
Low-Power Analogue Receiver ASIC for Space Telecommand Applications

S. Chiccaa , F. Bigongiaria, G. Piscopielloa, G. Tuccioa

aSITAEL, 56122 San Piero a Grado (Pisa), Italy

amicsa2014@cern.ch

Abstract

In this paper an ASIC implementation of an analogue

receiver chain for telecommand applications for Category A

missions (Return-to-Earth, lunar and even Lagrangian

missions) will be presented. More specifically, in addition to

the Low-Density Parity Check (LDPC) 128 bit analogue

decoder component, the ASIC receiver will also include other

important blocks of the telecommand reception chain

normally accomplished inside an FPGA device, such as IF

coherent demodulation stage front end, carrier recovery,

baseband clock recovery, data conversion from input SP-L

signal to NRZ codify, Start Frame pattern recognition,

analogue memory for input codeword storing. The ASIC is

now in detail design phase and it will be manufactured in

XFAB 0.18um technology.

I. INTRODUCTION

Nowadays, on-board telecommand receivers for space

applications consume an important percentage of the overall

offered power of the satellite, especially due to their always

ON need of operations.

Decoders, in charge of elaborating received data and of

providing error correction according to redundancy

introduced by related encoding protocol are one of the

fundamental components of a satellite receiver. They

currently follow a digital development approach based on a

large FPGA. Even though, initially, the power consumption of

digital decoders was not a factor of concern, the increasing

communication and data storage complexity and capacity

makes the applicability of error correction codes in a digital

domain more and more expensive in terms of hardware

resources and power consumption.

Therefore, in the last ten years, being analogue decoding

recognised for its potential to efficiently decrease the overall

power consumption of a receiver, an important growth in

analogue decoding research programs is registered, although

only a few VLSI integrated circuits have been developed

satisfying a given communication standard. Analogue domain

implementation of error correction codes, despite its lower

power consumption potential with respect to its digital

counterpart, seems to also provide some additional

advantages: it takes benefit from the similarity between the

mathematical operations required by the algorithms and the

physical laws governing the circuit; it improves the total

system efficiency, because the analogue decoder is much

smaller than its digital counterpart and consumes about one

order of magnitude less power at the same frequency; it offers

high modularity design more immune to noise, by means of

differential operation; it offers the capability of providing a

finer estimation of the logic state of a single information unit

with respect to digital implementations (no quantization); it

needs a lower signal to noise ratio to properly correct a wrong

input sequence of information unit.

Thus, the proposed paper will address such benefits of an

on-board analogue receiver chain implementation for

telecommand applications for Category A missions (Return-

to-Earth, lunar and even Lagrangian missions.

In particular, Low-Density Parity Check (LDPC) 128 bit

analogue decoder have been chosen as the design basis of the

analogue decoder, since it showed in preliminary

investigations a big potential for increased power saving when

short length codes are concerned as of telecommand

communication for Category A missions. Moreover, the

analogue receiver will be compliant with the communication

protocol described in ECSS-E-ST-50-04C “Telecommand

protocols synchronization and channel coding”.

The paper is organized as follow: in the Section II the

ASIC architecture description has been reported whereas

details about the receiver, symbol synchronization, codify

block and start frame recognizer have been reported

respectively in sections III, IV, V and VI. The decoder core

organization has been described in section VII and, finally,

the conclusion has been reported on Section VIII.

SITAEL S.p.A. has produced all relevant work in the

frame of “RLP_AD: Receiver Low-Power Analogue

Decoder” activity (ESA TRP), developed in the context of

ESA ITT AO/1-6722/11/NL/GLC with the aim of

investigating feasibility of analogue decoding for space

applications.

II. ARCHITECTURE DESCRIPTION

The ASIC Block Diagram is reported in Figure 11.

The Serial Programming Interface (SPI) accepts external

customized commands for proper internal bias and for test

modes configuration.

The analogue input to the ASIC is the intermediate

frequency DC component and the sidelobes of the modulated

signal: the in-phase and the in-quadrature components of

baseband signal are produced internally to the ASIC, after the

final down conversion step, and they are filtered and

amplified inside the AFE (Analog Front End) block.

