

Very High Resolution Analog-to-Digital Converter at 1kHz for Space Applications

K. Makris¹, D. Fragopoulos¹, L. Crespy², M. Karaolis¹, A. Hachemi², O. Dokianaki¹, C. Papadas², B. Glass³

⁽¹⁾ Integrated Systems Development (ISD S.A.), Athens, GREECE

⁽²⁾ Advanced System Technology and User Service (ASTUS S.A.), Grenoble, FRANCE

⁽³⁾ European Space Research and Technology Center (ESA/ESTEC) – Microelectronics Section (TEC-EDM), Noordwijk, THE NETHERLANDS

AMICSA 2014, CERN, Switzerland

Outline

- Introduction
- Requirements and specifications
- System architecture
- Detailed design
- Design flow
- Radiation hardening
- System modeling
- Layout
- Simulation results
- Conclusions and next steps

Introduction

- Availability of high resolution hardened ADCs is rather limited
- Certain space instrumentation applications require low frequency and high resolution performance
 - Low frequency, low noise instrumentation and data acquisition
 - □ High resolution monitoring for housekeeping function implementation
- ADC development supported by an ESA contract

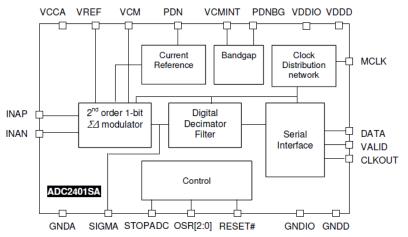
Vendor	P/N	Resolution (bits)	architecture	process	power supply	power (mW)	speed
Aeroflex	RHD5940	14	SAR	N/A	+5V	N/A	25ksps
	MAX1069	14	SAR	BICMOS	+5V	<5	1ksps-58.6ksps
ST Microelectronics	RHF1401	14	pipeline	CMOS 0.25um	2.5V	85	20Msps
Datel	ADS937	16	flash	BiCMOS	+/-5V, +/-15V	1100	1Msps
Burr-Brown	ADS7809	16	SAR	CMOS	+5V	150	100ksps
Maxwell							
Technologies	7809LP	16	SAR	CMOS	+5V	150	100ksps
LT	LTC1604AIG	16	SAR	CMOS	+/-5V	220	333ksps
ADI	AD977A	16	R-2R-ladder/SC	BiCMOS	+5V	100	200ksps
MAXIM	MAX1169	16	SAR	BiCMOS	+5V	<5	1ksps-58.6ksps

Commercial High-Rel ADCs

Requirements

- ✓ Rad-hard
- High resolution
- Very low speed

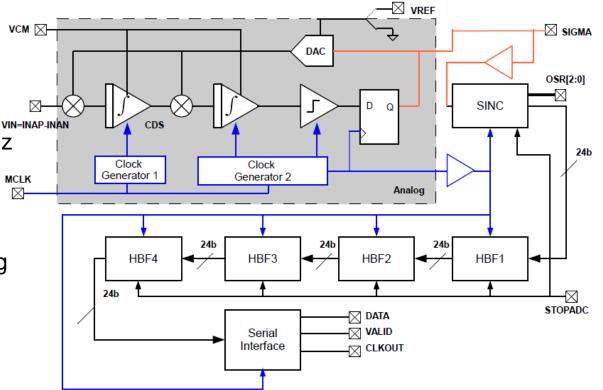
Resolution	24 bit
Analog input bandwidth	0.1mHz-1kHz
Effective resolution	16+bit @ 1kHz
Dynamic Range	> 100dB @ 0.1 mHz to 1 kHz
SINAD	> 100dB @ 0.1 mHz to 1 kHz
Maximum sampling rate	≥ 5 kHz
Monotonicity	Full code range
Power dissipation	< 70 mW
LET for SEL immunity	≥ 70 MeV/mg/cm ⁻²
SEU immunity	Protection of critical memory cells
SET immunity	Protection of the digital part
TID tolerance	≥100 krad
Temperature range (functional)	-55 °C < T < 125 °C
Temperature range (full performance)	0 °C < T < 50 °C



