Symmetry Energy: from Nuclei to Neutron Stars

Pawel Danielewicz¹, Jenny Lee² and Jun Hong¹

¹Natl Superconducting Cyclotron Lab, USA

²RIKEN, Japan

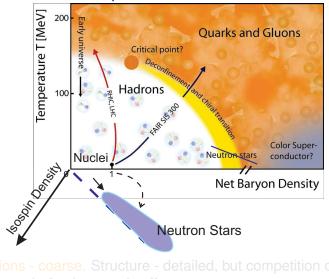
3rd International Conference on New Frontiers in Physics

July 28 - August 6, 2014, Kolymbari, Crete, Greece

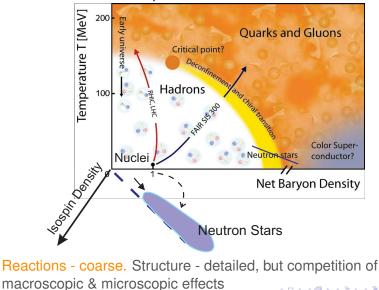
Symmetry Energy

Danielewicz, Lee & Hong

Equation of State



Equation of State



Symmetry Energy

Danielewicz, Lee & Hong

Charge symmetry: invariance of nuclear interactions under $n \leftrightarrow p$ interchange

An isoscalar quantity *F* does not change under $n \leftrightarrow p$ interchange. E.g. nuclear energy. Expansion in asymmetry $\eta = (N - Z)/A$, for smooth *F*, yields even terms only: $F(\eta) = F_0 + F_2 \eta^2 + F_4 \eta^4 + ...$

An isovector quantity *G* changes sign. Example: $\rho_{np}(r) = \rho_n(r) - \rho_p(r)$. Expansion with odd terms only: $G(\eta) = G_1 \eta + G_3 \eta^3 + \dots$

Note: $G/\eta = G_1 + G_3 \eta^2 + \dots$

In nuclear practice, analyticity requires shell-effect averaging! Charge invariance: invariance of nuclear interactions under rotations in *n-p* space

Charge symmetry: invariance of nuclear interactions under $n \leftrightarrow p$ interchange

An isoscalar quantity *F* does not change under $n \leftrightarrow p$ interchange. E.g. nuclear energy. Expansion in asymmetry $\eta = (N - Z)/A$, for smooth *F*, yields even terms only: $F(\eta) = F_0 + F_2 \eta^2 + F_4 \eta^4 + \dots$

An isovector quantity *G* changes sign. Example: $\rho_{np}(r) = \rho_n(r) - \rho_p(r)$. Expansion with odd terms only: $G(\eta) = G_1 \eta + G_3 \eta^3 + \dots$

Note: $G/\eta = G_1 + G_3 \eta^2 + ...$

In nuclear practice, analyticity requires shell-effect averaging! Charge invariance: invariance of nuclear interactions under rotations in *n-p* space

Charge symmetry: invariance of nuclear interactions under $n \leftrightarrow p$ interchange

An isoscalar quantity *F* does not change under $n \leftrightarrow p$ interchange. E.g. nuclear energy. Expansion in asymmetry $\eta = (N - Z)/A$, for smooth *F*, yields even terms only: $F(\eta) = F_0 + F_2 \eta^2 + F_4 \eta^4 + \dots$

An isovector quantity *G* changes sign. Example: $\rho_{np}(r) = \rho_n(r) - \rho_p(r)$. Expansion with odd terms only: $G(\eta) = G_1 \eta + G_3 \eta^3 + \dots$

Note: $G/\eta = G_1 + G_3 \eta^2 + ...$

In nuclear practice, analyticity requires shell-effect averaging!