The CR (Carrier Recovery) section provides to the local

mixer a suitable frequency (same as carrier frequency) and

phase (such that maximizes the In-Phase baseband

demodulated component) for down conversion purposes:

carrier tracking proceeds by extracting the carrier frequency

to be tracked by the PLL from the received signal, and by

aligning the tracking-carrier phase according to a signal-

energy-maximization principle.

In details, carrier phase tracking is achieved by correcting

the PLL phase based on the measured amplitude inside the

demodulated channels: the aim of phase correction is to re-

phase the oscillation output by the PLL and used for local

mixing (demodulation) in order to maximize the in-phase

signal energy with respect to the in-quadrature signal energy.

Downstream circuitry accepting the demodulated signal

operates only on the in-phase demodulated baseband signal.

The SSU unit (Symbol Synchronization Unit) operates the

clock extraction from the baseband PCM/PM/BI-PHASE

signal: a local PLL tracks the data transition synchronism

(since SP-L codify guarantees always at least one transition

per clock cycle). Clock recovery is operated in the digital

domain, that simplifies the PLL configuration. Due to the

digital configuration adopted for clock recovery, ad hoc

matched filtering must necessarily be provided inside the

Codify Conversion block.

The CC (Codify Conversion) section converts the data

codify from PCM/PM/BI-PHASE to NRZ codify. The

PCM/PM/BI-PHASE to NRZ conversion task is performed by

differentiating the left and right symbol half integrations with

respect to the useful clock edge of data transition. Integration

provides matched filtering and noise averaging.

Finally, the decoder block presides to data decoding and

provides output NRZ digital decoded data and clock for

sampling: it is able to trigger when a Start Frame pattern is

recognized and it is able to stop decoding once an End Frame

command is detected, waiting for next Start Frame pattern.

Being the signal processing chain of ASIC a fully

concatenated-cascaded chain, several test modes are foreseen

in order to allow verification of single functional sections.

III. RECEIVER SECTION DESCRIPTION

The Receiver Section is composed by AFE and CR block.

The block diagram is reported in Figure 1.

I

AFE

vi(t)
vii(t)=A(t)cos(φφφφ)

vqq(t)=a(t) sin (ϕϕϕϕ)

I

Q

AFE

C
a
rr

ie
r

R
e

c
o

v
e

ry

L
N

A

X

X

IF

downconversion
(if not direct)

RF

90 °

vi(t)

vq(t)

PLL

vii(t)=a(t) cos (ϕϕϕϕ)

vm(t)

vref(t)

ref

X

squaring QDsin(2ω(2ω(2ω(2ωt)

Q

:2

Phase tracking

Frequency tracking

v(t)=a(t) cos(ωωωωt + ϕϕϕϕ)

amplitude

detector and

amplifiervc(t)=M*ampl(vqq(t))

cos(ωωωωt)

sin(ωωωωt)

s1

s2

s3

internal
filter

Figure 1: Receiver Section Block Diagram.

The carrier frequency recovery (which mixer works at

8MHz of IF) can be operated in two (2) different ways:

a. by a squaring and frequency divider by two, which sends

a reference reconstructed frequency to the PLL (with

switches s1 closed, s2 and s3 open). This configuration is

a standard frequency recovery approach for BPSK

suppressed-carrier signals;

b. by using the carrier-only transmission phase CMM1 of

PLOP2 procedure [1] to drive the PLL output frequency

in the neighbours of carrier frequency (s1 initially closed,

s3 open, s2 open), and, once the PLL is in lock, by

leaving the internal VCO being controlled by the

amplitude detector and amplifier block (s3 closed, s1 and

s2 open). The training frequency during CMM1 phase

can be optionally provided by a local oscillator (s2

closed, s1 and s3 open). s3 and s1/s2 switch activity is

mutually exclusive in time, and it is governed by the PLL

lock signal. A dedicated internal configuration selects

between s1 and s2 training options.

Carrier phase tracking is achieved by correcting the PLL

phase based on the measured amplitude inside the

demodulation channels: the aim of phase correction is to re-

phase the oscillation output by the PLL and used for local

mixing (demodulation) in order to maximize the in-phase

signal energy with respect to the in-quadrature signal energy.

Downstream circuitry accepting the demodulated signal

operates only on the in-phase demodulated baseband signal.

The amplifier and filter inside the AFE chain condition the

down-converted signal and filter the out-of-band signal

components.

