Aerospace

Assessment of Mixed Signal Technology

M. Bacci , F. Bigongiari, C. Boatella Polo, R. Dittrich, M. Inversi, R. Jansen

5th Analogue and Mixed-Signal Integrated Circuits for Space Applications Workshop

Geneve (CH), June 29th – July 1st, 2014

- Introduction
- Description of Surveys
- Analysis of Surveys
- Conclusions

- ***Assessment and characterization of Mixed Signal Technology**" is an activity in the frame of European Component Initiative program.
- <u>Purpose</u>: collect information about mixed signal ASIC processes with particular focus on their capability for space applications.
- Information sources:
 - o Previous AMICSA workshops
 - o Round table at AMICSA 2012
 - o ESCCON Conference
 - o Surveys through space community
- The collected data on the **user needs** have been <u>compared against</u> the **processes capabilities available** in Europe for mixed signal ASIC manufacturing.
- Moreover to <u>avoid duplicating the efforts</u>, information about similar ongoing activities and on existing analogue, digital and mixed signal libraries or ASICs for space applications already manufactured or designed have been collected.
- At the end of this process review **one technology has been chosen** for a further <u>reliability and radiation characterization</u>.

Three different Surveys have been carried out:

- I. Comparative assessment and verification about the *availability of several existing European mixed signal technologies*.
- II. Collection of inputs covering *the needs* for mixed-signal ASICs from the space community and the Agency's planned missions.
- III. Collection of information about the *existing rad hard libraries and design kits* in terms of primitive devices, SEEs, TID and reliability performances.

Twelve (12) <u>European and Non-European manufacturers</u> have been contacted obtaining reply from six (6) of them:

- ATMEL
- Austria Micro Systems
- IHP Microelectronics
- ON Semiconductor
- Telefunken Semiconductor
- XFAB

In total, information from <u>18 technology processes</u> have been collected and analyzed.

Focus of the surveys

- General items related to foundry availability
- Environment
- Quality
- Digital performances
- Analogue performances

CONFIDENTIAL

General items related to foundry availability

- Licensing and conditions for use
- Foundry expected lifetime
- Foundry loading and product range
- Foundry process options
- Manufacturing turnaround time
- Manufacturing options (Full mask, MPW, MLM; Runs per year; longer availability)
- Cost of the supported tool chain (external and custom)
- Cost of the digital and analogue design-kit (front- and back-end)

- Supported batch manufacturing
- Supported Digital and Analogue development flows and constraints
- Foundry macro libraries cost
- Third party macro libraries access, conditions, cost and license
- Design kit for usage within space user community and the right for modifications
- Eventual technical support and maintenance of space-DK/libraries for European Space community

Environment

- Temperature range (operational and storage)
- Voltage range
- Radiation tolerance (TID, SEE, SEL, SEU, SET, SEGR, ...)
- ESD and EMC levels supported

Quality

- Intrinsic reliability data/performance
- Wafer thickness
- Process lifetime
- Mean time to failure (FIT)
- Manufacturing yield
- Manufacturing quality systems
- Inspection of the manufacturing quality system and PID
- Cost associated with quality inspection
- Reporting and inspection of the process control monitors
- Process stability reporting the manufacturing process changes
- Failure analysis support
- Manufactured high-reliability and space qualified flows/components

Digital Performances

- Gate density
- Power consumption
- Clock frequency
- Supply voltage range
- Number of metal layers
- Leakage
- Cell library (combinational and sequential; commercial and rad hardened variants)
- Foundry and/or Third party digital macro libraries (commercial or rad-hardened; development/qualification state)
- IO Pads (Voltage levels, ESD, EMC, ...)
- Manufacturing spread (power consumption, clock frequency, leakage)
- Accuracy of the models
- Development tool flow supported
- Sign-off tool chain

Analogue Performances

- Analogue IO Pads (Voltage levels; ESD; EMC; ...)
- Number of poly layers
- Accuracy of the models
- Availability of: MOS transistors, Bipolar transistors Diodes and Passive
- Development tool flow supported
- Sign-off tool chain
- Foundry or Third-Party analogue macro libraries (commercial or radiationhardened; development/qualification state) and their support