Charge invariance: invariance of nuclear interactions under rotations in *n-p* space

Charge symmetry: invariance of nuclear interactions under $n \leftrightarrow p$ interchange

An isoscalar quantity *F* does not change under $n \leftrightarrow p$ interchange. E.g. nuclear energy. Expansion in asymmetry $\eta = (N - Z)/A$, for smooth *F*, yields even terms only: $F(\eta) = F_0 + F_2 \eta^2 + F_4 \eta^4 + \dots$

An isovector quantity *G* changes sign. Example: $\rho_{np}(r) = \rho_n(r) - \rho_p(r)$. Expansion with odd terms only: $G(\eta) = G_1 \eta + G_3 \eta^3 + \dots$

Note: $G/\eta = G_1 + G_3 \eta^2 + ...$

In nuclear practice, analyticity requires shell-effect averaging! Charge invariance: invariance of nuclear interactions under rotations in *n*-*p* space

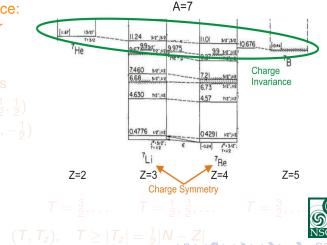
- Charge symmetry: $n \leftrightarrow p$ invariance
- Charge invariance: symmetry under rotations in n-p space
- Isospin doublets
- $p:(\tau,\tau_z) = (\frac{1}{2},\frac{1}{2})$ $p:(\tau,\tau_z) = (1,\frac{1}{2})$

Net isospin

Net isospin

$$ec{T} = \sum^{A} ec{ au_i}$$

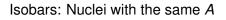
Isobars: Nuclei with the same A

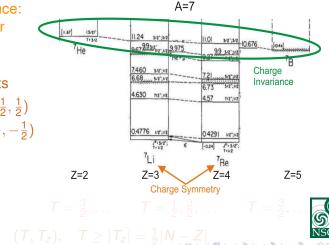


- Charge symmetry: $n \leftrightarrow p$ invariance
- Charge invariance: symmetry under *rotations* in *n-p* space
- Isospin doublets
- $p:(\tau,\tau_z) = (\frac{1}{2},\frac{1}{2})$ $n:(\tau,\tau_z) = (\frac{1}{2},-\frac{1}{2})$

Net isospin

 $\sum_{i=1}^{A} \vec{\tau}_{i}$

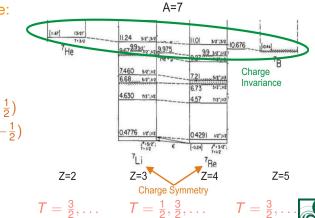




- Charge symmetry: $n \leftrightarrow p$ invariance
- Charge invariance: symmetry under *rotations* in *n-p* space
- Isospin doublets
- $p:(\tau,\tau_z) = \left(\frac{1}{2},\frac{1}{2}\right)$ $n:(\tau,\tau_z) = \left(\frac{1}{2},-\frac{1}{2}\right)$
- Net isospin
- Net isospin

$$\vec{T} = \sum_{i=1}^{A} \vec{\tau}_i$$

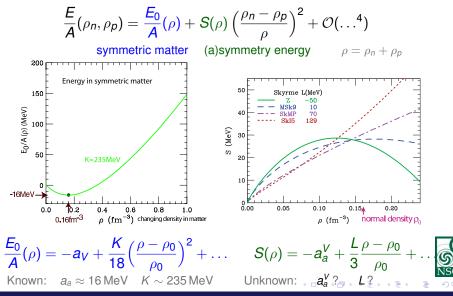
Nuclear states: $(T, T_z), T \ge |T_z| = \frac{1}{2}|N - Z|$



