

Open Heavy Flavor Measurements at STAR

★ Topics to Research

- ★ properties of the strongly-coupled system produced at RHIC
- * weak or strong interactions of heavy quarks with QCD matter
- ★ detailed mechanism of heavy quark energy loss

★ Topics to Research

- ★ properties of the strongly-coupled system produced at RHIC
- * weak or strong interactions of heavy quarks with QCD matter

★ detailed mechanism of heavy quark energy loss

★ Heavy Quarks c, b

★ produced in initial hard processes

- ★ probe the strongly interacting Quark-Gluon Plasma
- ★ modified spectrum: access to energy loss
- ★ flow: sensitive to dynamics, thermalization

Outline

sQGP signatures and properties using

- ★ open charm mesons
 - p+p 200 and 500 GeV
 - ➡ Au+Au 200 GeV
 - ➡ U+U 193 GeV
- ★ non-photonic electrons (NPE)
 - Au+Au 39, 62.4 and 200 GeV

How to Measure Charm Quarks

A+A

David Tlusty

How to Measure Charm Quarks

- Indirect measurements through semileptonic decay (NPE)
 - \odot can be triggered easily (high p_T)
 - 🥹 higher Branching Ratio
 - 😕 can't reconstruct invariant mass
 - contribution from both charm and bottom hadron decays

A+A

How to Measure Charm Quarks

- Indirect measurements through semileptonic decay (NPE)
 - \odot can be triggered easily (high p_T)
 - 🥹 higher Branching Ratio
 - 😣 can't reconstruct invariant mass
 - contribution from both charm and bottom hadron decays

Direct reconstruction

- 🥹 can reconstruct invariant mass
- STAR has ability to collect large amount of data
- 😣 smaller Branching Ratio
- large combinatorial background (until 2014)

A+A

Daughter Particle Identification

TOF provides clean sample of kaons with momentum up to $\sim 1.6 \text{ GeV/c}$

kaon - pion separation better by TPC than by TOF for track with momentum above ~2.5 GeV/c

Daughter Particle Identification

Daughter Particle Identification

David Tlusty

STAR

D^{*} Meson Reconstruction

ICNFP 2014, Kolymvari

STAR

8

8

STAR

D⁰

Production Cross Section in p+p collisions

D⁰ production in Au+Au

D⁰ production in Au+Au

Charm is mostly produced in initial hard processes

David Tlusty

D⁰ suppression in Au+Au

David Tlusty

D⁰ suppression in Au+Au

- p+p baseline from Levy fit to Run 09 data
- strong suppression in central collisions at p_T > 2GeV/c
- like the suppression of pions
- enhancement at $1 < p_T < 2 \text{ GeV/c}$

David Tlusty

D⁰ suppression in Au+Au

- p+p baseline from Levy
 fit to Run 09 data
- ★ strong suppression in central collisions at p_T > 2GeV/c
- ★ like the suppression of pions
- ★ enhancement at 1 < p_T < 2 GeV/c
- Understanding from models
- The enhancement is predicted by models that include charmlight quark coalescence
- The suppression is consistent with strong charm-medium interaction
- Cold Nuclear Matter effects might be important

D⁰ in U+U collisions

U+U collisions reach ~20% higher Bjorken energy density than Au+Au **PRC 84 054907**

D⁰ in U+U collisions

U+U collisions reach ~20% higher Bjorken energy density than Au+Au **PRC 84 054907**

12

D^0 in U+U collisions

 $Y_{e^{-}}$

 ϵ_{γ}

Non-photonic Electrons (NPE) Measurements

$$Y_{\rm NPE} = \zeta Y_{e^-} - \frac{Y_{\gamma}}{\epsilon_{\gamma}}$$

- $Y_{
 m NPE}$: Yield of Non-photonic electrons
 - : Purity of inclusive electrons
 - : Yield of inclusive electrons
- Y_γ : Yield of the photonic electrons
 - : Efficiency of photonic electrons reconstruction

$$\begin{array}{c} \mbox{main sources of photonic electrons:} \\ \pi^0 \rightarrow \gamma + e^+ + e^- \qquad \eta \rightarrow \gamma + e^+ + e^- \qquad \gamma \rightarrow e^+ + e^- \end{array}$$