The AFE block has twofold functionality: to produce the

final signal down-conversion for demodulation purposes on

both I and Q signal components by using properly re-phased

local reconstructed carrier and to amplify and filter the

baseband demodulated I and Q signals. For this purpose,

continuous time bi-quad filters are used in order to reject the

image frequency components. The DC-rejecting amplifiers

are used in order to reject the DC component at amplifier

input.

IV. SYMBOL SYNCHRONIZATION UNIT DESCRIPTION

The Symbol Synchronization Unit is composed by a Data

Transition Detector and a Clock Recovery Unit.

The Data Transition Detector Unit is a simple comparator

whereas the Clock Recovery Unit is a PLL like the one shown

in Figure 2 which receives the 1-bit quantized data

information and locks its oscillating frequency to the data

transition frequency.

The clock recovery function extracts the clock information

from the demodulated symbol data stream in order to allow

correct signal sampling inside the matched filter and decoder

downstream sections.

The main drawback of employing linear phase detectors in

the PLL loop is that the phase detector response strongly

depends on transition density, that has an heavy impact on

clock phase jitter.

In PCM/PM/BI-PHASE signals (Figure 3), transitions are

allowed to happen or synchronously with the data clock (in a

string of all “0” or in a string of all “1” logic signal) or every

clock rising edge (in a string of alternating “0” and “1” logic

signal).

VCO

D

CK

Q

Q

D

CK

Q

Q

XOR

XOR

Filter

Charge Pump

Phase Detector

up

down

data_in

clk

up signal

down signal

A B

A

B

digitized

data_in

Figure 2: signal activity and timings for the Hogge’s phase detector.

Retimed data are present at the output of lower flip flop.

Since there is a factor two between the transition

frequency corresponding to the two above different cases, the

transition density dis-uniformity is important: as an effect, the

equivalent phase detector gain walking causes an important

dispersion in the reconstructed clock phase.

PLL transient PLL transient

PLL locks on clock

frequency

PLL locks on
double clock

frequency

Acquisition Sequence (always "0" "1" "0") Code Block Data

Figure 3: PLL acquisition sequence.

To overcome this issue, a principle has been applied,

which equalizes the transition density and takes benefit of the

property of PCM/PM/BI-PHASE signals of presenting always

a data transition at the significant lock edge.

In practice, a PLL employing a standard linear phase

detector is adopted using a certain (programmable) frequency

divider in the feedback chain: the high-frequency clock at the

input of frequency divider (VCO output) is used as a

synchronism in order to mask the undesired transitions from

the input data sequence, and to equalize data transition density

over time.

After the PLL locks during the data Acquisition Sequence,

the introduced synchronism allows to keep the transition

density constant over time after the Acquisition Sequence

ends and code block reception starts (with related data

transition density discontinuities).

This mechanism allows the phase detector to operate with

a fixed gain, greatly improving the performances of the PLL

itself and reducing clock frequency/phase jitter.

The synchronism signal used to equalize the data

transition density practically masks the extra-transitions not

synchronous with the clock rising edge in the data stream,

according to the principle reported in Figure 4.

maskmask

SP-L data_in

clk

data transitions

PLL lock signal

sync for masking (0=> mask)

Figure 4: Masking data transitions operation to equalize data

transition density over time.

As a result of masking operation, the data transitions are

only the useful data transitions at symbol middle point

individuated during the Acquisition Sequence, and any other

data transition (used in PCM/PM/BI-PHASE codify for

properly set upping data level before the symbol middle

transition) is discarded and not used for PLL phasing.

In details, the symbol duration is divided into 4 equally

spaced quadrants during the Acquisition Sequence: once the

PLL locks and after Acquisition Sequence ends, this quadrant-

spacing is kept for each symbol and data transitions

happening within the second and the third quadrant are

systematically masked.

data_in

clk

 x 2 clk

masking clk

masked transition

Figure 5: Clock multiplying internal to PLL allows an easy data

transition masking principle.

Masking operation is enabled only if the PLL is locked

during the Acquisition Sequence and the locking status is

detected during the Acquisition Sequence when the transitions

passible of masking are not detected for a certain number of

clock cycles.

