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Abstract 

In this paper an ASIC implementation of an analogue 

receiver chain for telecommand applications for Category A 

missions (Return-to-Earth, lunar and even Lagrangian 

missions) will be presented. More specifically, in addition to 

the Low-Density Parity Check (LDPC) 128 bit analogue 

decoder component, the ASIC receiver will also include other 

important blocks of the telecommand reception chain 

normally accomplished inside an FPGA device, such as IF 

coherent demodulation stage front end, carrier recovery, 

baseband clock recovery, data conversion from input SP-L 

signal to NRZ codify, Start Frame pattern recognition, 

analogue memory for input codeword storing. The ASIC is 

now in detail design phase and it will be manufactured in 

XFAB 0.18um technology. 

I. INTRODUCTION 

Nowadays, on-board telecommand receivers for space 

applications consume an important percentage of the overall 

offered power of the satellite, especially due to their always 

ON need of operations. 

Decoders, in charge of elaborating received data and of 

providing error correction according to redundancy 

introduced by related encoding protocol are one of the 

fundamental components of a satellite receiver. They 

currently follow a digital development approach based on a 

large FPGA. Even though, initially, the power consumption of 

digital decoders was not a factor of concern, the increasing 

communication and data storage complexity and capacity 

makes the applicability of error correction codes in a digital 

domain more and more expensive in terms of hardware 

resources and power consumption. 

Therefore, in the last ten years, being analogue decoding 

recognised for its potential to efficiently decrease the overall 

power consumption of a receiver, an important growth in 

analogue decoding research programs is registered, although 

only a few VLSI integrated circuits have been developed 

satisfying a given communication standard. Analogue domain 

implementation of error correction codes, despite its lower 

power consumption potential with respect to its digital 

counterpart, seems to also provide some additional 

advantages: it takes benefit from the similarity between the 

mathematical operations required by the algorithms and the 

physical laws governing the circuit; it improves the total 

system efficiency, because the analogue decoder is much 

smaller than its digital counterpart and consumes about one 

order of magnitude less power at the same frequency; it offers 

high modularity design more immune to noise, by means of 

differential operation; it offers the capability of providing a 

finer estimation of the logic state of a single information unit 

with respect to digital implementations (no quantization); it 

needs a lower signal to noise ratio to properly correct a wrong 

input sequence of information unit. 

Thus, the proposed paper will address such benefits of an 

on-board analogue receiver chain implementation for 

telecommand applications for Category A missions (Return-

to-Earth, lunar and even Lagrangian missions. 

In particular, Low-Density Parity Check (LDPC) 128 bit 

analogue decoder have been chosen as the design basis of the 

analogue decoder, since it showed in preliminary 

investigations a big potential for increased power saving when 

short length codes are concerned as of telecommand 

communication for Category A missions. Moreover, the 

analogue receiver will be compliant with the communication 

protocol described in ECSS-E-ST-50-04C “Telecommand 

protocols synchronization and channel coding”. 

The paper is organized as follow: in the Section II the 

ASIC architecture description has been reported whereas 

details about the receiver, symbol synchronization, codify 

block and start frame recognizer have been reported 

respectively in sections III, IV, V and VI. The decoder core 

organization has been described in section VII and, finally, 

the conclusion has been reported on Section VIII. 

SITAEL S.p.A. has produced all relevant work in the 

frame of “RLP_AD: Receiver Low-Power Analogue 

Decoder” activity (ESA TRP), developed in the context of 

ESA ITT AO/1-6722/11/NL/GLC with the aim of 

investigating feasibility of analogue decoding for space 

applications.  

II. ARCHITECTURE DESCRIPTION 

The ASIC Block Diagram is reported in Figure 11. 

The Serial Programming Interface (SPI) accepts external 

customized commands for proper internal bias and for test 

modes configuration. 

The analogue input to the ASIC is the intermediate 

frequency DC component and the sidelobes of the modulated 

signal: the in-phase and the in-quadrature components of 

baseband signal are produced internally to the ASIC, after the 

final down conversion step, and they are filtered and 

amplified inside the AFE (Analog Front End) block. 

The CR (Carrier Recovery) section provides to the local 

mixer a suitable frequency (same as carrier frequency) and 

phase (such that maximizes the In-Phase baseband 

demodulated component) for down conversion purposes: 

carrier tracking proceeds by extracting the carrier frequency 

to be tracked by the PLL from the received signal, and by 



aligning the tracking-carrier phase according to a signal-

energy-maximization principle. 