 $Y_{e^{-}}$

Non-photonic Electrons (NPE) Measurements

$$Y_{\rm NPE} = \zeta Y_{e^-} - \frac{Y_{\gamma}}{\epsilon_{\gamma}}$$

- $Y_{
 m NPE}$: Yield of Non-photonic electrons
 - : Purity of inclusive electrons
 - : Yield of inclusive electrons
- Y_{γ} : Yield of the photonic electrons
 - : Efficiency of photonic electrons reconstruction

main sources of photonic electrons:

$$\pi^0 \rightarrow \gamma + e^+ + e^ \eta \rightarrow \gamma + e^+ + e^ \gamma \rightarrow e^+ + e^-$$

secondary contributions: ρ , ω , Φ Dalitz decays, Drell-Yan, Charmonia

NPE in 200 GeV Au+Au collisions

🖈 Suppression

- ★ significant suppression of NPE in central collisions at p_T > 4 GeV/c
- \star similar to that of D⁰ and light hadrons
- ★ radiative energy loss alone not enough to explain the suppression
 - consistency with SUBATECH model for D⁰ R_{AA}
- ★ Anisotropy (v₂)
 - ★ Substantial elliptic flow of NPE is seen in 200 GeV Au+Au collisions

STAR

NPE in 39 and 62.4 GeV Au+Au collisions

David Tlusty

Summary

- Charm pair production x-section in p+p collisions is consistent with pQCD predictions
- Total D⁰ x-section follows N_{bin} scaling confirming that charm is produced in initial hard processes
- D⁰ enhancement around 1.5 GeV/c suggests charm-light quark coalescence
- Strong suppression of D⁰ production above 3 GeV/c in central Au+Au collisions indicates strong charm-medium interaction
- \star U+U measurements show similar suppression pattern to Au+Au
- Non-photonic electrons in Au+Au at 62.4 GeV not suppressed and have elliptic flow consistent with zero, contrary to 200 GeV

Summary

- Charm pair production x-section in p+p collisions is consistent with pQCD predictions
- Total D⁰ x-section follows N_{bin} scaling confirming that charm is produced in initial hard processes
- D⁰ enhancement around 1.5 GeV/c suggests charm-light quark coalescence
- Strong suppression of D⁰ production above 3 GeV/c in central Au+Au collisions indicates strong charm-medium interaction
- ★ U+U measurements show similar suppression pattern to Au+Au
- Non-photonic electrons in Au+Au at 62.4 GeV not suppressed and have elliptic flow consistent with zero, contrary to 200 GeV

Stay tuned for new great results with HFT and MTD

Thank you

STAR Heavy Flavor Tracker Project.

- Reconstruct secondary vertex.
- ✓ Dramatically improve the precision of measurements.
- Address physics related to heavy flavor.
- v_2 : thermalization
- R_{CP}: charm quark energy loss mechanism.

Models For RAA

	TAM U	SUBT ECH	Torin o	Duke	LAN L
HQ prod.	LO	FNOLL	NLO	LO	LO
QGP-Hydro.	ideal	ideal	viscou s	viscous	ideal
HQ eLoss	coll.	coll. +rad.	coll +rad.	coll +rad.	diss. +rad.
Coalescence	Yes	Yes	No	Yes	No
Cronin effect	Yes	Yes	No	No	Yes
Shadowing	No	No	Yes	Yes/No	Yes

★ Understanding from models

- The enhancement is predicted by models that include charm-light quark coalescence
- ★ The suppression is consistent with strong charm-medium interaction
- Cold Nuclear Matter effects might be important