The masking mechanism provides a systematic solution to

the transition density uncertainty proper of PCM/PM/BI-

PHASE signals. Another mechanism is part of the PLL design

to improve the PLL noise tolerance. This different mechanism

detects the missing data transitions and inserts transitions into

the data stream fed to the PLL in order to maintain the PLL in

lock condition.

By summarizing, the strategy for the clock recovery is:

a. during the Acquisition Sequence to achieve the lock

starting from the first data transition, a timeout

corresponding to the expected symbol rate inserts

artificial transitions when missing transitions are detected

by the timeout in the data stream;

b. once the lock is achieved, the masking mechanism is

enabled: in this way, data transition corresponding to the

clock edge not representing the SP-L are systematically

masked to the PLL, in order to avoid PLL frequency

walking according to the data transition density.

Both mechanisms are aimed to provide to the PLL a

constant data transition density in order to maintain the lock.

The lock status of clock recovery PLL is used to enable

downstream signal processing chain, in details the Start Frame

Recognizer

The data rate change is achieved internally to the clock

recovery circuit by properly programming (through SPI) the

frequency divider that is used inside the PLL loop. This

frequency divider allows obtaining six (6) binary

progressively increasing data rates from 8Kbit/s to 256Kbit/s.

V. CODIFY CONVERSION DESCRIPTION

Once the data clock is extracted, correct data sampling is

possible. However, soft values are required to be passed to the

analogue decoder by avoiding any squaring operation on

analogue levels before decoding: on the contrary, an analogue

level has to be stored inside the decoder memory

representative of the log-likelihood probability of

corresponding bit. Hence, this representative level has to be

constructed and sampled. Sampling analogue could be

affected by superimposed noise; in fact considering at the

moment NRZ signals, if at sampling instant a large noise

spike is superimposed to the signal, the resulting sampling is

affected by that noisy sample. If, instead, the symbol level is

subjected to a continuous integration operation during the

symbol period, the sampling of the result at symbol end will

take advantage from the integration, allowing an effective

noise filtering and a signal-to-noise ratio maximization.

0 0 01 1

0 1 0 0 1

0

retimed NRZ
converted data

right side symbol

integration

left side symbol
integration

clock

input SP-L signal

(left-right) side

integration

NRZ signal

Figure 6: Conversion of PCM/PM/BI-PHASE signal into NRZ signal

by averaging noise on half symbol periods and by measuring the

level jump related to received logic state at clock edge.

In PCM/PM/BI-PHASE signals, the logic state

information resides in the sign of level jump experienced at

clock rising edge: if the data stream presents a positive jump,

it is associated with the reception of a logic “0” whereas if the

data stream presents a negative jump, this is associated with

the reception of a logic “1”.

As a conclusion, averaging noise on logic states when

codified according to the PCM/PM/BI-PHASE convention

means producing the differentiation between the integration

results of right-symbol side and left-symbol side (Figure 6):

the differentiation result is sampled on the opposite clock

edge with respect to data transition in order to provide the

NRZ data conversion.

VI. START FRAME RECOGNIZER AND DATA

MEMORY

The input data stream pattern, to be recognized in order to

allow decoding operation starts, is composed by 16-bit logic

pattern 1110101110010000; however the programmability of

the target pattern can easily be achieved through SPI

interface. For pattern recognize a sliding window approach

has been used. The incoming level is stored bit-by-bit into a

16-bit analogue First-In First-Out chain and each value is

compared with the 16 values corresponding to the pattern to

be recognized; the 16-bit correlations between received and

expected bit are summed too (Figure 7).

If the correlation result exceeds a certain (externally

programmable) correlation threshold, the Start Frame pattern

is recognized, and the START flag is asserted for decoding

operation and it will remain asserted until an End Sequence

will be recognized. Multiple triggers caused by possible

recognition of a Start Frame sequence during normal

decoding operation has been carefully avoided.

Figure 7: Acquisition Sequence Recognizer functional description.

The input memory is in charge of storing the incoming

serial input analogue values upon each clock cycle into a

corresponding memory cell, before parallel feeding the values

to the decoder core for elaboration.

In principle, after the input values are stored inside the

memory, they are fed all simultaneously to the decoder core

for parallel decoding operation. With this approach, a “dead

time” in input data throughput should be observed between

the reception of two consecutive words caused by the

decoding time. This constraint, although tolerated by a

demonstrator, becomes unacceptable in real applications,

where data throughput is in general continuous and a double

buffer strategy seems better responding to the requirements.

