The Thermal Model

J. Cleymans
University of Cape Town,
iThemba L.A.B.S
South Africa

3rd International Conference on New Frontiers in Physics
ICNFP2014
28 July - 6 August 2014
KRUGER 2014

DISCOVERY PHYSICS AT THE LHC

1 - 6 December 2014

www.kruger2014.tlabs.ac.za

Protea Hotel Kruger Gate
South Africa

LOCAL ORGANIZING COMMITTEE:
O. Boeriu (Witwatersrand)
Z. Buthelezi (iThemba)
J. Clevmans (UCT) (chair)
S.H. Connell (UJ)
A.S. Connell (NTH/EWts)
T. Dietel (UCT)
S. Förtsch (iThemba)
N. Haasbroek (iThemba) (secretary)
A. Hamilton (UCT)
W.A. Herowitz (UCT)
S. Karatasidis (UJ)
B. Mellado (Witwatersrand)
E. Sideras-Haddad (Witwatersrand)
T. Vickey (Witwatersrand)
H. Weigert (UCT)
S. Yacooeb (UKZN)

INTERNATIONAL ADVISORY COMMITTEE:
K. Assamagan (Brookhaven, USA)
A. Baldissen (CEA, France)
A. Barr (Univ. of Oxford, UK)
P. Braun-Munzinger (GSI, Germany)
A. Deandrea (Lyon, France)
J. Ellis (King's College, UK; CERN)
P. Giubellino (CERN, CH)
T. Han (Univ. of Pittsburgh, USA)
J.W. Harris (Yale Univ., USA)
U. Heinz (Ohio State Univ., USA)
G. Herten (Freiburg, Germany)
B. Kaempfer (Dresden, Germany)
T.M. Liss (CCNY, USA)
S. Masuccio (GSI, Germany)
K. Redlich (Wrocław, Poland)
J. Schukraft (CERN)
Y. Schutz (IN2P3, France)
D. Srivastava (Kolkata, India)
G. Steinkamp (UZH, CH)
R. Voss (CERN)
X.N. Wang (CCNU, China/LBNL, USA)
U. Wiedemann (CERN)
Outline

Basis of the Thermal Model

History of the Thermal Model

Beam Energy Scan at RHIC

The Thermal Model at the LHC

The Horn

Summary
Work done in collaboration with:
Francesco Becattini,
Antti Keränen,
Ingrid Kraus,
Helmut Oeschler,
Jörg Randrup,
Krzysztof Redlich,
Helmut Satz,
Natasha Sharma,
Esko Suhonen,
Spencer Wheaton.
Hadronic Gas

<table>
<thead>
<tr>
<th></th>
<th>Equilibrium</th>
</tr>
</thead>
<tbody>
<tr>
<td>π</td>
<td>$\exp \left[-\frac{E_\pi}{T} \right]$</td>
</tr>
<tr>
<td>N</td>
<td>$\exp \left[-\frac{E_N}{T} + \frac{\mu_B}{T} \right]$</td>
</tr>
<tr>
<td>Λ</td>
<td>$\exp \left[-\frac{E_\Lambda}{T} + \frac{\mu_B}{T} - \frac{\mu_S}{T} \right]$</td>
</tr>
<tr>
<td>$\bar{\Lambda}$</td>
<td>$\exp \left[-\frac{E_\Lambda}{T} - \frac{\mu_B}{T} + \frac{\mu_S}{T} \right]$</td>
</tr>
<tr>
<td>K</td>
<td>$\exp \left[-\frac{E_K}{T} + \frac{\mu_S}{T} \right]$</td>
</tr>
<tr>
<td>\bar{K}</td>
<td>$\exp \left[-\frac{E_K}{T} - \frac{\mu_S}{T} \right]$</td>
</tr>
</tbody>
</table>
SPS data.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Pb–Pb 158A GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\pi^+ + \pi^-)/2.$</td>
<td>600±30</td>
</tr>
<tr>
<td>K^+</td>
<td>95 ±10</td>
</tr>
<tr>
<td>K^-</td>
<td>50 ±5</td>
</tr>
<tr>
<td>K_S^0</td>
<td>60 ±12</td>
</tr>
<tr>
<td>p</td>
<td>140±12</td>
</tr>
<tr>
<td>\bar{p}</td>
<td>10 ±1.7</td>
</tr>
<tr>
<td>ϕ</td>
<td>7.6±1.1</td>
</tr>
<tr>
<td>Ξ^-</td>
<td>4.42±0.31</td>
</tr>
<tr>
<td>Ξ^-</td>
<td>0.74±0.04</td>
</tr>
<tr>
<td>$\bar{\Lambda}/\Lambda$</td>
<td>0.2±0.04</td>
</tr>
</tbody>
</table>
SPS data.