List of the analyzed processes

Foundry	Process	Process Features	
Austria Micro System	C35B4C3	0.35um	
	H35B4D3	High Voltage 0.35um	
	C18	0.18um	
	H18	High Voltage 0.18um	
ATMEL	AT77.9K	High Voltage 0.15um	
	AT58K85	High Voltage 0.15um	
IHP Microelectronics	SGB25RH	0.25um	
	SG13RH	0.13um	
ON-Semi	C3/D3	0.35um	
	C05	0.5um	
	I3T25	High Voltage 0.35um	
	I3T50	High Voltage 0.35um	
	I3T80	High Voltage 0.35um	
Telefunken	TFSMART1-HV	High Voltage 0.8um	
	TFSMART2	High Voltage 0.35um	
XFAB	XH035	High Voltage 0.35um	
	XH018	High Voltage 0.18um	
	XT018	High Voltage 0.18um	

Second Survey: Agency and Space Community Needs

Twenty-eight (28) entities have been contacted, collecting <u>eighteen (18) compiled surveys</u>

- 2 Large Scale Integrators
- 5 Large Industries
- 7 Small and Medium-sized Enterprises
- 4 Research Institutions

Aim:

- To avoid efforts duplication
- To harmonize and coordinate with future or on-going existing activities

<u>Questions</u> about Rad Hard Libraries have been <u>grouped in four (4) sections</u>:

- Primitive Devices
- Single Event Effects Tests
- Total Dose Ionization Tests
- Reliability Tests

Primitive Devices

- Funding mechanism used for rad hard libraries development (self-funding, public funding, private funding, etc.)
- Availability free of charge of the results (libraries, design-kits,...) for scientific research
- List of scientific papers published about the performances of Rad Hard libraries
- Technology process used to develop the Rad Hard libraries
- List of primitive devices with increased radiation tolerance
- Description of the modified introduced on primitive devices

- List of the violated design rules, accepted by the foundry
- List of modification on the fabrication process (i.e. masks sequence)
- List of the modified primitive devices model
- List of analog simulators supported by these new models (i.e. spectre, hspice, ...)
- List of digital libraries developed based on this library
- Type of characterization performed on digital libraries

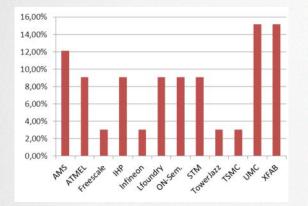
Single Event Effects Tests

- List of test(s) to evaluate the Single Event Effects
- Description of manufactured test vehicle/custom ASIC for SEE characterization/modeling
- Parts or devices included in the test vehicle
- Parts or devices not included in the test vehicle
- Description of source used (i.e. heavy ions or protons ...)
- Description of heavy ions/protons cocktail and LET used

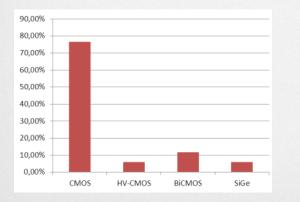
- List of primitive devices tested against SEE
- Measured performances in terms of SEL, SEU, SET, SEB, SEGR, SEFI
- Test procedure used (i.e. ECSS 25100)
- Description of the SEE test by laser
- Description of simulation model to take into account the SEE effects
- List of analog simulators supported by these new models (i.e. spectre, hspice, ...)

Total Dose Ionization Tests

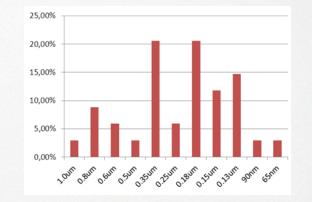
- List of test to evaluate the performances in terms of Total Ionization Dose (TID)
- Description of manufactured test vehicle/custom ASIC for TID characterization/modeling
- Parts or devices included in the test vehicle
- Parts or devices not included in the test vehicle
- Description of the source used and dose rate
- Final TID accumulated
- Test procedure used (i.e. ECSS 22900)
- Description of simulation model to take into account the TID effects
- List of analog simulators supported by these new models (i.e. spectre, hspice, ...)