In details, carrier phase tracking is achieved by correcting 

the PLL phase based on the measured amplitude inside the 

demodulated channels: the aim of phase correction is to re-

phase the oscillation output by the PLL and used for local 

mixing (demodulation) in order to maximize the in-phase 

signal energy with respect to the in-quadrature signal energy. 

Downstream circuitry accepting the demodulated signal 

operates only on the in-phase demodulated baseband signal. 

The SSU unit (Symbol Synchronization Unit) operates the 

clock extraction from the baseband PCM/PM/BI-PHASE 

signal: a local PLL tracks the data transition synchronism 

(since SP-L codify guarantees always at least one transition 

per clock cycle). Clock recovery is operated in the digital 

domain, that simplifies the PLL configuration. Due to the 

digital configuration adopted for clock recovery, ad hoc 

matched filtering must necessarily be provided inside the 

Codify Conversion block. 

The CC (Codify Conversion) section converts the data 

codify from PCM/PM/BI-PHASE to NRZ codify. The 

PCM/PM/BI-PHASE to NRZ conversion task is performed by 

differentiating the left and right symbol half integrations with 

respect to the useful clock edge of data transition. Integration 

provides matched filtering and noise averaging. 

Finally, the decoder block presides to data decoding and 

provides output NRZ digital decoded data and clock for 

sampling: it is able to trigger when a Start Frame pattern is 

recognized and it is able to stop decoding once an End Frame 

command is detected, waiting for next Start Frame pattern. 

Being the signal processing chain of ASIC a fully 

concatenated-cascaded chain, several test modes are foreseen 

in order to allow verification of single functional sections. 

III. RECEIVER SECTION DESCRIPTION 

The Receiver Section is composed by AFE and CR block. 

The block diagram is reported in Figure 1. 
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Figure 1: Receiver Section Block Diagram. 

The carrier frequency recovery (which mixer works at 

8MHz of IF) can be operated in two (2) different ways: 

a. by a squaring and frequency divider by two, which sends 

a reference reconstructed frequency to the PLL (with 

switches s1 closed, s2 and s3 open). This configuration is 

a standard frequency recovery approach for BPSK 

suppressed-carrier signals; 

b. by using the carrier-only transmission phase CMM1 of 

PLOP2 procedure [1] to drive the PLL output frequency 

in the neighbours of carrier frequency (s1 initially closed, 

s3 open, s2 open), and, once the PLL is in lock, by 

leaving the internal VCO being controlled by the 

amplitude detector and amplifier block (s3 closed, s1 and 

s2 open). The training frequency during CMM1 phase 

can be optionally provided by a local oscillator (s2 

closed, s1 and s3 open). s3 and s1/s2 switch activity is 

mutually exclusive in time, and it is governed by the PLL 

lock signal. A dedicated internal configuration selects 

between s1 and s2 training options. 

Carrier phase tracking is achieved by correcting the PLL 

phase based on the measured amplitude inside the 

demodulation channels: the aim of phase correction is to re-

phase the oscillation output by the PLL and used for local 

mixing (demodulation) in order to maximize the in-phase 

signal energy with respect to the in-quadrature signal energy. 

Downstream circuitry accepting the demodulated signal 

operates only on the in-phase demodulated baseband signal. 

The amplifier and filter inside the AFE chain condition the 

down-converted signal and filter the out-of-band signal 

components. 

The AFE block has twofold functionality: to produce the 

final signal down-conversion for demodulation purposes on 

both I and Q signal components by using properly re-phased 

local reconstructed carrier and to amplify and filter the 

baseband demodulated I and Q signals. For this purpose, 

continuous time bi-quad filters are used in order to reject the 

image frequency components. The DC-rejecting amplifiers 

are used in order to reject the DC component at amplifier 

input.  

IV. SYMBOL SYNCHRONIZATION UNIT DESCRIPTION 

The Symbol Synchronization Unit is composed by a Data 

Transition Detector and a Clock Recovery Unit. 

The Data Transition Detector Unit is a simple comparator 

whereas the Clock Recovery Unit is a PLL like the one shown 

in Figure 2 which receives the 1-bit quantized data 

information and locks its oscillating frequency to the data 

transition frequency. 