SPS: Freeze-Out Parameters:

\[T = 156.0 \pm 2.4 \text{MeV} \]
\[\mu_B = 239 \pm 12 \text{MeV} \]

F. Becattini, J.C., A. Keränen, E. Suhonen and K. Redlich
E/N in 1999

E/N in 2000

\[\frac{<E>}{<N>} = \begin{cases} 1.1 \text{ GeV} & \text{for RHIC Au-Au} \\ 1.0 \text{ GeV} & \text{for SPS Pb-Pb, AGS Au-Au, GSI Au-Au} \end{cases} \]
E/N in 2005

![Graph showing the relationship between temperature (GeV) and \(\mu_B \) (GeV) for different experiments including RHIC Au-Au, SPS Pb-Pb, GSI Au-Au, and AGS Au-Au. The graph includes two lines representing different values of \(<E>/<N> \): 1.1 GeV and 1.0 GeV. The data points for each experiment are plotted on the graph, indicating the temperature at various values of \(\mu_B \).]
E/N in 2006

E/N in 2007

![Graph showing the relationship between momentum density (μ_B) and temperature for 2007 events at RHIC.](Image)

- **E/N = 1.1 GeV**
- **E/N = 1.0 GeV**

Data Points:
- RHIC Au-Au
- SPS Pb-Pb
- AGS Au-Au
- GSI Au-Au

Temperature (GeV) vs. μ_B (GeV) for 2007 events.
E/N in 2009

![Graph showing temperature vs. mu_B (GeV) for various experiments such as SPS Pb-Pb, AGS Au-Au, RHIC Au-Au, GSI Au-Au, HADES, FOPI. The graph includes lines showing <E>/<N> = 1.1 GeV and <E>/<N> = 1.0 GeV. The year 2009 is highlighted on the graph.]

- <E>/<N> = 1.1 GeV
- <E>/<N> = 1.0 GeV

The year 2009 is marked on the graph.
Beam Energy Scan at RHIC

Observables:

Phase boundary
Charge separation;
v_2 - NCQ scaling

1st order phase transition
Directed flow v_1

Critical point
Fluctuations

Chiral symmetry restoration
Di-lepton production

Study QCD Phase Structure!

Daniel McDonald: July 29 [FAIR workshop]

BES-I

<table>
<thead>
<tr>
<th>$\sqrt{s_{NN}}$ (GeV)</th>
<th>7.7</th>
<th>11.5</th>
<th>14.5</th>
<th>19.6</th>
<th>27</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_B (MeV)</td>
<td>420</td>
<td>315</td>
<td>260</td>
<td>205</td>
<td>155</td>
<td>115</td>
</tr>
</tbody>
</table>

28 July – 6 August 2014, Kolymbari, Crete, Greece

Shusu Shi (for the STAR Collaboration) ICNFP2014

ALICE 2013

T = 154.75 ± 2.67 MeV
Radius = 10.47 ± 0.54 fm
ALICE 2013

![Graph showing particle multiplicities](image)

- **Data, ALICE, 0-10%**
- **Statistical model**

 Fit: $T=156$ MeV, $\mu_b=0$ MeV, $V=5380$ fm3

 $T=164$ MeV, $\mu_b=1$ MeV

- P$^{-}$b-P$^{+}$b $\sqrt{s_{\text{NN}}}=2.76$ TeV

- Multiplicities of particles:
 - π^+, π^-, K^+, K^-, K^0_s, K^{*0}, ϕ, p, \bar{p}, Λ, Ξ^-, Ξ^+, Ω^-, Ω^+, d, Λ, H, H

Equilibrium SHM Fits

N.B. RHIC
\(\sqrt{s} = 200 \) STAR
\(\chi^2/\text{NDF} \sim 1 \)

Better fit in 60-80%,
(feel free to ask about it)

Petran et al, arXiv:1310.5108
Wheaton et al,
Comput.Phys.Commun, 180 84
Andronic et al, PLB 673 142
Chemical Freeze-Out Temperature

![Graph showing the relationship between √s_{NN} (GeV) and T (GeV)]
Chemical Freeze-Out μ_B
Hadronic Freeze-Out

\[\varepsilon^* = \varepsilon - m_N \rho \]

\(\sqrt{S}_{NN} \)

Excitation Energy Density \(\varepsilon^* \) (MeV/fm\(^3\))

Net Baryon Density (fm\(^{-3}\))

J. Randrup & J. Cleymans

S=0 & Q/B=0.4
Maxima in particle ratios: K^+ / π^+

![Diagram showing lines of constant K^+ / π^+ ratio and freeze-out curves.](image)
Maxima in particle ratios: Λ/π^+
Maxima in particle ratios

the roller-coaster seen in the particle ratios corresponds to a transition from a baryon-dominated to a meson-dominated hadronic gas. This transition occurs at a

- temperature $T = 151$ MeV,
- baryon chemical potential $\mu_B = 327$ MeV,
- energy $\sqrt{s_{NN}} = 11$ GeV.

In the statistical model this transition leads to peaks in the $\Lambda/\langle \pi \rangle$, K^+/π^+, Ξ^-/π^+ and Ω^-/π^+ ratios, each one at a different beam energy!
the roller-coaster seen in the particle ratios corresponds to a transition from a baryon-dominated to a meson-dominated hadronic gas. This transition occurs at a

- temperature $T = 151$ MeV,
- baryon chemical potential $\mu_B = 327$ MeV,
- energy $\sqrt{s_{NN}} = 11$ GeV.

In the statistical model this transition leads to peaks in the $\Lambda/\langle \pi \rangle$, K^+/π^+, Ξ^-/π^+ and Ω^-/π^+ ratios, each one at a different beam energy!
the roller-coaster seen in the particle ratios corresponds to a transition from a baryon-dominated to a meson-dominated hadronic gas. This transition occurs at a

- temperature $T = 151$ MeV,
- baryon chemical potential $\mu_B = 327$ MeV,
- energy $\sqrt{s_{NN}} = 11$ GeV.

In the statistical model this transition leads to peaks in the $\Lambda/\langle\pi\rangle$, K^+/π^+, Ξ^-/π^+ and Ω^-/π^+ ratios, each one at a different beam energy!