Strategy for Radiation Tolerance Assurance of the A&T electronic Equipment

G. Spiezia, M. Brugger

On behalf of the RADiation Working Group

Outline

- Radiation Working Group: Mandate and goals
- Strategy: constraints and dependencies
 - Environment and test facility
 - Equipment
 - Focus on custom developments
- Main radiation tolerant developments and possible requirements for ASICS
- Conclusion

R2E project and RadWG Mandate

Z

Engineering Department

Strategy

- Rad test is a phase of a new development
- Rad constraints to be considered from day 0

REQUIREMENTS

Electrical/system

Radiation environment and effects

Timeline

DESIGN

Specifications Selection Design

TEST System Component Qualification

PROCUREMENT Test boards Prototype Production

Time

Effects and Target test

Rad test required if

Radiation levels		
TID (Gy)	>1-5 Gy/y	
DD (1 MeV n. Eq. n/cm ²)	>1E10 n/cm ² /y	
HEH (n/cm²)	>1E7 n/cm ² /y	

- From the radiation levels we apply the radiation tolerant criterions to fix the Target tests (radiation levels to be reached during the test)
- Target tests depend also on
 - Life time to be reached (important for TID, DD)
 - Number of components/systems-- > Failure Impact
 - Number Errors = Cross Section x Flux x Number of Components
 - Failure Impact = Number Errors x Downtime

Environment

Need to test at high Energies

- CERN tests area
 - Most adapt solution
 - SEE, TID and DD tested at the same time
 - Representative environment

CHARM Cern High Energy AcceleRator Mixed Field/Facility

HEH flux in HEH/h

HEH: $10^7 \text{cm}^{-2} \text{h}^{-1} - 10^{10} \text{cm}^{-2} \text{h}^{-1}$, TID: $10 \text{mGyh}^{-1} - 10 \text{Gyh}^{-1}$

CHARM

(gradients to be considered)

Strategy- Type of Equipment

Z Ш

Type of Equipment: custom board

17-Jul-14

Focus on Full Strategy

Custom development with significant radiation levels

Design Tests **Procurement System Specifications** Design evaluation Component **Test setup Selection** Component Screening System Design Component **Purchase Lot Control Prototype** Time **System Tests Production** G. Spiezia EN/ST

Typical test campaign

TOTAL DOSE EFFECTS ON NEGATIVE VOLTAGE REGULATOR

- Environment study and monitoring
- Study of the literature and Analysis of the electronic boards
- Choice of the test facility according to the device location and request collections
- Test Setup preparation (pSpice, pcb, measurement method → up to 2 months preparations)
- Test campaign
- Data analysis and report
 - ✓ Test of ~80 components for the AT groups in the last 3 years
 - ✓ Coordination via RADWG www.cern.ch/radwg

Engineering Department

Z Ш

17-Jul-14

Trace the

Apply

safety

margin

lot anyway

System test

mandatory

Full Strategy

Custom development with significant radiation levels

Z Ш

17-Jul-14

Full Strategy

Custom development with significant radiation levels

Main rad tolerant developments

Main groups activities

	Team	Activity	Devices components			System	Tymo
			Analog	Digital Mixed	Power	System	Туре
	TE/MPE	QPS	X	X		Custom	COTS
	TE/EPC	Power Converter	X	X	X	Custom	COTS
	TE/CRG	Cryogenics	X	X		Custom	COTS/Rad hard
	TE/MPE	Interlock and Kicker	X	X	X	Semi-Custom	COTS
	EN/STI	Radiation Monitor	X	X		Custom	COTS
	BE/BI	Beam instrumentation	X	X		Custom	COTS/Rad hard
	BE/RF	RF Cavities	X		X	Custom	COTS
	BE/CO	Control equipment	X	X		Custom	COTS
	EN/MEF	Survey	Х	X		Custom	COTS
	TE/VSC	Vacuum equipment	X	X		Semi-Custom	COTS
	IT	IT tools		X		Semi-Custom	COTS
	EN/EL	Light, LED	X			Semi-Custom	COTS
	GS/ASE	Safety, Alarms	X	X		Semi-Custom	COTS
	EN/STI	Radiation test activities	X	X	X	-	-

EN Engineering Department

Typical system architecture

Wished ASICS

Field Bus

Peripherals Multiplex ADC Signal processing STRUCTURED ASICS **ULA** Optical transceiver

