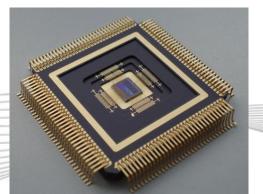
180nm CMOS Mixed-Signal Radiation Hard Library as base for a full ASIC supply chain

Jan Steinkamp, Eleni Oikonomopoulou, Frank Henkel, Volker Lück


Overview

- Motivation
- Selected Semiconductor Technology
- HARD Library Elements
- SEE and TID test Methodology
- Business Models from ASIC development to qualified IC

Motivation


- Achieving the status of *Capability Approval* for an ASIC supply chain under the ESCC system
 - Providing a Radiation Hard library (HARD) which can be used for mixed-signal ASIC design on a proven semiconductor technology
- Advantage of getting the Capability Approval in addition to QPL/QML status:
 - Only screening and limited evaluation required for a new ASIC
 - No full qualification with radiation tests required for a new ASIC
 - Efficient way of ASIC design:
 - Faster development time
 - lower NRE costs

QM, Ausgabe August 2010 © IMST GmbH - All rights reserved

Evaluation of the Semiconductor Technology

- In a former study several technologies have been investigated with respect to
 - Hardness against Radiation
 - Usability for Space ASICs
 - low volume supported via MLM or MLR
 - Location of the FAB (ITAR)
- XH018 from X-Fab has been selected and tested against TID and SEE behaviour with good results

Evaluation of the Semiconductor Technology

- XH018 key features
 - Typical supported supplies 1.8V, 3.3V and 5.0V
 - supporting deep N-well isolation for negative supplies
 - Modular concept
 - LDMOS transistors supports up to 60V of supply voltage
 - High voltage module available supporting 10V supply
 - Bipolar transistors available
 - Thick metal layers optional module
 - OTP cells module / IP
 - RAM compiler

Target for the Library Elements

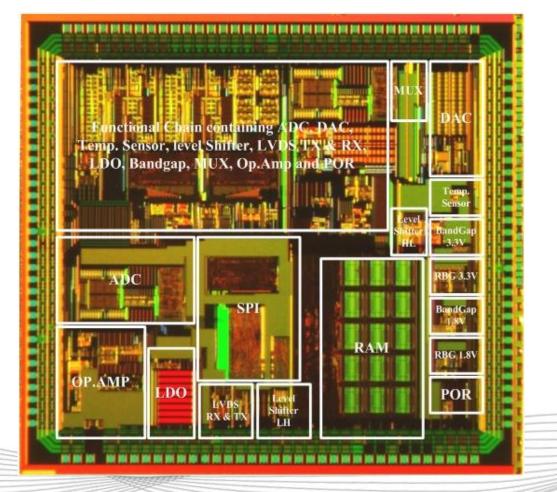
- Reusability
 - Providing a set of circuit block IP's that can cover a wide range of applications
- Radiation Hardness:
 - Single event latch-up free up to LET of 80 MeV/mg/cm² and 125°C, according to ESCC 25100
 - SEU/SET test, according to ESCC 25100
 - TID test for total dose > 300krads (Si) according to ESCC 22900 Specification

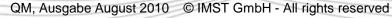
HARD Library IP blocks

IP Block	Main Characteristics	Status
4-Wire SPI Interface	1.8V, 16 registers, 12 bit, each	Silicon/ testing
I/O Cells	3.3V & 5.0V digital + Analog I/O	Silicon/ testing
LVDS Driver	1.8V, Fmax=800MHz	Silicon/ testing
LVDS Receiver	1.8V and 3.3V, Fmax=800MHz	Silicon/ testing
Reconfigurable Multifunctional Operational Amplifier	 Inverting OpAmp with variable gain: -10 dB +30 dB; 1dB step size Non inverting OpAmp with variable gain: 0 dB +30 dB; 1dB step size LPF 3 different cut off frequencies I to U Schmitt Trigger Voltage buffer 	Silicon/ testing
Bandgaps	1.8V & 3.3V trimable	Silicon/ testing
Reference Bias Generators	1.8V & 3.3V with PTAT and constant currents & adjustable voltage references	Silicon/ testing
Temperature sensor	1.8V, temperature range from - 40°C+150°C	Silicon/ testing
POR Generator	POR delay: 5µs	Silicon/ testing
LDO	Input voltage: 3.3V Output Voltage: 1.8V with adjustable short protection	Silicon/ testing

