td>
<td>-3.3±1.5±0.6%</td>
</tr>
<tr>
<td>combined</td>
<td>-3.3±1.0±0.5%</td>
<td>-3.1±1.0±0.5%</td>
</tr>
<tr>
<td>non-zero significance</td>
<td>3.0σ</td>
<td>2.8σ</td>
</tr>
</tbody>
</table>

Expected Δm^2_{21} = 4.84x10^{-5} eV²
$\sin^2 \theta_{12}$ = 0.311
Δm^2_{21} dependence

SK-I/II/III/IV Combine Day/Night Asymmetry

$\sin^2 \theta_{12} = 0.311$, $\sin^2 \theta_{13} = 0.025$

The first indication at $2.8-3.0\sigma$ of terrestrial matter effect.
Evidence for τ neutrino appearance

Published in PRL 110, 181802 (2013)

$\nu_\mu \rightarrow \nu_\tau$ channel has been confirmed by τ identification

$N_{\tau}^{\text{DATA}} / N_{\tau}^{\text{exp}} = 1.42 \pm 0.35 \text{(stat)} + 0.14 - 0.12 \text{(syst)}$

3.8σ significance for null τ

$\nu_\mu \rightarrow \nu_\tau$ channel has been confirmed by τ identification

Neural network to enhance events consistent with hadronic decays of τ

Zenith Distribution of τ-like events
Summary

• Using atmospheric neutrino data and solar neutrino data we are searching for the matter effect in order to find the mass hierarchy, octant of θ_{23}, CP violation, and a direct evidence of ν oscillation of solar ν.

• For the mass hierarchy, using 4538 days data there is a $\sim 1\sigma$ preference for the NH and the second octant.

• The first indication at $2.8-3.0\sigma$ of terrestrial matter effect in 4504 days data of 8B solar ν.

• $\nu_\mu \to \nu_\tau$ channel as a solution of “atmospheric neutrino anomaly” has been confirmed by the evidence of τ appearance at 3.8σ.