Isobars: Nuclei with the same A

. S NSCL

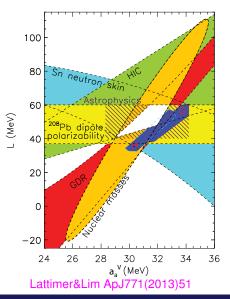
Energy in Uniform Matter



Symmetry Energy

Danielewicz, Lee & Hong

Importance of Slope

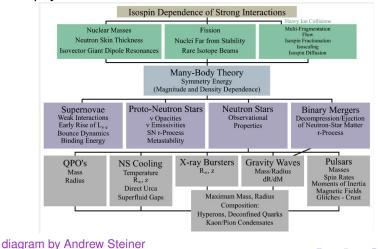


$$egin{split} rac{E}{A} &= rac{E_0}{A}(
ho) + S(
ho) \left(rac{
ho_n -
ho_p}{
ho}
ight)^2 \ S &\simeq -a_a^V + rac{L}{3}rac{
ho -
ho_0}{
ho_0} \end{split}$$

In neutron matter: $\rho_{\rho} \approx 0 \& \rho_{n} \approx \rho.$ Then, $\frac{E}{A}(\rho) \approx \frac{E_{0}}{A}(\rho) + S(\rho)$ Pressure: $P = \rho^{2} \frac{d}{d\rho} \frac{E}{A} \simeq \rho^{2} \frac{dS}{d\rho} \simeq \frac{L}{3\rho_{0}} \rho^{2}$

Symmetry-Energy Connections

Symmetry energy ties research efforts in nuclear physics & astrophysics:

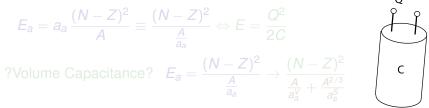


Symmetry Energy

ヘロト ヘアト ヘヨト ヘ

$$E = -a_V A + a_S A^{2/3} + a_C \frac{Z^2}{A^{1/3}} + a_a \frac{(N-Z)^2}{A} + E_{mic}$$

Symmetry energy: charge $n \leftrightarrow p$ symmetry of interactions Analogy with capacitor:



ρ r

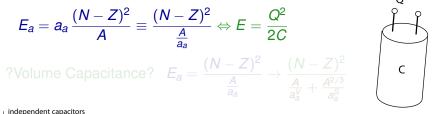
Thomas-Fermi (local density) approximation:

 $C' \equiv \frac{A}{a_a(A)} = \int \frac{\rho \, \mathrm{d} r}{S(\rho)} = \frac{A}{a_a^V}, \text{ for } S(\rho) \equiv a_a^V$

TF breaks in nuclear surface at $ho <
ho_0/4$ PD&Lee NPA\$18(2009)36

$$E = -a_V A + a_S A^{2/3} + a_C \frac{Z^2}{A^{1/3}} + a_a \frac{(N-Z)^2}{A} + E_{mic}$$

Symmetry energy: charge $n \leftrightarrow p$ symmetry of interactions Analogy with capacitor:



Thomas-Fermi (local density) approximation:

TF breaks in nuclear surface at $ho <
ho_0/4$ PD&Lee NPA 18(2009)36

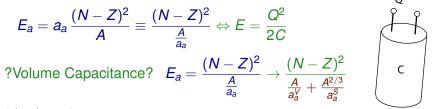
Symmetry Energy

r

ρ

$$E = -a_V A + a_S A^{2/3} + a_C \frac{Z^2}{A^{1/3}} + a_a \frac{(N-Z)^2}{A} + E_{mic}$$

Symmetry energy: charge $n \leftrightarrow p$ symmetry of interactions Analogy with capacitor:

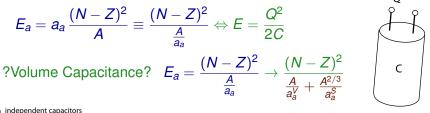


P Thomas-Fermi (local density) approximation: $C' \equiv \frac{A}{a_a(A)} = \int \frac{\rho \, dr}{S(\rho)} = \frac{A}{a_a^V}$, for $S(\rho) \equiv$ TF breaks in nuclear surface at $\rho < \rho_0/4$ PD&Lee NPA\$18(2009)36