Double buffering allows to fill one memory with incoming

analogue values while the second memory is being redirected

in parallel to the decoder inputs: in front of the cost of an

additional memory, data throughput is allowed to be

continuous, and the period available for the decoder core to

converge into the decoded sequence is the whole period

needed for receiving a single (next) encoded word, with a

single word latency. This last property of double buffering

relaxes the decoder speed requirements and hence the power

consumption requirements.

The memory organization is reported in Figure 8.

w1a_N w1a_k w1a_0

stby

Vcom

+

-

HZ

+ - + - + -

Vcom

WRITE

SEQUENCER

channel input

(input line)

dataN datak data0

w2a_N w2a_k w2a_0

R1 R1 R1

R2 R2 R2

R1a R1a R1a

R2a R2a R2a

CA CA CA

w1_N w1_k w1_0

w2_N w2_k w2_0

WRITE

SEQUENCER

not read

Figure 8: Double buffer memory structure.

Two arrays of capacitors, building the memory storing

elements, are alternatively charged to store the incoming word

values. A single input buffer provides the current capability

for charging the quite high-capacitive writing line (due to the

long tracks stray capacitances): the capacitors are charged in

sequence, according to the switches “w1_k/w1a_k”, whose

timings are synchronous with the input signal sampling

operation.

While one of the memories is written sequentially with the

incoming analogue values, the other one is read-out in a block

and its values are fed in parallel to the analogue decoder core;

during the read operation, each memory capacitor is

connected as the feedback element of the column amplifier

(CA), which provides an unitary replica of the input voltage

stored in the capacitor element, referred to the common mode

voltage. It is noticed that a single column amplifier is used

which serves two different memory cells, read and written in

different times: while one of the two memory cells connected

to the unique amplifier is written (by storing a charge into the

capacitor actually connected between the input line and the

common mode reference), the column amplifier is in closed

loop connection because it serves the other memory cell, so

that its negative input terminal is never floating.

Finally, and for correctly resetting the decoder after each

decoding operation, each column amplifier is connected as a

buffer to produce an output level corresponding to the same

common mode voltage for memory and decoder when no

memory read operation occurs that is when a decoding

operation is just finished and a new decoding operation is not

yet started. It is noticed that, thanks to switches “R1a” and

“R2a” in Figure 8, the resetting operation does not affect

memory cells write operation.

With the purpose of using the above described reset phase

also to discharge the memory capacitors before next memory

bank write operation, the deactivation of read switches “R”

and “Ra” of Figure 8 is delayed of half clock cycle with

respect to the logic signals read. During this half clock cycle,

the memory bank is still in its read phase, but the reset switch

is closed, allowing the memory capacitor discharges (Figure

9).

In the following, some details about the optimum timing

sequence for switches closing/opening are discussed with

respect to charge injection issues.

The charge in steady state condition for each capacitance

when the writing switches are both closed is determined

basically by the signal-to-common-mode level, and both the

input channel buffers and the common mode buffer driving

the line “Vcom” in Figure 8 are low impedance nodes.

When the write operation ends for a single capacitor, the

switch “wa” are open, whereas switch “w” remain in the low

impedance state. Since the switch “wa” has a null voltage at

its terminals, the charge injection expected by its turning OFF

is a constant amount, not signal depending and this means that

a systematic offset is added to the useful signals but no signal

distortion is introduced by charge injection phenomena.

Selecting a common mode voltage close to half the power

supply rail and by implementing the switch as a carefully-

sized complementary-transistors pass gate, the positive charge

injection related with the pass-gate PMOS opening (which

causes the bottom plate voltage of memory capacitor raises) is

compensated by the equivalent negative pass-gate NMOS

opening charge injection, thus leading in compensating

effects.

During the read operation, still the closing sequence of

switches “R” and “Ra” has poor relevance, because, until

both switches are closed, no charge injection can occur: on the

other hand, in steady state conditions, the memory capacitor

terminals are respectively the CA (virtually to ground forced

to “Vcom” level by the amplifier gain) and the CA low-

impedance output node. When the read operation ends, first

“Ra” switches open and as previously noticed for the write

operation, the charge injection related with “Ra” switches

opening is a constant amount of charge, not signal depending,

which can be compensated for by adopting careful pass-gate

design for the switches; of course, once “Ra” switches are

open, no charging of capacitor can happen by the subsequent

opening of switches “R”.

