Results from ND280 Near Detectors

Joanna Zalipska
National Centre for Nuclear Research, Warsaw

On behalf of T2K collaboration
Goal of the experiment:
measurement of ν oscillations

- Appearance of ν_e
 measurement of θ_{13}

- Disappearance of ν_μ
 measurement of θ_{23}, Δm^2_{23}

- Search for CP violation
Goals of ND280

- Flux measurement of unoscillated ν_μ beam
- Measurement of ν_e beam contamination
- Cross sections of ν interactions
Contribution from ND280

Neutrino flux model
- Proton interactions with target modeled
 - With FLUKA taking into account measured
 - p, K production by NA61/SHINE @ CERN
- Verified by proton beam monitor measurements

Neutrino cross section
- Model with NEUT generator of n interactions
- Data driven: external neutrino, electron, pion Scattering data.

ND280 measurement
- Data samples enhanced with
 - Charged Current (CC) interactions with 0, 1 or multi p
- Fit to data constrains flux and cross section parameters.

Prediction of event rates at Super-Kamiokande prediction

Super-Kamiokande measurement
Near Detectors at 280m

- **Fine Grained Detectors (FGD)**
 - FGD1 scintillator detector acting as active target
 - provides vertex information
 - detects recoil protons
 - FGD2 is interlaid with water layers allows to study ν interactions on oxygen

- **Time Projection Chambers (TPC)**
 - gas argon TPC
 - momentum measurement
 - particle identification (dE/dx)

- **π^0 detector (P0D)**
 - Scintillator detector interlaid with water layers
 - dedicated to NC π^0 measurement

- **Electromagnetic calorimeters (Ecal)**
 - use to detect photons and reconstruct π^0 which leave FGD

- **Side Muon Range Detector (SMRD)**
 - muon tagging

- **0.2T magnetic field**

- Tracker is the central component composed of 3 TPCs and 2 FGDs
What we want to measure

- Charge Current quasi-elastic (CCQE)

- CC resonance (CCRES)

- CC Deep Inelastic Scattering (CCDIS)

To measure flux of ν_μ beam component we are looking for interactions with μ^- produced in the tracker detector.

Divide sample into categories depending on presence of reconstructed π tracks.
Event categories

CC 0π sample
- CC interactions without pions produced in final state, tag μ⁻
- One reconstructed π⁺ track
- π⁺ identified through dE/dx in TPC or Michel electron in FGD

CC 1π⁺ sample

CC Other sample
- Reconstructed π⁻ track or more than one charged π or π⁰ track

FGDTPCFGDTPC
FGDTPCFGDTPC
FGDTPCFGDTPC
ND280 measurement

Results from 2013 using 6.30×10^{20} POT

CC0π
- 72.6% purity

CC1π
- 49.4% purity

CCOther
- 73.8% purity

Distributions of Data and MC before fit

For each category:
- (p_μ, θ_μ) distributions are made,
- the spectrum and cross section parameters are fitted.
ND280 fit results

Distributions of Data and MC after fit
MC was reweighted to fit results of ν spectrum and cross sections.
ND280 fit results

νμ disappearance

νe appearance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Prior to ND280 Constraint</th>
<th>After ND280 Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_A^{QE} (GeV)</td>
<td>1.21 ± 0.45</td>
<td>1.223 ± 0.072</td>
</tr>
<tr>
<td>M_A^{RES} (GeV)</td>
<td>1.41 ± 0.22</td>
<td>0.963 ± 0.063</td>
</tr>
<tr>
<td>CCQE Norm.*</td>
<td>1.00 ± 0.11</td>
<td>0.961 ± 0.076</td>
</tr>
<tr>
<td>CC1π Norm.**</td>
<td>1.15 ± 0.32</td>
<td>1.22 ± 0.16</td>
</tr>
<tr>
<td>NC1π0 Norm.</td>
<td>0.96 ± 0.33</td>
<td>1.10 ± 0.25</td>
</tr>
</tbody>
</table>

*For $E_\nu < 1.5$ GeV **For $E_\nu < 2.5$ GeV

Reduction of flux and cross section uncertainties with ND280 constraint.
ND280 ν_e contamination

ν_e contamination in ν_μ beam is important for ν_e appearance analysis at SK since ν_e beam contamination is background for signal of oscillated ν_e's.