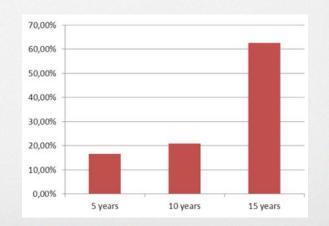

Reliability Tests

- Description of reliability test performed on the library
- Description of manufactured test vehicle/custom ASIC for Reliability characterization/modeling
- Parts or devices included in the test vehicle
- Parts or devices not included in the test vehicle
- Test procedure used
- Description of the obtained results

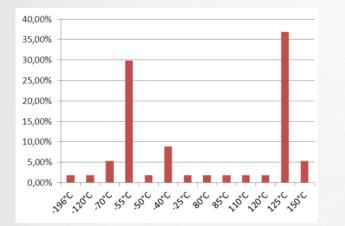

CONFIDENTIAL SITAEL Property

Analysis of Surveys

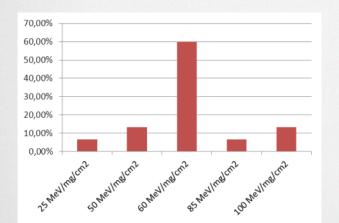

Preferred mixed-signal ASIC

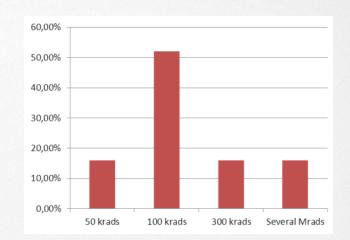

Preferred mixed-signal ASIC technologies options

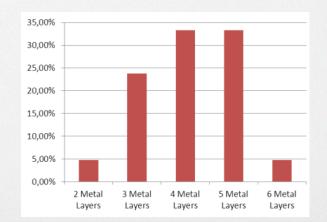
Preferred mixed-signal ASIC process gate length



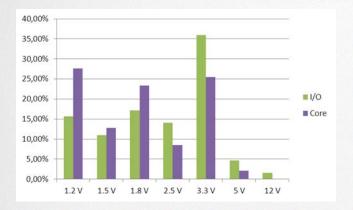
D Expected technology's lifetime



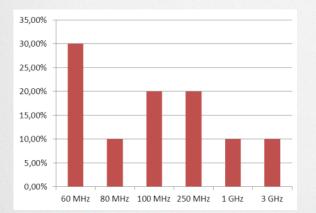

Expected operational temperature range

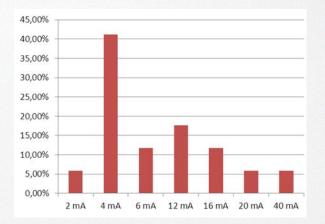

Expected SEE performances

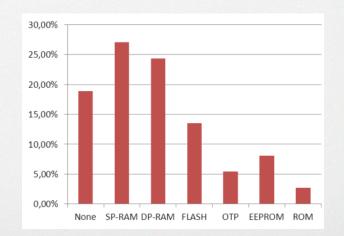
Expected TID performances



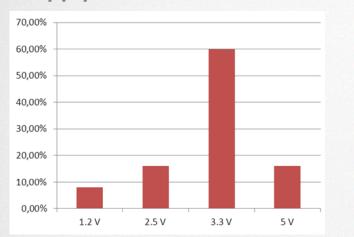
Expected number of metal layers

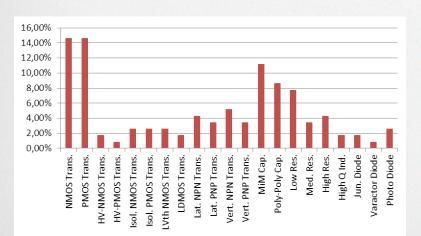



Expected I/O and digital core power supply

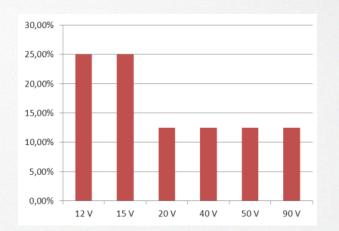

Expected toggle rate

Expected digital pad output current capability


Content Expected memories type need



Analysis of Surveys


Expected analogue core power supply

Expected primitives availability

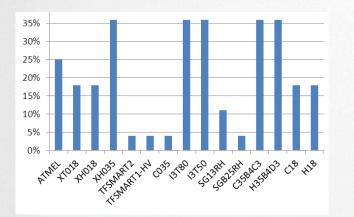
Expected High Voltage capability

Expected F_{MAX} and F_T

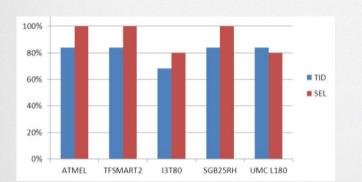
The survey conclusions have been reported as a grade of coverage of the <u>needs</u> against the <u>features</u> of technologies process analyzed

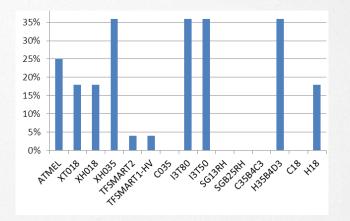
The values have been calculated by a weight average, taking into account