The clock recovery function extracts the clock information 

from the demodulated symbol data stream in order to allow 

correct signal sampling inside the matched filter and decoder 

downstream sections. 

The main drawback of employing linear phase detectors in 

the PLL loop is that the phase detector response strongly 

depends on transition density, that has an heavy impact on 

clock phase jitter. 

In PCM/PM/BI-PHASE signals (Figure 3), transitions are 

allowed to happen or synchronously with the data clock (in a 

string of all “0” or in a string of all “1” logic signal) or every 



clock rising edge (in a string of alternating “0” and “1” logic 

signal). 
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Figure 2: signal activity and timings for the Hogge’s phase detector. 

Retimed data are present at the output of lower flip flop. 

Since there is a factor two between the transition 

frequency corresponding to the two above different cases, the 

transition density dis-uniformity is important: as an effect, the 

equivalent phase detector gain walking causes an important 

dispersion in the reconstructed clock phase. 
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Figure 3: PLL acquisition sequence. 

To overcome this issue, a principle has been applied, 

which equalizes the transition density and takes benefit of the 

property of PCM/PM/BI-PHASE signals of presenting always 

a data transition at the significant lock edge. 

In practice, a PLL employing a standard linear phase 

detector is adopted using a certain (programmable) frequency 

divider in the feedback chain: the high-frequency clock at the 

input of frequency divider (VCO output) is used as a 

synchronism in order to mask the undesired transitions from 

the input data sequence, and to equalize data transition density 

over time.  

After the PLL locks during the data Acquisition Sequence, 

the introduced synchronism allows to keep the transition 

density constant over time after the Acquisition Sequence 

ends and code block reception starts (with related data 

transition density discontinuities).  

This mechanism allows the phase detector to operate with 

a fixed gain, greatly improving the performances of the PLL 

itself and reducing clock frequency/phase jitter. 

The synchronism signal used to equalize the data 

transition density practically masks the extra-transitions not 

synchronous with the clock rising edge in the data stream, 

according to the principle reported in Figure 4. 
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Figure 4: Masking data transitions operation to equalize data 

transition density over time. 

As a result of masking operation, the data transitions are 

only the useful data transitions at symbol middle point 

individuated during the Acquisition Sequence, and any other 

data transition (used in PCM/PM/BI-PHASE codify for 

properly set upping data level before the symbol middle 

transition) is discarded and not used for PLL phasing. 

In details, the symbol duration is divided into 4 equally 

spaced quadrants during the Acquisition Sequence: once the 

PLL locks and after Acquisition Sequence ends, this quadrant-

spacing is kept for each symbol and data transitions 

happening within the second and the third quadrant are 

systematically masked. 
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Figure 5: Clock multiplying internal to PLL allows an easy data 

transition masking principle. 

Masking operation is enabled only if the PLL is locked 

during the Acquisition Sequence and the locking status is 

detected during the Acquisition Sequence when the transitions 

passible of masking are not detected for a certain number of 

clock cycles. 

The masking mechanism provides a systematic solution to 

the transition density uncertainty proper of PCM/PM/BI-

PHASE signals. Another mechanism is part of the PLL design 

to improve the PLL noise tolerance. This different mechanism 

detects the missing data transitions and inserts transitions into 

the data stream fed to the PLL in order to maintain the PLL in 

lock condition. 

By summarizing, the strategy for the clock recovery is: 



a. during the Acquisition Sequence to achieve the lock 

starting from the first data transition, a timeout 

corresponding to the expected symbol rate inserts 

artificial transitions when missing transitions are detected 

by the timeout in the data stream; 

b. once the lock is achieved, the masking mechanism is 

enabled: in this way, data transition corresponding to the 

clock edge not representing the SP-L are systematically 

masked to the PLL, in order to avoid PLL frequency 

walking according to the data transition density. 

Both mechanisms are aimed to provide to the PLL a 

constant data transition density in order to maintain the lock. 

The lock status of clock recovery PLL is used to enable 

downstream signal processing chain, in details the Start Frame 

Recognizer 

The data rate change is achieved internally to the clock 

recovery circuit by properly programming (through SPI) the 

frequency divider that is used inside the PLL loop. This 

frequency divider allows obtaining six (6) binary 

progressively increasing data rates from 8Kbit/s to 256Kbit/s. 