The most expensive power consumption inside the

memory block is imputed to the line buffers because they

have to provide the memory-capacitors charging/discharging

currents within a single clock period, whereas the column

amplifiers settling time is drowned in the longer decoding

time.

data from bank 1 to

decoder

data from bank 2 to
decoder

read 1

read 2

not read

column amplifier unity gain (buffered

common mode to decoder)

R1a switch
control

R2a switch
control

bank2 capacitor is reset

bank1 capacitor is reset

bank2 capacitor is reset

Figure 9: Timings diagram for decoder reset and memory bank

capacitors reset on delayed read phase end.

VII. DECODER CORE ORGANIZATION

The last element of the receiver chain is the Decoder.

According to ESA interest in LDPC short length code block

codes for telecommand applications ([1] and [2]), the decoder

implements the min-sum algorithm on the code LDPC (128,

64) referred in [2], which uses 64 check nodes, 8-bit-

complexity each.

The mathematical steps of min-sum approximation

approach to LDPC decoding and the main architectural results

have been summarized in the general schema of Figure 12 and

Figure 13.

The whole decoder configures as an asynchronous

analogue network, built basically by two types of macro-cells

(variable and check nodes), in which the decoding law is

established by the interconnections between the cells at

routing level, virtually programmable by metal mask option.

The iteration principle of digital implementation for

solving the check law equations by progressively converging

estimations is substituted by a continuous back-connection of

each estimation-process-output at the estimation-process-

input that forces the network to find its equilibrium “final”

point estimations that satisfy the decoding law. Iterations and

related overclocking with respect to input data throughput are

hence suppressed, together with the need of checking the

parity check matrix at each step in order to verify

convergence.

By referring Figure 13, each variable node (“qij” level in

the picture) calculates its own estimation, based on input log-

likelihood data and based on data provided by all check nodes

which are providing an estimation for that variable node,

except the check node to which the variable node is just

sending its own estimation.

Each parity check node (“rji” level in the picture) provides

an estimation of each variable nodes afferent to it, by applying

the parity check law (min-sum) to all other variable nodes

(other than the one under estimation) afferent to it.

Both message forming processes (from the variable nodes

to the check nodes and in the contrary direction) take place by

adopting an extrinsic information principle: the information

produced by a node (at its output) is never looped at its input

to confirm itself but on the contrary, the information building

process inside each node (variable or check node) always

happens on the base of the information passed by different

nodes.

The above observation is at the base of correct decoding

principle: it may be noticed that each estimation of a single

log-likelihood variable ��� passed to check node j in Figure 13

is built by summing all estimations available for that variable

(included the input log-likelihood level) except its estimation

produced just by node j.

In the log min-sum approximation of the sum-product

algorithm, the functionality of each variable node is log-

likelihood probabilities summing (current sum), whereas the

functionality of each check node is to select the minimum

confidence (absolute value) of input log-likelihood

probabilities and to assign it the expected sign for the check

node output message.

Consequently, the basic processing analogue cells required

for implementation are as follows:

o at variable node level, a voltage-to-current conversion

must be operated to convert the input log-likelihood

voltage levels into currents (the current sum can be easily

performed afterwards by wiring currents together)

o at check node level, the minimum absolute value of input

currents (disregarding their sign) has to be produced. To

this purpose, each input variable to the check node is

treated and de-composed in amplitude and sign (Figure

10): a looser takes all circuit coupled with a multiplexer

(block “select min (|u|)”) and it is used to select the

minimum amplitude and the sign computation is

performed by propagating the sign through XOR digital

gates; finally, a reconstruction block is used to assign the

proper sign to the minimum individuated for the output

amplitude.

|u|

|u|

|u|

|u|

sign(u)

sign(u)

sign(u)

sign(u)

select
min(|u|)

select
min(|u|)

select
min(|u|)

select

min(|u|)

extrinsic information
routing

digital

XOR

digital XOR

digital XOR

digital XOR

extrinsic information

routing

c1

c3

c4

c7

^

^

^

^

min signal

reconstruction

min signal
reconstruction

min signal

reconstruction

min signal

reconstruction

c1'(0)

c3'(0)

c4'(0)

c7'(0)

Figure 10: Details of the min-sum check node

functionality.