Features

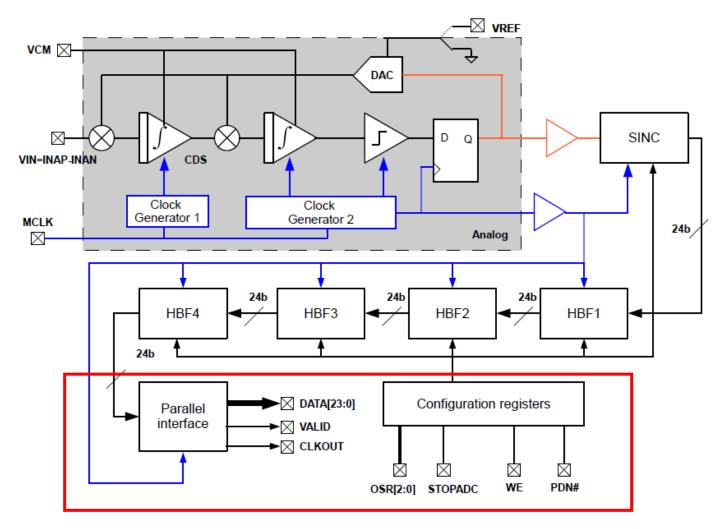
- Single-bit (inherently linear) ΣΔ modulator
- □ Single clock domain
- Very low sampling frequency operation
- Correlated double sampling input stage
- Differential or single-ended voltage drive
- ΣΔ modulator can be combined with external DSP core
- □ Simple serial output interface
- Selectable oversampling ratios allow sampling rates up to 96kSa/s
- Analog bandwidth from DC to 16kHz
- \square 1.8V/3.3Vpower supplies (3.3V I/O)
- Embedded or external voltage reference
- Radiation hardened against SEE and TID
- Technology: Atmel ATMX150RHA 0.15µm CMOS on SOI
 - 5 metals, 1 poly
 - Fully SPICE modeled and characterized devices
 - Rad-hard proven logic
 - DTI option, annular devices, HV...

Available in two versions


- ADC2401S: stand-alone packaged version with serial output interface
- ADC2401E: IP macro version featuring parallel output interface for embedding into larger SoCs

System overview

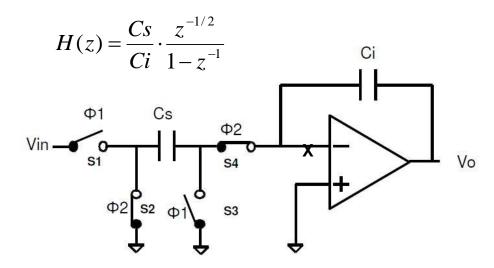
- Discrete time (switched capacitor), 2^{nd} order $\Sigma\Delta$ modulator architecture
- 1 bit internal quantizer
- Single global clock @ 6MHz
- Programmable oversampling ratio: 64x - 1024x
- Correlated double sampling
- Embedded clock phase generators


→ H	lighly scalable architecture
-----	---------------------------------

 \times

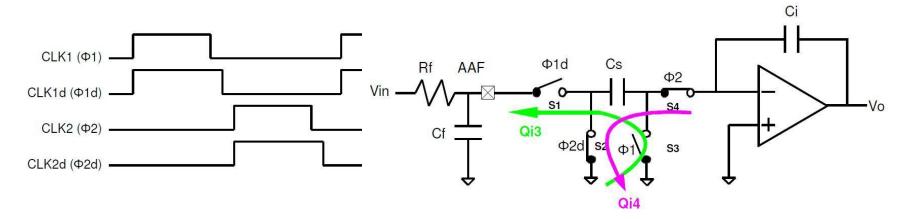
SNR (dB)	BW (kHz)	OSR	ENOB
125	1	1024x	20
110	2	512x	18
95	4	256x	15,4
80	8	128x	13
65	16	64x	10,8

Embedded IP version



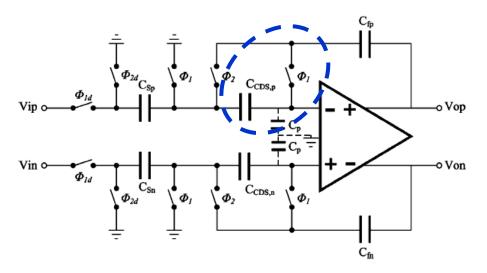
Why discrete time?

