

# DAREI80X

### A 0.18UM MIXED-SIGNAL RADIATION-HARDENED LIBRARY FOR LOW-POWER APPLICATIONS

G. Franciscatto, imec E. Geukens, ICSense









### OUTLINE

- Background
- The DARE solution
- MicroElectronics Platform
- DAREI80X libraries
- DAREI80 vs. DAREI80X
- Summary
- Future work





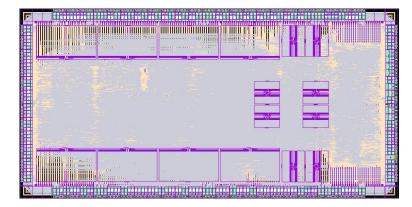


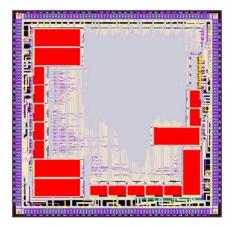


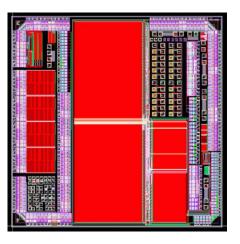
## BACKGROUND

- Commercial IC technologies for radiation applications
  - Low cost / high yield
  - High speed
  - Low power
  - Thin-gate oxide => high TID tolerance
- Commercial libraries
  - Standard design flow
  - Designed for highest density
    - Highly sensitive to SEL & SEE
  - Solution tailored for radiation applications is needed




ThalesAlenia




## **THE DARE SOLUTION**

- Design Against Radiation Effects
  - DAREI80 in UMC 0.18µm technology
    - Silicon-proven radiation-hardened library
    - General radiation applications (> IMrad)
      - ELT devices => high power consumption
    - No non-volatile memory
    - No high-voltage (BCD) devices













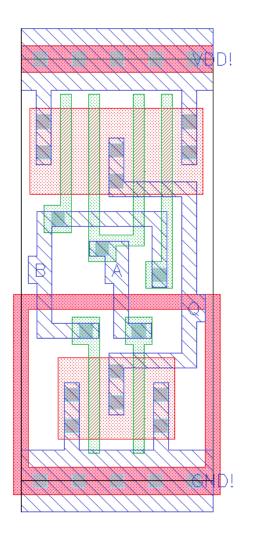


AMICSA 2014 JUNE 29 - JULY I CERN GENEVA (CH)

## **MICROELECTRONICS PLATFORM**

- Libraries, back-end, manufacturing and test services for radiation applications
- DARE180X
  - <u>New</u> radiation-hardened mixed-signal library package
    - Low-power solution for space applications
  - XFAB 0.18µm (XH018)
    - Inherent TID tolerance >100 krad
    - Triple-well devices
    - High-Vt and low-Vt transistors
    - High-voltage BCD devices
    - Non-volatile memory
    - European foundry










## **MICROELECTRONICS PLATFORM**

- Radiation-hardening by design
  - TID tolerance > 100 krad
    - No ELT needed
  - SEL hardening > 70 MeV.cm<sup>2</sup>/mg
    - Guard-rings
  - SEU/SET hardening > 60 MeV.cm<sup>2</sup>/mg
    - Redundant architectures (DICE)
    - Hardening-by-drive-strength







**I**Csense



## DAREI80X LIBRARIES

- CORE standard cell library
  - Standard combinational cells (variable LETth)
  - SET-hardened combinational cells (LETth > 60 MeV.cm<sup>2</sup>/mg)
    - Clock and set/reset trees
    - Hardening-by-drive-strength
  - SEU-hardened sequential cells (LETth > 60 MeV.cm<sup>2</sup>/mg)
    - DICE architecture
  - P&R cells

### Cesa

halesAlei

- Two compatible implementations
  - Low-power core library (DARE180X)
  - High-speed core library (DARE180XL)



**I**Csense

### DAREI80X LIBRARIES

- ► I/O library
  - 3.3V and 5V-tolerant digital I/Os
    - SET-hardened inputs

CERN

- 3.3V and high-voltage analog I/Os
- SRAM blocks
  - 5 dual-port SRAM
  - MBU insensitive
    - SEU immune when used with an EDAC



Cesa

#### 



### DAREI80X LIBRARIES

SET-hardened analog blocks

CERN

- PLLs
- Bandgaps
- Oscillators
- ADC/DAC
- Linear regulators
- Other analog auxiliary blocks (comparators, PGAs, ...)