Same selection as for ν_μ analysis, but identified track as e^- instead of μ^-.

Fitted ratio on ν_e beam contamination between data and MC:

$$f(\nu_e\text{CC0}\pi) = 1.10 \pm 0.14\text{(stat.)} \pm 0.10\text{(syst.)}$$

$$f(\nu_e\text{CC1}\pi + \text{CCOther}) = 1.03 \pm 0.11\text{(stat.)} \pm 0.12\text{(syst.)}$$

Published in *Phys. Rev. D* 89, 092003 (2014)
Reduced SK prediction uncertainty

\[
\sin^2 2\theta_{13} = 0.1 \quad \text{sin}^2 2\theta_{13} = 0.0
\]

<table>
<thead>
<tr>
<th></th>
<th>(\nu_e) Prediction (Events)</th>
<th>Error from Constrained Parameters</th>
<th>(\nu_e) Prediction (Events)</th>
<th>Error from Constrained Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>No ND280 Constraint</td>
<td>22.6</td>
<td>26.5%</td>
<td>5.3</td>
<td>22.0%</td>
</tr>
<tr>
<td>ND280 Constraint 2012</td>
<td>21.6</td>
<td>4.7%</td>
<td>5.1</td>
<td>6.1%</td>
</tr>
<tr>
<td>ND280 Constraint 2013</td>
<td>20.4</td>
<td>3.0%</td>
<td>4.6</td>
<td>4.9%</td>
</tr>
</tbody>
</table>

Improved due to new reconstruction and selection
Effect on ν_e oscillation analysis

The predicted number of events distribution

<table>
<thead>
<tr>
<th>Event category</th>
<th>$\sin^22\theta_{13}=0.0$</th>
<th>$\sin^22\theta_{13}=0.1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_e signal</td>
<td>0.38</td>
<td>16.42</td>
</tr>
<tr>
<td>ν_e background</td>
<td>3.17</td>
<td>2.93</td>
</tr>
<tr>
<td>ν_μ background (mainly NCπ^0)</td>
<td>0.89</td>
<td>0.89</td>
</tr>
<tr>
<td>$\nu_\mu + \nu_e$ background</td>
<td>0.20</td>
<td>0.19</td>
</tr>
<tr>
<td>Total</td>
<td>4.64</td>
<td>20.44</td>
</tr>
<tr>
<td>Total (w/ 2012 flux & cross section parameters)</td>
<td>5.15</td>
<td>21.77</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Error source</th>
<th>$\sin^22\theta_{13}=0.0$</th>
<th>$\sin^22\theta_{13}=0.1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam flux + ν int. in T2K fit</td>
<td>4.9 %</td>
<td>3.0 %</td>
</tr>
<tr>
<td>ν int. (from other exp.)</td>
<td>6.7 %</td>
<td>7.5 %</td>
</tr>
<tr>
<td>Far detector</td>
<td>7.3 %</td>
<td>3.5 %</td>
</tr>
<tr>
<td>(+FSI+SI+PN)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>11.1 %</td>
<td>8.8 %</td>
</tr>
<tr>
<td>Total (2012)</td>
<td>13.0 %</td>
<td>9.9 %</td>
</tr>
</tbody>
</table>
Effect on ν_μ oscillation analysis