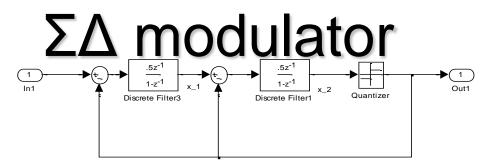
	Discrete time (DT)	Continuous time (CT)
Signal bandwidth	Low-medium	Medium – high
Application of noise reduction techniques	Easy	More complex
Clock jitter sensitivity	Low	High
Anti-aliasing filter	Required	Inherent present
Process robustness	High	Low
Loop filter scalability	Yes	No



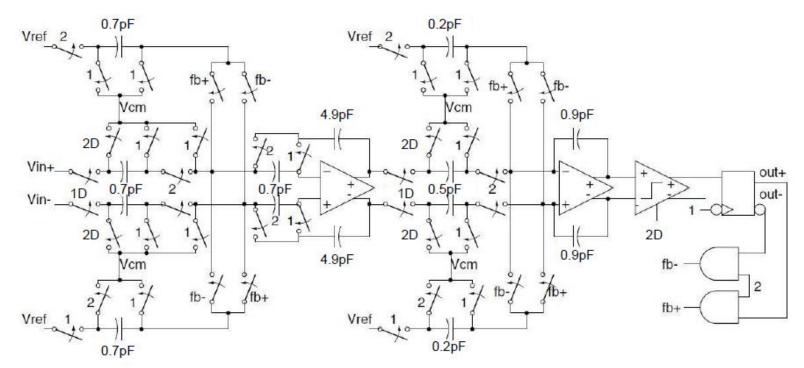
Stray insensitive SC integrator

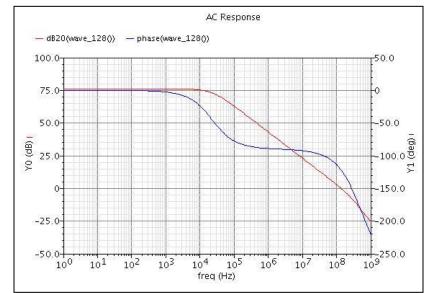
4-phase non-overlap clock [Haigh, Singh ISCAS83]


- Non-inverting SC integrator topology
- 4-phase non-overlapping clock minimized charge injection in MOS switches
- Operation
 - $\Box \quad \Phi 1 \rightarrow sampling mode$
 - $\Box \quad \Phi 2 \rightarrow \text{integration mode}$
- Stray insensitive to voltage depended junction capacitance of S3 and S4 (node X)

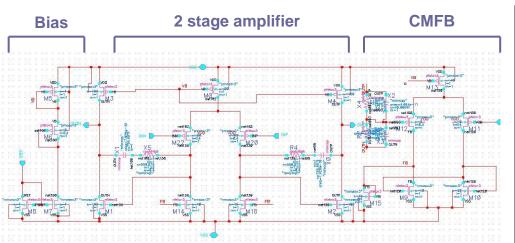

Correlated Double Sampling

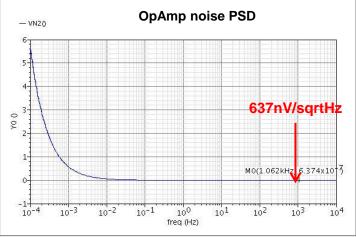
- Reduces 1/f noise
- Reduces offset (AZ)
- Amp noise and noise are sampled twice in each clock period
- Does not limit amplifier bandwidth
- Lowers the effect of finite amplifier gain
- Requires nonoverlapping clocks
- Requires 2 additional capacitors and switches

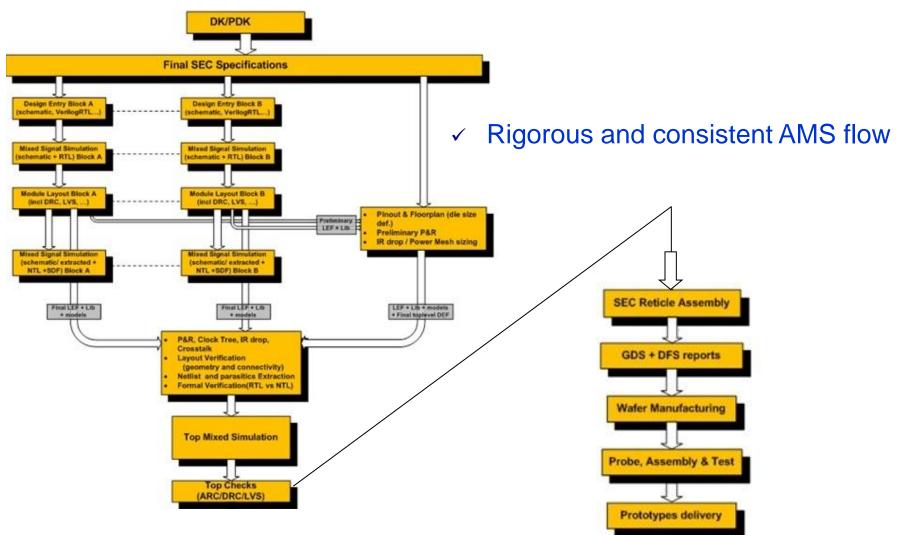

[C.Enz, G. Temes, 'Circuit Techniques for Reducing the Effects of Op-Amp imperfections', 1996]