#### 





### DAREI80VS. DAREI80X

|                   | DARE180                           | DARE180X                  |  |
|-------------------|-----------------------------------|---------------------------|--|
| Technology        | UMC 0.18µm                        | XFAB 0.18µm (HV)          |  |
| Supply range      | 1.8V/3.3V ±10%                    | 1.8V/3.3V ±10%            |  |
| Temperature range | -55°C ~ 125°C                     | -55°C ~ 125°C             |  |
| TID tolerance     | >   Mrad                          | > 100 krad                |  |
| Raw gate density  | 25 kGates/mm <sup>2</sup>         | 59 kGates/mm <sup>2</sup> |  |
| Core cells        | 130                               | 86                        |  |
| I/O cells         | 83                                | 48                        |  |
| SRAM              | Single/dual-port<br>SRAM compiler | 5 dual-port blocks        |  |



Cesa



## DAREI80VS. DAREI80X

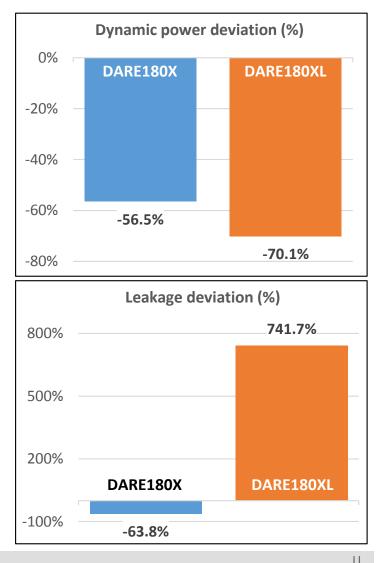
- Synthesis comparison
  - Real design case
  - Reference: DARE180
- Dynamic power
  - Switching power optimized
    - Smaller input capacitances
  - Internal power reduced
    - DICE flip-flops

### Cesa

- ThalesAlenia



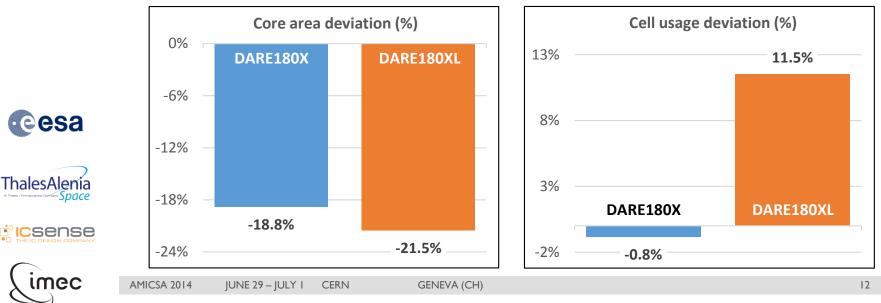
AMICSA 2014


- Leakage power
  - DICE flip-flops consume less

CERN

GENEVA (CH)

- Device dependent


JUNE 29 - JULY I



© IMEC 2014

### DAREI80VS. DAREI80X

- Synthesis comparison
  - Real design case
  - Reference: DARE180
- Area reduction
  - Smaller cell footprint



### DARE 80 VS. DARE 80X

|                     | DARE180<br>(reference)      | DARE180X   | DARE180XL    |
|---------------------|-----------------------------|------------|--------------|
| Cell                | NAND2                       | NA2JIX4    | NA2JILVTX4   |
| Rel. drive-strength | XI                          | <b>X</b> 4 | <b>X</b> 4   |
| LET threshold (SET) | 35 MeV/cm <sup>2</sup> .mg  | -50%       | 0%           |
| Sat. cross-section  | 3.45 cm <sup>2</sup>        | -75%       | <b>-62</b> % |
| Area                | <b>39.5</b> μm <sup>2</sup> | -25%       | -25%         |
| Rise FO4 delay      | 90 ps                       | +55%       | -10%         |
| Fall FO4 delay      | 66 ps                       | +43%       | -8%          |
| Avg. input cap.     | I5 fF                       | 0%         | -7%          |



- ThalesAlenia
- NAND2 = smallest/weakest NAND cell in DARE180
- **IC**sense
- - 4x stronger than NA2JIXI (the weakest NAND cell in DARE180X)



CERN

### SUMMARY

### MicroElectronics Platform

- Radiation-hardened mixed-signal libraries and IP
- Back-end, manufacturing and test services
- Commercial IC technologies
- New DARE180X library
  - Low-power solution for space applications
  - Straight transistors (no ELTs)
    - Smaller area
    - Cell sizing not lower-bound limited
      - Better synthesis results => dynamic power optimized









### **FUTURE WORK**

- DAREI80X available in 2014' Q3
- Test vehicle chip in 2014' Q4
- Radiation tests in 2015











### **REDANT@IMEC.BE**