V. CODIFY CONVERSION DESCRIPTION 

Once the data clock is extracted, correct data sampling is 

possible. However, soft values are required to be passed to the 

analogue decoder by avoiding any squaring operation on 

analogue levels before decoding: on the contrary, an analogue 

level has to be stored inside the decoder memory 

representative of the log-likelihood probability of 

corresponding bit. Hence, this representative level has to be 

constructed and sampled. Sampling analogue could be 

affected by superimposed noise; in fact considering at the 

moment NRZ signals, if at sampling instant a large noise 

spike is superimposed to the signal, the resulting sampling is 

affected by that noisy sample. If, instead, the symbol level is 

subjected to a continuous integration operation during the 

symbol period, the sampling of the result at symbol end will 

take advantage from the integration, allowing an effective 

noise filtering and a signal-to-noise ratio maximization. 
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Figure 6: Conversion of PCM/PM/BI-PHASE signal into NRZ signal 

by averaging noise on half symbol periods and by measuring the 

level jump related to received logic state at clock edge. 

In PCM/PM/BI-PHASE signals, the logic state 

information resides in the sign of level jump experienced at 

clock rising edge: if the data stream presents a positive jump, 

it is associated with the reception of a logic “0” whereas if the 

data stream presents a negative jump, this is associated with 

the reception of a logic “1”. 

As a conclusion, averaging noise on logic states when 

codified according to the PCM/PM/BI-PHASE convention 

means producing the differentiation between the integration 

results of right-symbol side and left-symbol side (Figure 6): 

the differentiation result is sampled on the opposite clock 

edge with respect to data transition in order to provide the 

NRZ data conversion. 

VI. START FRAME RECOGNIZER AND DATA 

MEMORY 

The input data stream pattern, to be recognized in order to 

allow decoding operation starts, is composed by 16-bit logic 

pattern 1110101110010000; however the programmability of 

the target pattern can easily be achieved through SPI 

interface. For pattern recognize a sliding window approach 

has been used. The incoming level is stored bit-by-bit into a 

16-bit analogue First-In First-Out chain and each value is 

compared with the 16 values corresponding to the pattern to 

be recognized; the 16-bit correlations between received and 

expected bit are summed too (Figure 7). 

If the correlation result exceeds a certain (externally 

programmable) correlation threshold, the Start Frame pattern 

is recognized, and the START flag is asserted for decoding 

operation and it will remain asserted until an End Sequence 

will be recognized. Multiple triggers caused by possible 

recognition of a Start Frame sequence during normal 

decoding operation has been carefully avoided. 

 

Figure 7: Acquisition Sequence Recognizer functional description. 

The input memory is in charge of storing the incoming 

serial input analogue values upon each clock cycle into a 

corresponding memory cell, before parallel feeding the values 

to the decoder core for elaboration. 

In principle, after the input values are stored inside the 

memory, they are fed all simultaneously to the decoder core 

for parallel decoding operation. With this approach, a “dead 

time” in input data throughput should be observed between 

the reception of two consecutive words caused by the 

decoding time. This constraint, although tolerated by a 

demonstrator, becomes unacceptable in real applications, 

where data throughput is in general continuous and a double 

buffer strategy seems better responding to the requirements. 



Double buffering allows to fill one memory with incoming 

analogue values while the second memory is being redirected 

in parallel to the decoder inputs: in front of the cost of an 

additional memory, data throughput is allowed to be 

continuous, and the period available for the decoder core to 

converge into the decoded sequence is the whole period 

needed for receiving a single (next) encoded word, with a 

single word latency. This last property of double buffering 

relaxes the decoder speed requirements and hence the power 

consumption requirements. 

The memory organization is reported in Figure 8. 
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Figure 8: Double buffer memory structure. 

Two arrays of capacitors, building the memory storing 

elements, are alternatively charged to store the incoming word 

values. A single input buffer provides the current capability 

for charging the quite high-capacitive writing line (due to the 

long tracks stray capacitances): the capacitors are charged in 

sequence, according to the switches “w1_k/w1a_k”, whose 

timings are synchronous with the input signal sampling 

operation. 