The above operation performed by the check node finds its

implementation in Figure 14, which reports the organization

of the basic 8-bit check node. The sub-block VN implements

the functionalities of absolute value extraction and sign

extraction of Figure 10, but it presides also to extract the a

priori information and to combine this information with check

nodes messages (∑ operator of Figure 13). The LTA sub-

block implements the minimum absolute value extraction and

selection and the XOR sub-block implements the sign

attribution to the check node estimation. Hence, for each input

variable i, the schematic of Figure 12 selects minimum

confidence and assigns logic sign to force parity-check law. In

performing this operation, it applies an extrinsic information

principle, basing its estimation about variable node i by

relying only on other variable nodes (other than i) afferent to

it.

Figure 15 shows the LDPC 128 bit decoder hardware

organization.

VIII. CONCLUSIONS

In this paper have been presented a complete analogue

receiver chain ASIC for telecommand applications for

Category A missions (Return-to-Earth, lunar and even

Lagrangian missions). Advantage and disadvantage of the

analogue implementation respect to the traditional digital

implementation based on FPGA have been presented. The

blocks component the receiver have been described in detail

and their functionalities have been analysed.

The receiver is now in detail design phase and it will be

manufactured in XFAB 0.18um CMOS process.

IX. REFERENCES

[1] “European Cooperation for Space Standardization –

Engineering – Space data links - Telecommand protocols,

synchronization and channel coding”, ECSS-E-ST-50-04C,

Revision 2, 31/07/2008

[2] “Short Blocklength LDPC Codes For TC Synchronization and

Channel Coding - Draft Recommendation for Space Data

System Standards”, (ref. CCSDS 231.0-O-x.x, Orange Book,

April 2012)

QD

clock

NRZ symbol
stream

I

Q

clock for NRZ sample

AFE

CR

SSU

CC
DIGITAL PROGRAMMING (SPI)

S
T
A
R
T

F
R

E
N
D

F
R

X

90° phase shifter

X

IF sidelobes and DC

I

AFE

vi(t)
vii(t)=A(t)cos(φφφφ)

C
a

rr
ie

r
R

e
c
o

v
e

ry

PLL
vm(t)

ref

X

squaring

High Pass

QD
sin(2ω(2ω(2ω(2ωt)

Q

:2

Phase tracking

Frequency tracking

vc(t)=M*ampl(vqq(t))

amplitude
detector and

amplifier

CR

f
ref

Filter

Charge Pump

VCOPhase
Detector

Data
transition

detector

symbol synchronization and filter reset

SP-L digital
bit stream (test)

th

matched filter

h(t)

SP-L to NRZ
conversion

S/H

D

E
C
O
D

E
R

Figure 11: ASIC Block Diagram.

Figure 12: Check nodes for the referred (128, 64) code comprises 64 check nodes, each accepting systematically 8 bit from the variable node

sequence.

contacts maskcontacts mask

c1

c0

c
2

c3

c
4

c
5

c
127

c
128

ΣΣΣΣ

c
0

c
0
'(m)c

0
'(k)

ΣΣΣΣ

c
1

ΣΣΣΣ ΣΣΣΣ ΣΣΣΣ ΣΣΣΣ ΣΣΣΣ ΣΣΣΣ

c127'(p)c127'(o)
c

127

pr(c0=0)

pr(c
0
=1)

pr(c1=0)

pr(c
1
=1)

pr(c2=0)

pr(c
2
=1)

pr(c3=0)

pr(c
3
=1)

pr(c4=0)

pr(c
4
=1)

pr(cj=0)

pr(c
j
=1)

pr(c126=0)

pr(c
126

=1)

pr(c127=0)

pr(c
127

=1)

c0 c1 c2 c3 c4 cj c126 c127

qij level

rji level

c109'(29),

c109'(109)

c
0

c
7

c
18

c
46

f0

c
54

c
80

c
109

c
112

ΣΣΣΣ

ΣΣΣΣ

ΣΣΣΣ

ΣΣΣΣ ΣΣΣΣ

ΣΣΣΣ
c0'(9),
c0'(26),

c0'(44),

c0'(48)

c18'(18)

c18'(19)

c18'(34)
c18'(50)

c46'(31)

c46'(32)

c46'(47)

c46'(46)
c46'(53)

c54'(21),
c54'(40),

c54'(54),

c54'(57)