乙山

Engineering Department

100 Gy - 10 kGy $10^{11} \, 10^{13} \, \text{HEH/cm}^2$

Wished features

ADC

- 18-24 bit resolution, Sampling rate 10-50 kSps
- 16-18 bit resolution, Sampling rate 50-200 kSps
- 14-16 bit, Sampling rate 60 MSps

DAC

- 12-16 bit resolution
- 10 V range

Signal process

- FIR filter
- Median filter

MUX

• Multiple channels for AD/DA

Peripheral Management

- ADC, DAC (if not embedded)
- Field bus
- Optical transceivers
- Serial ports

ULA

• Programmable logic

I/0

SRAM

- 100 to 200
- LVDS drivers
- SERDES input for optical transceivers (2.4 Gb/s-5 Gb/s)
- No SEL (> 40 MeV.cm²/mg)
- No SEFI on the reading/writing circuitry
- Limited TID effect
- Sensitive to SEU to measure hadron fluence

Conclusion

- Radiation strategy for the Accelerator sector takes into account constraints based on radiation levels, equipment type, failure impact
 - CHARM test facility to have a representative environment
- For custom developments, mainly COTS components are used
 - → Huge effort for testing and quality assurance
- A custom rad-tol ASICS with AD, DA, Logic programmable units would fit with on-going and future projects
 - 4-5 types of equipment with 100 of subparts/subsystems

Thank you

乙川

Useful links

- RADWG: www.cern.ch/radwg
 - List of the tested components
 http://radwg.web.cern.ch/RadWG/Pages/Summary Table-e.htm
 - Test reports: https://edms.cern.ch/nav/P:CERN-0000091191:V0/TAB3
- List of test facilities:
 http://radwg.web.cern.ch/RadWG/Pages/test facilities
 .htm
- CHARM <u>www.cern.ch/charm</u>
- R2E project: www.cern.ch/r2e

Back-up

- A Complex Programmable Logic Controller (CPLD) was tested using 60 MeV protons
- No SEEs were observed for the three devices tested before these started failing due to total ionizing dose effects (cumulative) after 120 Gy.
- The component was then exposed to high energy particle radiation at an LHCenvironment. Permanent destruction of the part occurred in the early stage of the test.
- Importance of testing in the actual operation environment (not always feasible in a systematic way) and of being able to model/predict the error rate (energy dependence knowledge, for example)

150

SEE

- Destructive events can be caused by recoils products created by HE particles impinging on HiZ device materials
 - Interaction cross section is a function of the impinging particle energy, material and its location
 - Type of materials and location are often unknown
 - Max LET of recoil is 40 MeV.cm²/mg (W fission)
- LHC environment: Energy up to 1 GeV
- Proton facility: max 230 MeV

Engineering Department

SEE

Destructive events are caused by recoils products

Engineering Department

- A Complex Programmable Logic Controller (CPLD) was tested using 60 MeV protons
- No SEEs were observed for the three devices tested before these started failing due to total ionizing dose effects (cumulative) after 120 Gy.
- The component was then exposed to high energy particle radiation at an LHCenvironment. Permanent destruction of the part occurred in the early stage of the test.
- Importance of testing in the actual operation environment (not always feasible in a systematic way) and of being able to model/predict the error rate (energy dependence knowledge, for example)

Full Strategy

- Component classifications
- Choice of the test facility(ies)

Class	Radiation response	Sourcing	Components
Class-0 (potentially sensitive)	Quite resistant or moderate sensitivity to radiation	Easily replacement Different manufacturers and types on the market	ed se
Class-1 (potentially critical)	Potentially susceptible to radiation, not on system's critical path	Substitution possible (list of preferable replacements is defined)	
Class-2 (highly critical)	Potentially susceptible to radiation, on system's critical path	Difficult to replace as no equivalents on the market	ro be for ea
ECCI	ita uga gaga		<u> </u>

Class	Mixed-Field Proton (PSI)		Heavy-ion
Class-0 (potentially sensitive)	Mandatory Component tests or tests of the complete		N/A
To be tailored for each case			N/A
Class-2	Ортіона	ivianidator y	Mandatory
	Component tests or	Component tests for	Component
(highly	tests of the complete	SEE and TID (margin	tests for better
critical)	board for SEE and TID	to account for >1GeV)	SEL assessment

Z Ш

Engineering Department

FGC Lite use case

Full Strategy

Test	Facility	How
	CHARM	Test points for SET
SEE	PSI	Current consumption
	Heavy Ion	SEE on numeric data
	Fraunhofer ESTEC	
TID	PSI	Test points for drift checking and parameter degradation
	CERN	
DD	CEA, Fraunhofer	Test points for drift an parameter degradation