While one of the memories is written sequentially with the 

incoming analogue values, the other one is read-out in a block 

and its values are fed in parallel to the analogue decoder core; 

during the read operation, each memory capacitor is 

connected as the feedback element of the column amplifier 

(CA), which provides an unitary replica of the input voltage 

stored in the capacitor element, referred to the common mode 

voltage. It is noticed that a single column amplifier is used 

which serves two different memory cells, read and written in 

different times: while one of the two memory cells connected 

to the unique amplifier is written (by storing a charge into the 

capacitor actually connected between the input line and the 

common mode reference), the column amplifier is in closed 

loop connection because it serves the other memory cell, so 

that its negative input terminal is never floating. 

Finally, and for correctly resetting the decoder after each 

decoding operation, each column amplifier is connected as a 

buffer to produce an output level corresponding to the same 

common mode voltage for memory and decoder when no 

memory read operation occurs that is when a decoding 

operation is just finished and a new decoding operation is not 

yet started. It is noticed that, thanks to switches “R1a” and 

“R2a” in Figure 8, the resetting operation does not affect 

memory cells write operation. 

With the purpose of using the above described reset phase 

also to discharge the memory capacitors before next memory 

bank write operation, the deactivation of read switches “R” 

and “Ra” of Figure 8 is delayed of half clock cycle with 

respect to the logic signals read. During this half clock cycle, 

the memory bank is still in its read phase, but the reset switch 

is closed, allowing the memory capacitor discharges (Figure 

9). 

In the following, some details about the optimum timing 

sequence for switches closing/opening are discussed with 

respect to charge injection issues. 

The charge in steady state condition for each capacitance 

when the writing switches are both closed is determined 

basically by the signal-to-common-mode level, and both the 

input channel buffers and the common mode buffer driving 

the line “Vcom” in Figure 8 are low impedance nodes. 

When the write operation ends for a single capacitor, the 

switch “wa” are open, whereas switch “w” remain in the low 

impedance state. Since the switch “wa” has a null voltage at 

its terminals, the charge injection expected by its turning OFF 

is a constant amount, not signal depending and this means that 

a systematic offset is added to the useful signals but no signal 

distortion is introduced by charge injection phenomena. 

Selecting a common mode voltage close to half the power 

supply rail and by implementing the switch as a carefully-

sized complementary-transistors pass gate, the positive charge 

injection related with the pass-gate PMOS opening (which 

causes the bottom plate voltage of memory capacitor raises) is 

compensated by the equivalent negative pass-gate NMOS 

opening charge injection, thus leading in compensating 

effects. 

During the read operation, still the closing sequence of 

switches “R” and “Ra” has poor relevance, because, until 

both switches are closed, no charge injection can occur: on the 

other hand, in steady state conditions, the memory capacitor 

terminals are respectively the CA (virtually to ground forced 

to “Vcom” level by the amplifier gain) and the CA low-

impedance output node. When the read operation ends, first 

“Ra” switches open and as previously noticed for the write 

operation, the charge injection related with “Ra” switches 

opening is a constant amount of charge, not signal depending, 

which can be compensated for by adopting careful pass-gate 

design for the switches; of course, once “Ra” switches are 

open, no charging of capacitor can happen by the subsequent 

opening of switches “R”. 

The most expensive power consumption inside the 

memory block is imputed to the line buffers because they 

have to provide the memory-capacitors charging/discharging 

currents within a single clock period, whereas the column 



amplifiers settling time is drowned in the longer decoding 

time. 
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Figure 9: Timings diagram for decoder reset and memory bank 

capacitors reset on delayed read phase end. 

VII. DECODER CORE ORGANIZATION 

The last element of the receiver chain is the Decoder. 

According to ESA interest in LDPC short length code block 

codes for telecommand applications ([1] and [2]), the decoder 

implements the min-sum algorithm on the code LDPC (128, 

64) referred in [2], which uses 64 check nodes, 8-bit-

complexity each. 

The mathematical steps of min-sum approximation 

approach to LDPC decoding and the main architectural results 

have been summarized in the general schema of Figure 12 and 

Figure 13. 

The whole decoder configures as an asynchronous 

analogue network, built basically by two types of macro-cells 

(variable and check nodes), in which the decoding law is 

established by the interconnections between the cells at 

routing level, virtually programmable by metal mask option. 