^ ^ ^ ^ ^ ^ ^ ^

c7'(7),
c7'(17),

c7'(35),

c7'(55)

c80'(32),

c80'(63),

ΣΣΣΣ

c112'(25),

c112'(45)

ΣΣΣΣ

+ + ++ + + ++

c0'(0) c7'(0) c18'(0) c46'(0) c54'(0) c80'(0)c109'(0)c112'(0)

c
15

c
16

c
40

c
60

f63

c
78

c
80

c
63

c
112

ΣΣΣΣ ΣΣΣΣ

ΣΣΣΣ ΣΣΣΣ

ΣΣΣΣ

^ ^ ^ ^ ^ ^ ^ ^

ΣΣΣΣ

ΣΣΣΣ

+ + ++ + + ++

c15'(63)

c16'(63)

c40(63)

c60'(63)

c78'(63)

c80'(63)

c63'(63)

c112'(63)

ΣΣΣΣ

c
1
'(l)c

1
'(m)

final computation level

Figure 13: Low-level description of the min-sum algorithm applied to the parity check matrix of Figure 12

VN

LTA

XOR

c1

acc_plus1

acc_minus1

mod1

sign1

mod2 to mod8

imodout1

sign2 to sign8 signout1

VN

LTA

XOR

c2

acc_plus2

acc_minus2

mod2

sign2

mod1, mod 3 to

mod8

imodout2

sign1, sign3 to
sign8

signout2

VN

LTA

XOR

c3

acc_plus3

acc_minus3

mod3

sign3
VN

LTA

XOR

c4

acc_plus4

acc_minus4

mod4

sign4

mod1 to mod3, mod5
to mod8

imodout2

sign1 to sign3, sign5
to sign8

signout2

mod1, mod2, mod4 to
mod8

imodout3

sign1, sign2, sign4
to sign8

signout3

VN

LTA

XOR

c5

acc_plus5

acc_minus5

mod5

sign5

mod1 to mod4, mod6
to mod8

imodout5

sign1 to sign4, sign6
to sign8

signout5

VN

LTA

XOR

c6

acc_plus6

acc_minus6

mod6

sign6

mod1 to mod5, mod7
to mod8

imodout6

sign1 to sign5, sign7

to sign8
signout6

VN

LTA

XOR

c7

acc_plus7

acc_minus7

mod7

sign7
VN

LTA

XOR

c8

acc_plus8

acc_minus8

mod8

sign8

mod1 to mod7

imodout8

sign1 to sign7 signout8

mod1 to mod6, mod8

imodout7

sign1 to sign6, sign8 signout7

select min with sign

ci_est

vi

Figure 14: Basic 8-inputs check node cell.

c_est(i,1)

.

.

c_est(k,1)

c_est(p,64)

.

.

c_est(s,64)

c_est(s,j)

.

.

c_est(i,j)

c_est(i,i)

.

.

c_est(r,i)

8 x 64 = 512
estimations

+

∑ ≠=
64

1h1,h
)h i,(c_est

+

. .

8 estimations

c(i)

c(k) check node 1

.

.

+

+
check node i

.

.c(r)

+

+
check node j

.

.

+

+
check node 64

.

.

∑ ≠=
64

1h1,h
)hk,(c_est

∑ ≠=
64

ih1,h
)h i,(c_est

. . ∑ ≠=
64

ih1,h
)hr,(c_est

∑ ≠=
64

jh1,h
h) c_est(s, . . ∑ ≠=

64
jh1,h

)hi,(c_est

∑ ≠=
64

64h1,h
)h p,(c_est . .)64

64h1,h
hs,(c_est∑ ≠=

64 check nodes to be
provided each with 8

estimations ==> 512

estimations

c(s)

c(p)

c(i)

c(p)

c(k)

c(s)

128 input variables

.

.

.

.

.

.

Figure 15: Decoder hardware organization: the left block is composed by the 64x8 inputs nodes and the right block is composed by 64x8

estimation adders.