I M

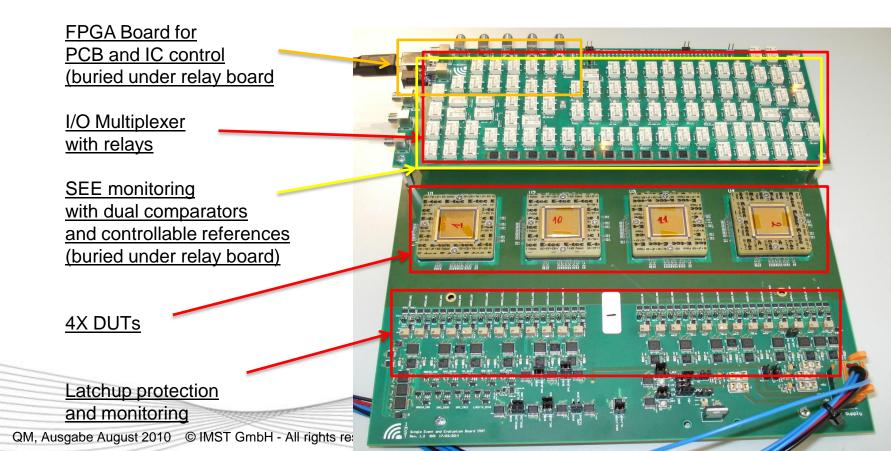
QM, Ausgabe August 2010 © IMST GmbH - All rights reserved


HARD Library IP blocks


IP Block	Main Characteristics	Status
Level shifter High-Low	input signals with 0V1.8V output signals with -5V3.2V	Silicon/ testing
Level shifter Low- High	input signals with -5V3.2V output signals with 0V1.8V	Silicon/ testing
Digital Level shifter High-Low	3.3V to 1.8V	Silicon/ testing
Digital Level shifter Low- High	1.8V to 3.3V	Silicon/ testing
16 bit MUX	Max. signal frequency: 800MHz	Silicon/ testing
11 bit ADC	charge-scaling SAR ADC fast mode: 200KS/s	Silicon/ testing
Memory cell	256x10 bit RAM module Clock frequency: 25MHz.	Silicon/ testing
12 bit DAC	segmented current steering DAC	Silicon/ testing
Memory cell	OTP	Future design
Serializer / Deserializer	Data Rates: 600 Mbps	Future design
Clock PLL with integrated VCO	output clock frequency range: CMOS = 6 MHz 300 MHz LVDS = 12.25 MHz600 MHz period jitter: 50ps (PK-PK)	Design
DCXO	Supports 6 MHz 50 MHz crystals via digital controlled C0	Design

Test Methodology

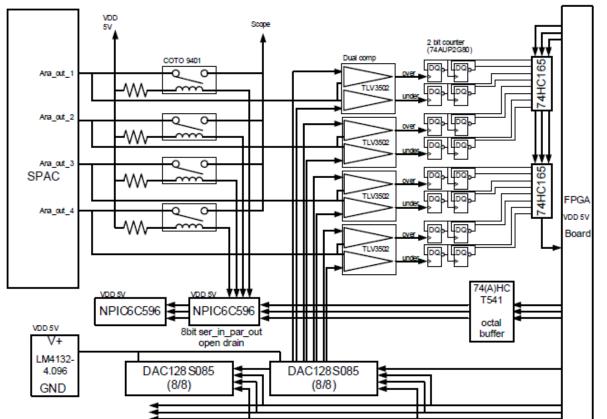
- Design of 1st test chip
 - Containing all IP's as single circuit to investigate single block behaviour
 - Chain of all IP blocks to investigate interaction of single IP blocks