The iteration principle of digital implementation for 

solving the check law equations by progressively converging 

estimations is substituted by a continuous back-connection of 

each estimation-process-output at the estimation-process-

input that forces the network to find its equilibrium “final” 

point estimations that satisfy the decoding law. Iterations and 

related overclocking with respect to input data throughput are 

hence suppressed, together with the need of checking the 

parity check matrix at each step in order to verify 

convergence. 

By referring Figure 13, each variable node (“qij” level in 

the picture) calculates its own estimation, based on input log-

likelihood data and based on data provided by all check nodes 

which are providing an estimation for that variable node, 

except the check node to which the variable node is just 

sending its own estimation. 

Each parity check node (“rji” level in the picture) provides 

an estimation of each variable nodes afferent to it, by applying 

the parity check law (min-sum) to all other variable nodes 

(other than the one under estimation) afferent to it. 

Both message forming processes (from the variable nodes 

to the check nodes and in the contrary direction) take place by 

adopting an extrinsic information principle: the information 

produced by a node (at its output) is never looped at its input 

to confirm itself but on the contrary, the information building 

process inside each node (variable or check node) always 

happens on the base of the information passed by different 

nodes. 

The above observation is at the base of correct decoding 

principle: it may be noticed that each estimation of a single 

log-likelihood variable ���  passed to check node j in Figure 13 

is built by summing all estimations available for that variable 

(included the input log-likelihood level) except its estimation 

produced just by node j. 

In the log min-sum approximation of the sum-product 

algorithm, the functionality of each variable node is log-

likelihood probabilities summing (current sum), whereas the 

functionality of each check node is to select the minimum 

confidence (absolute value) of input log-likelihood 

probabilities and to assign it the expected sign for the check 

node output message. 

Consequently, the basic processing analogue cells required 

for implementation are as follows: 

o at variable node level, a voltage-to-current conversion 

must be operated to convert the input log-likelihood 

voltage levels into currents (the current sum can be easily 

performed afterwards by wiring currents together) 

o at check node level, the minimum absolute value of input 

currents (disregarding their sign) has to be produced. To 

this purpose, each input variable to the check node is 

treated and de-composed in amplitude and sign (Figure 

10): a looser takes all circuit coupled with a multiplexer 

(block “select min (|u|)”) and it is used to select the 

minimum amplitude and the sign computation is 

performed by propagating the sign through XOR digital 

gates; finally, a reconstruction block is used to assign the 

proper sign to the minimum individuated for the output 

amplitude. 
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Figure 10: Details of the min-sum check node 

functionality. 

The above operation performed by the check node finds its 

implementation in Figure 14, which reports the organization 



of the basic 8-bit check node. The sub-block VN implements 

the functionalities of absolute value extraction and sign 

extraction of Figure 10, but it presides also to extract the a 

priori information and to combine this information with check 

nodes messages (∑ operator of Figure 13). The LTA sub-

block implements the minimum absolute value extraction and 

selection and the XOR sub-block implements the sign 

attribution to the check node estimation. Hence, for each input 

variable i, the schematic of Figure 12 selects minimum 

confidence and assigns logic sign to force parity-check law. In 

performing this operation, it applies an extrinsic information 

principle, basing its estimation about variable node i by 

relying only on other variable nodes (other than i) afferent to 

it. 

Figure 15 shows the LDPC 128 bit decoder hardware 

organization. 

VIII. CONCLUSIONS 

In this paper have been presented a complete analogue 

receiver chain ASIC for telecommand applications for 

Category A missions (Return-to-Earth, lunar and even 

Lagrangian missions). Advantage and disadvantage of the 

analogue implementation respect to the traditional digital 

implementation based on FPGA have been presented. The 

blocks component the receiver have been described in detail 

and their functionalities have been analysed. 

The receiver is now in detail design phase and it will be 

manufactured in XFAB 0.18um CMOS process. 
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Figure 11: ASIC Block Diagram. 

 



 

Figure 12: Check nodes for the referred (128, 64) code comprises 64 check nodes, each accepting systematically 8 bit from the variable node 

sequence. 
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Figure 13: Low-level description of the min-sum algorithm applied to the parity check matrix of Figure 12 
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Figure 14: Basic 8-inputs check node cell. 
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Figure 15: Decoder hardware organization: the left block is composed by the 64x8 inputs nodes and the right block is composed by 64x8 

estimation adders. 

 

 

 


