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Charge Symmetry & Charge Invariance
Charge symmetry: invariance of nuclear interactions under
n↔ p interchange
An isoscalar quantity F does not change under n↔ p
interchange. E.g. nuclear energy. Expansion in asymmetry
η = (N − Z )/A, for smooth F , yields even terms only:

F (η) = F0 + F2 η
2 + F4 η

4 + . . .

An isovector quantity G changes sign. Example:
ρnp(r) = ρn(r)− ρp(r). Expansion with odd terms only:

G(η) = G1 η + G3 η
3 + . . .

Note: G/η = G1 + G3 η
2 + . . ..

In nuclear practice, analyticity requires shell-effect averaging!
Charge invariance: invariance of nuclear interactions under
rotations in n-p space

Symmetry Energy Danielewicz, Lee & Hong
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Charge Symmetry & Charge Invariance
Charge symmetry:
n↔ p invariance Isobars: Nuclei with the same A

Charge invariance:
symmetry under
rotations in
n-p space
Isospin doublets

p : (τ, τz) = (1
2 ,

1
2)

n : (τ, τz) = (1
2 ,−

1
2)

Net isospin

~T =
A∑

i=1

~τi

T = 3
2 , . . . T = 1

2 ,
3
2 , . . . T = 3

2 , . . .

Nuclear states: (T ,Tz), T ≥ |Tz | = 1
2 |N − Z |
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Energy in Uniform Matter
E
A

(ρn, ρp) =
E0

A
(ρ) + S(ρ)

(ρn − ρp

ρ

)2
+O(. . .4)

symmetric matter (a)symmetry energy ρ = ρn + ρp

E0

A
(ρ) = −aV +

K
18

(ρ− ρ0

ρ0

)2
+ . . . S(ρ) = −aV

a +
L
3
ρ− ρ0

ρ0
+ . . .

Known: aa ≈ 16 MeV K ∼ 235 MeV Unknown: aV
a ? L ?
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Importance of Slope

aa
V

Lattimer&Lim ApJ771(2013)51

E
A

=
E0

A
(ρ) + S(ρ)

(ρn − ρp

ρ

)2

S ' −aV
a +

L
3
ρ− ρ0

ρ0

In neutron matter:
ρp ≈ 0 & ρn ≈ ρ.

Then, E
A (ρ) ≈ E0

A (ρ) + S(ρ)

Pressure:

P = ρ2 d
dρ

E
A
' ρ2 dS

dρ
' L

3ρ0
ρ2
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Symmetry-Energy Connections
Symmetry energy ties research efforts in nuclear physics &
astrophysics:

diagram by Andrew Steiner
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Symmetry Energy in Nuclear Mass Formula
Textbook Bethe-Weizsäcker formula:

E = −aV A + aS A2/3 + aC
Z 2

A1/3 + aa
(N − Z )2

A
+ Emic

Symmetry energy: charge n↔ p symmetry of interactions
Analogy with capacitor:

Ea = aa
(N − Z )2

A
≡ (N − Z )2

A
aa

⇔ E =
Q2

2C

?Volume Capacitance? Ea =
(N − Z )2

A
aa

→ (N − Z )2

A
aV

a
+ A2/3

aS
a

r

ρ

independent capacitors

Thomas-Fermi (local density) approximation:
′C′ ≡ A

aa(A)
=

∫
ρdrrr
S(ρ)

=
A
aV

a
, for S(ρ) ≡ aV

a

TF breaks in nuclear surface at ρ < ρ0/4 PD&Lee NPA818(2009)36
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Mass Formula & Charge Invariance
Symmetry-energy details in a mass-formula are intertwined
with details of other terms: Coulomb, Wigner & pairing + even
those asymmetry-independent, due to (N − Z )/A - A
correlations along stability line (PD)!
Best would be to study the symmetry energy in isolation from
the rest of mass-formula! Absurd?!
Charge invariance to rescue: lowest nuclear states
characterized by different isospin values (T ,Tz),
Tz = (Z − N)/2. Nuclear energy scalar in isospin space:

sym energy Ea = aa(A)
(N − Z )2

A
= 4 aa(A)

T 2
z

A

→ Ea = 4 aa(A)
T 2

A
= 4 aa(A)

T (T + 1)

A
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Symmetry Coefficient Nucleus-by-Nucleus
Mass formula generalized to the lowest state of a given T :

E(A,T ,Tz) = E0(A) + 4aa(A)
T (T + 1)

A
+ Emic + ECoul

In the ground state T takes on the lowest possible value
T = |Tz | = |N − Z |/2. Through ’+1’ most of the Wigner term absorbed.

?Lowest state of a given T : isobaric analogue state (IAS) of
some neighboring nucleus ground-state.

T=0

T=1

Tz=-1 Tz=1Tz=0

Study of changes in the
symmetry term possible
nucleus by nucleus

E∗IAS = ∆E = aa
∆
[
T (T + 1)

]
A

+ ∆Emic
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From aa(A) to S(ρ)
Strong aa(A) dependence [PD & Lee NPA922(14)1]:
lower A⇒ more surface⇒ lower ρ⇒ lower S

aa(A) from IAS give rise to constraints on S(ρ) in
Skyrme-Hartree-Fock calculations
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Subnormal S(ρ) from Different Data
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Comparison to Microscopic Calculations

APR: V18 + UVIXBHF: V18 + UVIXDBHF: Bonn A
BHF: V18 + micro 3NBHF: Bonn B + micro 3N

extrapolationIAS + rnp constraints

Microscopic results from Baldo et al PRC87(13)045803
Symmetry Energy Danielewicz, Lee & Hong
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Pions as Probe of High-ρ Symmetry Energy
B-A Li: S(ρ > ρ0)⇒ n/pρ>ρ0 ⇒ π−/π+
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Dedicated Experimental Efforts
SAMURAI-TPC Collaboration (8 countries and 43
researchers): comparisons of near-threshold π− and π+ and
also n-p spectra and flows at RIKEN, Japan.

NSCL/MSU, Texas A&M U
Western Michigan U, U of Notre Dame
GSI, Daresbury Lab, INFN/LNS
U of Budapest, SUBATECH, GANIL
China IAE, Brazil, RIKEN, Rikkyo U
Tohoku U, Kyoto U

AT-TPC Collaboration (US & France)
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FOPI: π−/π+ at 400 MeV/nucl and above
Hong & PD, PRC in press: measured ratios reproduced
irrespectively of Sint(ρ) = S0 (ρ/ρ0)γ :

 1

 1.5

 2
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 3
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Original Idea Still Correct for High-E π’s

 1

 10

 0  20  40  60  80  100  120  140

π
- /π

+

KEc.m. (MeV)

Au+Au

overall pion ratio

γ=0.5

γ=0.75

γ=1.0

γ=1.5

γ=2.0

→ charge-exchange reactions blur the signal
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Conclusions

Symmetry-energy term weakens as nuclear mass number
decreases: from aa ∼ 23 Mev to aa ∼ 9 MeV for A . 8.

Weakening of the symmetry term can be tied to the
weakening of S(ρ) in uniform matter, with the fall of ρ.

Convergence observed for conclusions on S(ρ) at
moderately subnormal densities, from variety of data,
including isobaric analog states, and from microscopic
calcs testing mostly 2-body ints.
In the region of ρ & ρ0, S(ρ) is quite uncertain. One
promising observable is the high-energy charged-pion
yield-ratio around NN threshold.

PD&Lee NPA922(14)1; Hong&PD arXiv:1307.7654, in press
NSF PHY-1068571 & PHY-1403906
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