Test Methodology

SEE tests

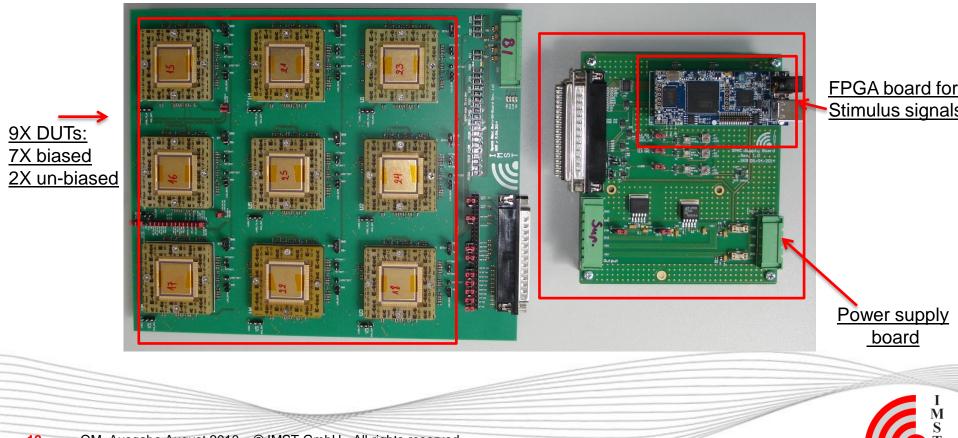
- Monitoring all supply and signal currents for Latch-up detection
- Monitoring and counting SET at all outputs
- Monitoring SEU on RAM, ADC, DAC and SPI blocks with test routines
- Will be performed at CYCLONE110 (UCL Belgien)



Test Methodology

• SET Monitoring Concept:

QM, Ausgabe August 2010 © IMST Gml


- Circuit block outputs routed to dual comparators
- SW controlled DAC giving the comparison values e.g. ± 50 mV around DC level of the circuit block output
- comparator outputs are routed to counters
- Additionally outputs can be routed to an Oscilloskope to measure signal shape (magnitude, ringing, frequency)

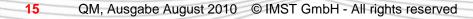
TID and Power Supply Board

TID test

- Test automation to measure performance of all single blocks vs. exposure dose rate
- Will be performed at Co-60 Gamma irradiation facility FHG Euskirchen

Measurement Results

- Project still in progress
- Irradiation test scheduled for July
- At this point Burn In is beeing performed


Business Model

Model 1:Turn Key Design Delivery of tested and qualified ASIC Model 2: Interactive Design. Customer is co designing on digital system and / or Top Level. IMST is adding analogue block in case of a mixed signal ASIC and is responsible for the final layout and tape in. Delivery of tested and gualified ASIC Model 3: IMST IP license of dedicated circuit blocks to end-customer. IMST will not produce the tested and qualified RH ASIC. Only wafers will be delivered. IMST Service Scenarios Interactive Design: IP license: ASIC Flow: Customer Turn Key Design: IP license of co-design on digital dedicated circuit system / Top Level. IMST analogue block ASIC Flow blocks to end-(MS ASIC) final layout customer and tape in tested and qualified tested and qualified Wafers ASIC ASIC

14 QM, Ausgabe August 2010 © IMST GmbH - All rights reserved

Outlook

- ASIC fabless manufacturer following ESCC rules & specifications
- Having Capability Approval of electronic component technologies for space applications
- Providing a space qualified technology & supply chain for Mixed- Signal ASIC
- Owning a space library
 - Hard Against Radiation by Design Library (HARD Library)
 - Continue work on HARD Library by adding more circuit blocks

Acknowledgement


The project is supported by the German Government

National Aeronautics and Space Research Centre

Qualitäts- und Produktsicherung

TESAT SPACECOM is project partner