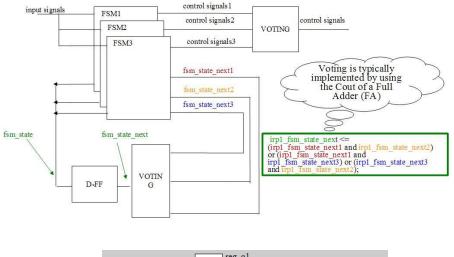

Model introduced by [Norsworthy S.R., R. Schreier, G.C. Temes, 1997]

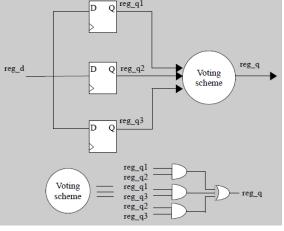
- 1-bit quantizer
- Two fully differential OTAs
- Pass gates as analog switches
- Single-ended Vref input
- 1-bit feedback DAC


architecture based on [Nieminen T. and Halonen K, NORCHIP 2010]


OTA specifications

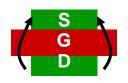

Current consumption	610 uA
Open-loop gain	76.7 dB
Phase margin	58 Deg.
Gain margin	-15.5 dB
Bandwidth -3dB	22.3 kHz
GPBW	146 MHz
Slew-rate	225 V/us
Common mode output	1.65 V
Current mode input range	0.35 – 2.95 V
Noise @ 1kHz	637nV/Hz

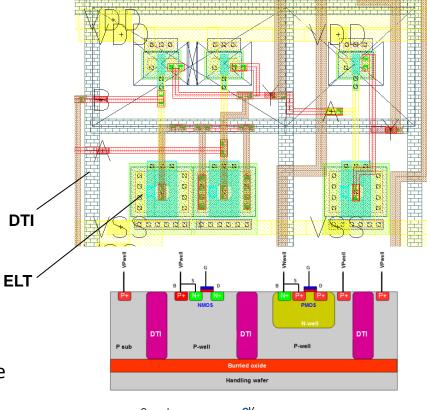

at77k PDK flow

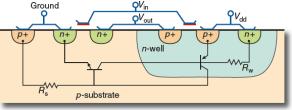


Radiation hardening: digital part

- Triple Modular Redundancy (TMR) with voting scheme
- Each flip-flop is triplicated and a voting mechanism passes the majority result
- Proven fault tolerance technique highly effective in masking random errors (SEE)
- Synchronous reset
- Rad-hard proven cells (at77k PDK libraries)






Radiation hardening: analog part

- Deep Trench Isolation (DTI) option cuts away the parasitic structures between PMOS and NMOS that may trigger SEL
- All NMOS transistors are of enclosed layout type (ELT) which greatly improve analog degradation due to TID effects (overconsumption due to severe leakage currents at edge formed parasitic channels)
- Relaxed layout rules

- Radiation induced charges are trapped in the oxides or at Si interface.
- Overconsumption due to severe leakage currents at edge formed parasitic channels may lead to total loss of circuit functionality.

[fig: R. Mauerer, et.all, 2008]

System modeling

- 1. SNR vs amplitude for various 1st integrator gains [Schreier, R., 2011, 'Delta Sigma Toolbox for Matlab].
- 2. Root locus of the modulator poles for a=0.45 and variable 2nd integrator gain b (0, 2.58)
- 3. Theoretical SQNR 140dB for OSR 2048x and 125dB for 1024x (375Hz sine input at 0.6 FS)