S NSCL

$$E = -a_V A + a_S A^{2/3} + a_C \frac{Z^2}{A^{1/3}} + a_a \frac{(N-Z)^2}{A} + E_{mic}$$

Symmetry energy: charge $n \leftrightarrow p$ symmetry of interactions Analogy with capacitor:



Thomas-Fermi (local density) approximation: $C' \equiv \frac{A}{a_a(A)} = \int \frac{\rho \, d\mathbf{r}}{S(\rho)} = \frac{A}{a_a^V}, \text{ for } S(\rho) \equiv a_a^V$

TF breaks in nuclear surface at $\rho < \rho_0/4$ PD&Lee NPA818(2009)36

Danielewicz, Lee & Hong

Symmetry Energy

r

ρ

Mass Formula & Charge Invariance

Symmetry-energy details in a mass-formula are intertwined with details of other terms: Coulomb, Wigner & pairing + even those asymmetry-independent, due to (N - Z)/A - A correlations along stability line (PD)!

Best would be to study the symmetry energy in isolation from the rest of mass-formula! Absurd?!

Charge invariance to rescue: lowest nuclear states characterized by different isospin values (T,T_z) , $T_z = (Z - N)/2$. Nuclear energy scalar in isospin space

sym energy
$$E_a = a_a(A) \frac{(N-Z)^2}{A} = 4 a_a(A) \frac{T_Z^2}{A}$$

$$\rightarrow E_a = 4 a_a(A) \frac{T^2}{A} = 4 a_a(A) \frac{T(T+1)}{A}$$

イロト イポト イヨト イヨト

Mass Formula & Charge Invariance

Symmetry-energy details in a mass-formula are intertwined with details of other terms: Coulomb, Wigner & pairing + even those asymmetry-independent, due to (N - Z)/A - A correlations along stability line (PD)!

Best would be to study the symmetry energy in isolation from the rest of mass-formula! Absurd?!

Charge invariance to rescue: lowest nuclear states characterized by different isospin values (T, T_z) , $T_z = (Z - N)/2$. Nuclear energy scalar in isospin space:

sym energy
$$E_a = a_a(A) \frac{(N-Z)^2}{A} = 4 a_a(A) \frac{T_z^2}{A}$$

$$\rightarrow E_a = 4 a_a(A) \frac{T^2}{A} = 4 a_a(A) \frac{T(T+1)}{A}$$

イロト イポト イヨト イヨト

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Mass Formula & Charge Invariance

Symmetry-energy details in a mass-formula are intertwined with details of other terms: Coulomb, Wigner & pairing + even those asymmetry-independent, due to (N - Z)/A - A correlations along stability line (PD)!

Best would be to study the symmetry energy in isolation from the rest of mass-formula! Absurd?!

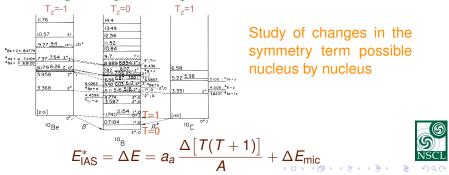
Charge invariance to rescue: lowest nuclear states characterized by different isospin values (T, T_z) , $T_z = (Z - N)/2$. Nuclear energy scalar in isospin space:

sym energy
$$E_a = a_a(A) \frac{(N-Z)^2}{A} = 4 a_a(A) \frac{T_z^2}{A}$$

$$\rightarrow E_a = 4 a_a(A) \frac{T^2}{A} = 4 a_a(A) \frac{T(T+1)}{A}$$

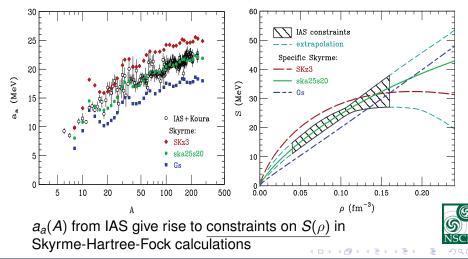
Symmetry Coefficient Nucleus-by-Nucleus Mass formula generalized to the lowest state of a given *T*: $E(A, T, T_z) = E_0(A) + 4a_a(A) \frac{T(T+1)}{A} + E_{mic} + E_{Coul}$ In the ground state *T* takes on the lowest possible value $T = |T_z| = |N - Z|/2$. Through '+1' most of the Wigner term absorbed.

