

Erik H.M. Heijne CERN – PH Dept. CH 1211 Geneva 23

Institute for Experimental and Applied Physics of the Czech Technical University in Prague Nikhef Amsterdam Erik.Heijne@cern.ch pipeline 128x192 bias gen CAL pipe logic

Experiment is Giant 'Camera' with Magnetic Field

Animation of Bunch Crossings and Timing

screenshot

~70 sec

source: CERN

Chip design for CERN experiments

Highly segmented sensors essential increasing particle multiplicity Si lithography provides µm precision multiple chains ampli-discri/ADC-SRAM-logic

Radiation hardness needed

rare good events impose high rates 10⁷ crossings/s x 100 collisions x 10⁷ s/year

Start of radhard studies ~1980 NRL, LETI, Sandia, ... Serious design efforts from 1986 + IMEC/INVOMEC Our approach for experiments at CERN Understand details of our environment TID, displacements, SEE, (flash?) ...

Understand effects on sensors and chips leakage currents, threshold shift, gain,... instruments, test-chips, irradiation facilities,...

Find implementation to achieve radhard standard CMOS need >10Mrad

Evaluate samples in realistic test situations

Enclosed n-Transistor is Radiation Tolerant

need to study physics of radiation effects in devices

Si Sensors and CMOS Chips

Fully depleted Si Sensor divided in parallel strips: "Microstrip Detector"

Individual readout chain for each segment Signal ~20 000 e-h pairs

Si Sensors and CMOS Chips

ATLAS Si Detector Readout ABCN25

Example

128 parallel channels Amplifier + Comparator

Binary Pipeline Memory

ATLAS Si Detector Readout ABCN130

Example

7.7 x 7.5 mm² 0.5W

CMS Silicon Tracker

inner barrel half-module still in the cleanroom Si-sensors and chips

HALF- BARREL

Hybrid Pixel Detectors

critical development for inner layers high precision, high rate capability

Block diagram of circuit in ATLAS pixel imager

from Garcia, LBNL Berkeley

Pixel-readout chip "FE-I3" in ATLAS

18 x 160 pixels of 50μ mx400 μ m

Pixel-readout chip "FE-I3" in ATLAS

7.4 mm 18 x 160 pixels of 50µmx400µm

ATLAS Inner Si Pixel Layer

2011 LHC Imaging now All Electronic 2 views

Many Tracks and 2 "Jets"

40 million / sec

Secondary Vertices: indicate short-lifetime particles

see blow-up

ATLAS

Details around Primary Vertex

Secondary Vertices with reconstruction uncertainty ellipses (orange)

Note the 1cm scale: all this is INSIDE beam pipe

ATLAS

All "events" with 2 energetic photons emerging from the primary vertex

Ordered by sum of measured energy in GeV of all decay products in each interaction

An excess of events is observed around

4 July 2012

A new Periodic Table is complete

.

Many questions remain: why 3 generations where are the original antiparticles why are masses so different

THE END

Some History

Earliest PMOS chip for particle physics: LETI ~1977

Mead-Conway revolution: can we have own chips on MPW?

1984 Sherwood Parker/Terry Walker at Stanford: Microplex switched capacitor feedback

1987 Pierre Jarron/Erik Heijne Amplex continuous feedback with dark current compensation

1990 several groups start similar projects

2000→now chips become primary focus of experiment design

Evolution in on-chip data storage ~1985 parallel-serial CCD analog pipeline 1992 analog storage on feedback capacitors 1999 analog storage on memory bank: "APV25" installed in CMS 2002 comparator first, binary storage iteration "ABCD" actually installed in ATLAS 2005 SRAM allows variable retention times 2014 more input channels more digital processing

Chain of Data Processing and Filters