0.8

0.6

0.4

-0.2

-0.4

-0.6

-0.8

-0.8 -0.6 -0.4 -0.2

maginary Axis

0.9π/T

π/T

0.7π/T

хπл

0.87/1

SNR vs Amplitude for the 2nd order Sigma-Delta

0.25

0.30

0.35

0 40

.45

0.50

0.55

0.60

0.65

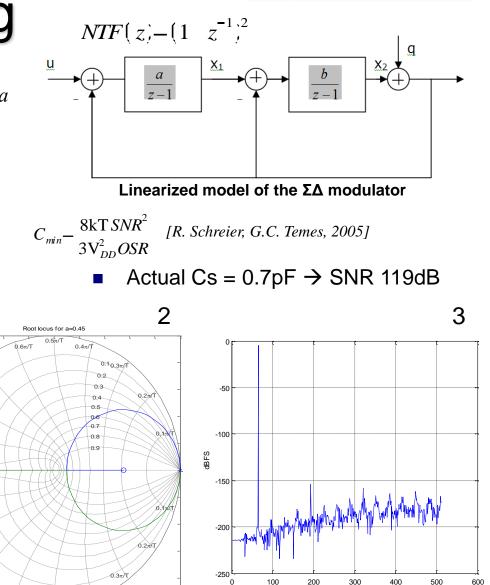
0.70

-30

140

135

130


125

120

115

-35

鸮

AMICSA 2014, June 30th - July 1st

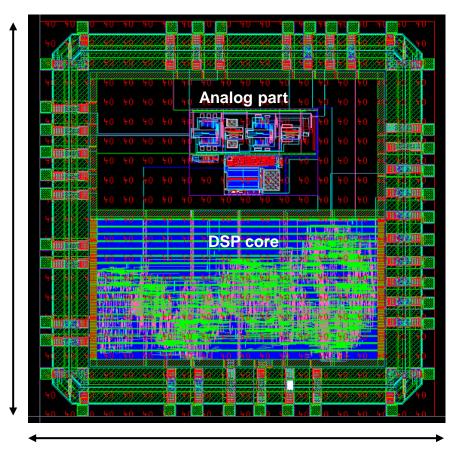
-20

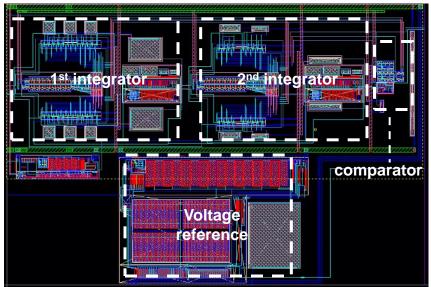
Input amplitude (dB)

-25

-15

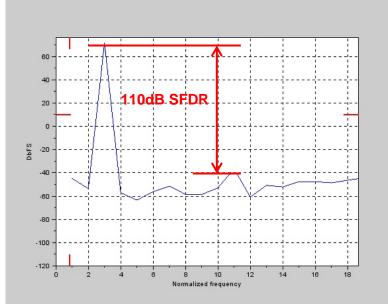
-10


-5

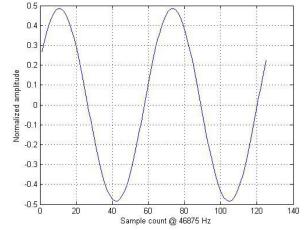

0.4 0.6 0.8

16

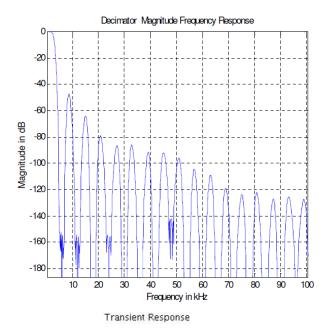
Floorplan & layout

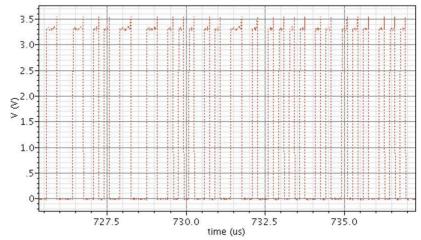


3000 µm


3000 µm

Simulation results


FFT sine 750Hz 0dBFS differential input (extracted layout) @ 25°C


Reconstructed sine wave at the output of the decimator

⁻⁻/ουτεΣΔ modulated output sine 750Hz 3.2Vpp differential

Conclusions and next steps

- ENOB of 18bit simulated
- Layout challenging due to increased OSR and precise timing requirements
- Full performance validation in Si will follow
- Full radiation evaluation of prototypes (heavy ions, TID)

Acknowledgments

We would like to thank Mr. **Michel Porcher** and Dr. **François Braud** of Atmel S.A.S for their continuous support

Thank you for your attention! Questions?