?Lowest state of a given *T*: isobaric analogue state (IAS) of some neighboring nucleus ground-state.

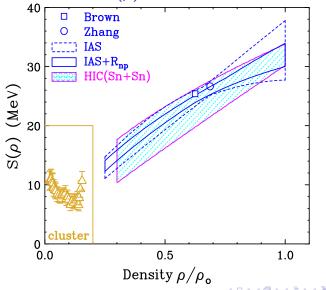


From $a_a(A)$ to $S(\rho)$ Strong $a_a(A)$ dependence [PD & Lee NPA922(14)1]:

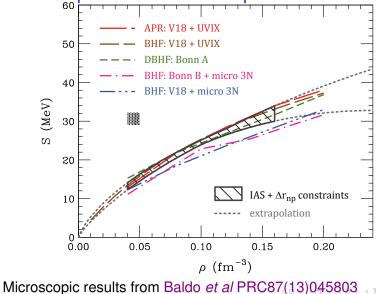
lower $A \Rightarrow$ more surface \Rightarrow lower $\rho \Rightarrow$ lower S



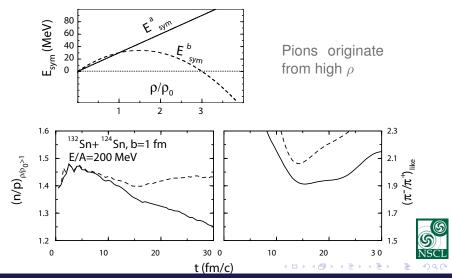
Subnormal $S(\rho)$ from Different Data



Comparison to Microscopic Calculations



Pions as Probe of High- ρ Symmetry Energy B-A Li: $S(\rho > \rho_0) \Rightarrow n/p_{\rho > \rho_0} \Rightarrow \pi^-/\pi^+$

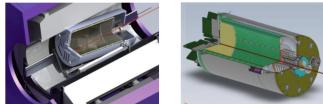


Danielewicz, Lee & Hong

Dedicated Experimental Efforts

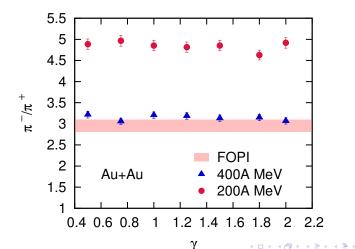
SAMURAI-TPC Collaboration (8 countries and 43 researchers): comparisons of near-threshold π^- and π^+ and also *n-p* spectra and flows at RIKEN, Japan. NSCL/MSU, Texas A&M U Western Michigan U, U of Notre Dame GSI, Daresbury Lab, INFN/LNS U of Budapest, SUBATECH, GANIL China IAE, Brazil, RIKEN, Rikkyo U Tohoku U, Kyoto U

AT-TPC Collaboration (US & France)

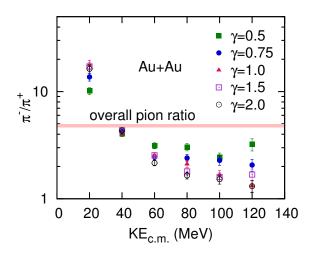


Danielewicz, Lee & Hong

FOPI: π^-/π^+ at 400 MeV/nucl and above Hong & PD, PRC in press: measured ratios reproduced irrespectively of $S_{int}(\rho) = S_0 (\rho/\rho_0)^{\gamma}$:



Original Idea Still Correct for High- $E \pi$'s



ightarrow charge-exchange reactions blur the signal ightarrow

Symmetry Energy

Danielewicz, Lee & Hong

Conclusions

- Symmetry-energy term weakens as nuclear mass number decreases: from $a_a \sim 23$ Mev to $a_a \sim 9$ MeV for $A \leq 8$.
- Weakening of the symmetry term can be tied to the weakening of S(ρ) in uniform matter, with the fall of ρ.
- Convergence observed for conclusions on S(ρ) at moderately subnormal densities, from variety of data, including isobaric analog states, and from microscopic calcs testing mostly 2-body ints.
- In the region of ρ ≥ ρ₀, S(ρ) is quite uncertain. One promising observable is the high-energy charged-pion yield-ratio around NN threshold.

PD&Lee NPA922(14)1; Hong&PD arXiv:1307.7654, in press NSF PHY-1068571 & PHY-1403906

- Symmetry-energy term weakens as nuclear mass number decreases: from $a_a \sim 23$ Mev to $a_a \sim 9$ MeV for $A \leq 8$.
- Weakening of the symmetry term can be tied to the weakening of S(ρ) in uniform matter, with the fall of ρ.
- Convergence observed for conclusions on S(ρ) at moderately subnormal densities, from variety of data, including isobaric analog states, and from microscopic calcs testing mostly 2-body ints.
- In the region of ρ ≥ ρ₀, S(ρ) is quite uncertain. One promising observable is the high-energy charged-pion yield-ratio around NN threshold.

PD&Lee NPA922(14)1; Hong&PD arXiv:1307.7654, in press NSF PHY-1068571 & PHY-1403906

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Symmetry-energy term weakens as nuclear mass number decreases: from a_a ~ 23 Mev to a_a ~ 9 MeV for A ≤ 8.
- Weakening of the symmetry term can be tied to the weakening of S(ρ) in uniform matter, with the fall of ρ.
- Convergence observed for conclusions on S(ρ) at moderately subnormal densities, from variety of data, including isobaric analog states, and from microscopic calcs testing mostly 2-body ints.
- In the region of ρ ≥ ρ₀, S(ρ) is quite uncertain. One promising observable is the high-energy charged-pion yield-ratio around NN threshold.

PD&Lee NPA922(14)1; Hong&PD arXiv:1307.7654, in press NSF PHY-1068571 & PHY-1403906

イロト イポト イヨト イヨ

- Symmetry-energy term weakens as nuclear mass number decreases: from a_a ~ 23 Mev to a_a ~ 9 MeV for A ≤ 8.
- Weakening of the symmetry term can be tied to the weakening of S(ρ) in uniform matter, with the fall of ρ.
- Convergence observed for conclusions on S(ρ) at moderately subnormal densities, from variety of data, including isobaric analog states, and from microscopic calcs testing mostly 2-body ints.
- In the region of ρ ≥ ρ₀, S(ρ) is quite uncertain. One promising observable is the high-energy charged-pion yield-ratio around NN threshold.

PD&Lee NPA922(14)1; Hong&PD arXiv:1307.7654, in press NSF PHY-1068571 & PHY-1403906

- Symmetry-energy term weakens as nuclear mass number decreases: from a_a ~ 23 Mev to a_a ~ 9 MeV for A ≤ 8.
- Weakening of the symmetry term can be tied to the weakening of S(ρ) in uniform matter, with the fall of ρ.
- Convergence observed for conclusions on S(ρ) at moderately subnormal densities, from variety of data, including isobaric analog states, and from microscopic calcs testing mostly 2-body ints.
- In the region of ρ ≥ ρ₀, S(ρ) is quite uncertain. One promising observable is the high-energy charged-pion yield-ratio around NN threshold.

PD&Lee NPA922(14)1; Hong&PD arXiv:1307.7654, in press NSF PHY-1068571 & PHY-1403906