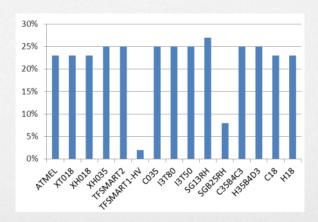
- Requirements
- Grade of needs
- Process features


Parameters like

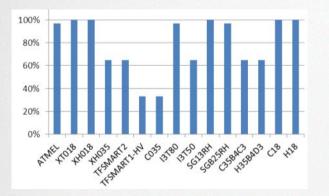
- Cost
- Qualification
- MPW runs per year


have not been taken into account.

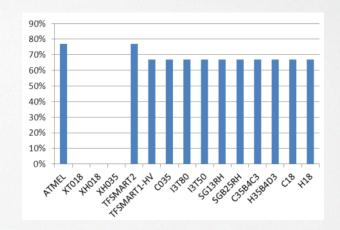

Coverage of the required process gate lengths

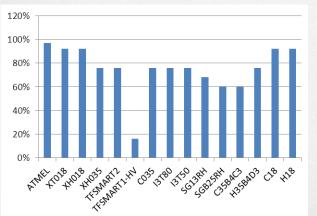

Coverage of the TID and SEL performances

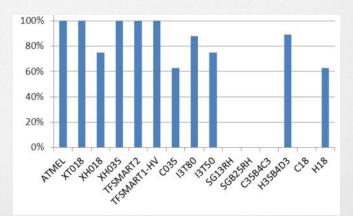
Coverage of gate lengths and HV requirements



Coverage of the required core digital power supply




Coverage of the number of requested metal layers


Coverage of required speeds

Coverage of the required analogue
Core low-range power supplies

Coverage of the required analogue high voltage-range power supplies

- Growing demand of High Voltage devices and consequently Need to characterize an High Voltage technology process.
- On some High Voltage technologies, this activity is already planned for the future or it is in development status.
- Increasing importance on the availability of **Non Volatile Memory** (mainly FLASH memories but also EEPROM).
- Extend the **European technologies portfolio** usable for design of space applications ASIC.

Foundry	Process	Process Features	HV Option	NVM
Austria Micro System	C35B4C3	0.35um	No	EEPROM FLASH
	H35B4D3	0.35um	Yes	EEPROM
	C18	0.18um	No	N/A
	H18	0.18um	Yes	N/A
ATMEL	AT77.9K	0.15um	Yes	EEPROM
	AT58K85	0.15um	Yes	EEPROM
IHP	SGB25RH	0.25um	No	N/A
Microelectronics	SG13RH	0.13um	No	N/A
ON-Semi	C05	0.5um	No	EEPROM
	I3T50	0.35um	Yes	EEPROM
	I3T80	0.35um	Yes	EEPROM
Telefunken	TFSMART1-HV	0.8um	Yes	N/A
	TFSMART2	0.35um	Yes	N/A
XFAB	XH035	0.35um	Yes	EEPROM
	XH018	0.18um	Yes	EEPROM FLASH
	XT018	0.18um	Yes	EEPROM

Considering similar on-going activities on other technologies, higher digital density capability, FLASH availability, possibility to expand the technology portfolio for space device development, different gate length, the **XHo18 process by XFAB** has been selected for the characterization activities planned in the second phase of the contract.

A **Test Vehicle** is currently under design.

It will contain primitive devices and simple analogue circuits.

For each devices type, the evaluation will focus on:

- I-V curves extraction
- C-V curves extraction
- Noise characterization
- End of life (EOL) test
- Total Ionization Dose (TID) test.

The **Single Event Transient (SET)** will be characterized in term of pulse width and charge injected by a test session based on pulsed laser. A comparative test session will be applied with proton or heavy ions.

At the end of test campaign **analogue models** for simulations will be extracted in different condition (EOL, TID, SET,....) and they will be incorporated into the design-kit to allowing to designer a more accurate design and verification under critical conditions.

Franco Bigongiari Technical Office Responsible franco.bigongiari@sitael.com

SITAEL S.p.A.

S. P. 231, KM. 1+300 - 70026 Modugno (BA) Via Livornese 1019 - 56122 Pisa (PI) ITALY

> phone: +39 080 53 21 796 Fax: +39 080 53 55 048 info.space@sitael.com www.sitael.com