- To fit $\sin^2 \theta_{23}$ and Δm_{23}^2, χ^2 was minimized
- Other oscillation parameters were fixed
- Systematics uncertainties on parameters were calculated for the best fitted value of $(\sin^2 \theta_{23}, \Delta m_{23}^2) = (0.5, 2.4 \times 10^{-3} \text{eV}^2)$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δm_{21}^2</td>
<td>$7.50 \times 10^{-5} \text{eV}^2$</td>
</tr>
<tr>
<td>$\sin^2 2\theta_{12}$</td>
<td>0.857</td>
</tr>
<tr>
<td>$\sin^2 2\theta_{13}$</td>
<td>0.098</td>
</tr>
<tr>
<td>δ_{CP}</td>
<td>0</td>
</tr>
<tr>
<td>Mass hierarchy</td>
<td>Normal</td>
</tr>
<tr>
<td>Baseline length</td>
<td>295 km</td>
</tr>
<tr>
<td>Earth density</td>
<td>2.6 g/cm3</td>
</tr>
</tbody>
</table>

Systematic uncertainties of # of events (%)

<table>
<thead>
<tr>
<th>Systematics</th>
<th>$(\sin^2 \theta_{23}, \Delta m_{32}^2) = (0.5, 2.4 \times 10^{-3})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flux/XSEC (ND280 fit)</td>
<td>2.7</td>
</tr>
<tr>
<td>Other XSEC</td>
<td>4.9</td>
</tr>
<tr>
<td>Super-K +FSI</td>
<td>5.6</td>
</tr>
<tr>
<td>Total</td>
<td>8.1</td>
</tr>
</tbody>
</table>

- It was 21.8% before ND280 fit
- Could be reduced when measurement of ν cross section on oxygen will be measured using FGD2 (same water target as Super-Kamiokande)
First $\bar{\nu}_\mu$ event at T2K!

Collected POTs of:

ν data 6.88×10^{20}

$\bar{\nu}$ data 0.51×10^{20}
$\bar{\nu}_\mu$ beam data at ND280

First $\bar{\nu}_\mu$ candidate in data taken June 2014

T2K will search for CP violation by measuring $\bar{\nu}$ oscillations in:
- $\bar{\nu}_e$ appearance and $\bar{\nu}_\mu$ disappearance analysis
- Comparing ν_μ with $\bar{\nu}_\mu$.
What ND280 can do with $\bar{\nu}_\mu$

- Data collected by ND280 will be used to measure cross section of $\bar{\nu}_\mu$ interactions.

- Super-Kamiokande detector has no ability to discriminate between μ^+ and μ^-, therefore interactions of ν_μ can not be distinguish from $\bar{\nu}_\mu$.

- Good knowledge of ν_μ cross section is required since the beam is mixture of ν_μ and $\bar{\nu}_\mu$ and $\sigma_{\bar{\nu}} \sim 1/3 \sigma_{\nu}$.
Other measurements with ND280

- Measurement of ν_e CC inclusive cross section on carbon (see also talk by Mark Rayner)

- Ongoing work on measurement of multi nucleon interactions:
 - implemented in NEUT and NuWro generators
 - look at μ kinematics, information about reconstructed proton tracks and vertex activity associated with low momentum protons

- Ongoing work on measurement of ν_μ interactions on oxygen in FGD2 module which is interlaid with water layers
T2K has taken data with ND280 since 2010 and it has already analysed 6.3×10^{20} POT of data.

The ND280 measurement of ν_μ spectrum and cross sections contributed to significant reductions in errors on the expected neutrino flux at Super-Kamiokande.

T2K measured the CC inclusive ν_μ and ν_e cross sections using ND280.

Other interesting measurements are coming soon!
ND280 $\bar{\nu}_\mu$ measurement

- Same selection as for ν_μ CC
- Inclusive analysis is used but positive charged μ is required to be reconstructed
- $\text{CC0}\pi$ sample has purity of 74%

MC sample of $\bar{\nu}$ beam

Tools and methods to analyze recently collected $\bar{\nu}_\mu$ data are ready to be used