

Potentials of Petri nets for Availability Modeling and Analysis

Dr.-Ing. Peter Zeiler

Institute of Machine Components
Department: Reliability Engineering

Workshop: Machine Availability and Dependability for post LS1 LHC 28 November 2013 Geneva, Switzerland

- Introduction
- Availability Modeling
- Analysis and Prediction
- Software Tool: REALIST
- Large and Complex Systems
- Application Example
- Summary & Conclusions

Introduction

Motivation

Availability Modeling and Analysis

Numerous interactions, extremely complex system description

Motivation

> Prediction of operational availability

Decision between alternatives:

- Operation strategy
- Production process
- System configurations
- Reliability demands
- Maintenance strategy
- Logistics concepts

Necessary: Powerful methods for availability analysis and prediction

Availability Modeling

Availability Modeling and Analysis

Overview and Comparison of Modeling Methods

Extended Stochastic Petri Net (ESPN)

Statical elements

- Places (States, Objects)
- Transitions (Time & Logic)
- Arcs (Relations, Structure)

Dynamical description

- Marking
- Activation (or deactivation)
- Switching
- Initial marking
- Sequence of activating (or deactivating) and switching results in marking changes

Few basic elements: great flexibility in modeling

Extended Coloured Stochastic Petri Net (ECSPN)

Extensions

- Markings with complex information ("Colour" = Data type)
- Activation condition and switching rule are colour dependent
- Special elements and switching processes
 - State behaviour with ageing
 - Queuing discipline
 - Degree of renewal
 - Operational costs

Conjoint System Modeling (CSM)

Hybrid system model

ECSPN state space oriented

- Reliability structure is not directly representable
- System state complex

Reliability Block Diagram (RBD) favorable for reliability structure

Extended Coloured Stochastic Petri Net

Conjoint System Model Reliability Block Diagram

Presentation of various aspects using the optimal modeling technique in each case

Hierarchy of Modeling Methods

CSM/ECSPN – Modeling capability

General

- Concurrency/Synchronization
- Chronological sequences
- Competition
- Logic conditions
- Queuing behavior
- Timed/Stochastic system behavior
- Dynamic changing system behavior
- Fuzzy input data

CSM/ECSPN – Modeling capability

- Operation schedule
- Mission profile
- Material flow
- Information flow
- Production structure
- Queuing behavior
- Priorities
- Production dependencies
- Reliability structure
- System and component states
- Constant failure rates
- Time-dependent failure rates
- Dynamic changing failure behavior¹
- Aging
- Several operative states*
- Failure dependencies

* with time-dependent failure or transition rates

CSM/ECSPN – Modeling capability

Functions

Maintenance & Logistics

Costs

- Functional states
- Functional sequences
- Functional logics
- Functional dependencies

- Corrective and preventive maintenance
- Inspections and sensor-based condition monitoring
- Time-dependent transition rates
- Degree of renewal*
- Spare part logistics
- Limited maintenance capacities
- Maintenance dependencies

- Duration-based costs
- Number-based costs
- Variable Costs/Revenues

* with time-dependent failure or transition rates

System Model - Close to Reality

Analysis and Prediction

Dependability Characteristics

Inherent Characteristics

- Operation schedule
- Production process
- Reliability structure
- Functions
- Availability
- Reliability
- Reparability/Maintainability
- Inspectability

Independent processes, structures, components and states

Operational Characteristics

- Operability
- Productivity
- Availability
- Reliability
- Functionality
- Reparability/Maintainability
- Inspectability
- Maintenance Delay Time
- Logistic Delay Time
 - Level of Service

Evaluation under operating conditions (with dependencies)

Output Information

Software Tool: REALIST

Modelling and Simulation Package REALIST*

Modeling and Analysis of complex technical systems "without" limitations!

*) REALIST = Reliability, Availability, Logistics and Inventory Simulation Tool

Modeling and Simulation Package REALIST

Creation of the system model as ESPN, ECSPN or CSM

pages

Modularisation the presentation in

ECCENI: Deiseislaustees E	
ECSPN: Beispielsystem 6 ECSPN: Beispielsystem 7 ECSPN: Beispielsystem 7	Petrinetz-Datei Neues Petrinetz erstellen mit PetriEdit
Ludi N. Usiyebiyosii U	Dateiname D:\Daten\Beispielsysteme\Beispielsys Auswahl
	Bezeichnung n1
	Beschreibung Beispielsystem 5. ped
	Netz-Typ ecspNet
	Numerik-Parameter
	Simulationsdauer 50000 Stunden 💌
	Replikationen 20000
	Auswertungsinterval 10 Zeiteinheiten jeweils 💌
	Auswertungs ab 10000 Zeiteinheiten 💌
Neue Simulation eines ESPN Erste Position	Vertrauensbereich 95 %
Neue Simulation eines ECSPN Nach oben	Protokoll-Optionen
Kopieren Nach unten	Normal Protokoli der Zufaliszahlen
Löschen Letzte Position	Ausgabe-Optionen
	Ergebnisausgabe in Dateien und Grafiken
Charles Cinu delinearranea	Maximum der Meßwerte 5000

er der ausgewählten Simulatio

I PetriSin

Liste der Simulation

ESPN: Beispielsystem

ESPN: Beispielsystem ESPN: Beispielsystem

- Management of simulation projects
- Automated implementation of simulation projects
- Analysis and processing of result data

Comfortable development and efficient analysis of a system model

Large and Complex Systems

Complexity of the Model

Measures to support modeling:

- Decomposition
- Application of sub-models
- Application of extended sub-models
- Conjoint modeling
- Generic model design (automatic generation)

Measures to reduce simulation time:

- Parallelization
- Focusing

Application Examples

Range of Application

From single component up to comprehensive system

Application Example – Production system

Boundary conditions:

- 9 different product variants
- Entire manufacturing process (15 process steps) including quality control and rework
- Reliability based on concurrent failure modes
- Maintenance process including preventive and corrective actions
- Several cost drivers e.g. material, energy, personnel, …

Main analysis objectives:

- Different maintenance strategies and costs
- Probability of shortfall for the production unit target (based on availability)

University of Stuttgart

Germanv

Production system: band saw blade fabrication

System Model – Production system

Entire model

Reliability model of machine A

Results – Production system

Main analysis results:

- Maintenance strategy
- Probability of shortfall for the production unit target (based on availability)

Shortfall probability for contracted production volume of 7000 units/year

Production system: band saw blade fabrication

Maintenance strategy and costs:

- ◆ Strategy "24" PMs: 562,170 €/year
- ◆ Strategy "36" PMs: 567,910 €/year
- "Optimized Strategy": 557,200 €/year

Summary & Conclusions

Summary & Conclusions

- Presented powerful modeling methods are able to consider various modeling aspects
- Conjoint system model based on Petri net yields the maximum modeling power and is able to consider manifold dependencies and reciprocal effects
- Analyzed operational parameters are an integral base for the development of availability (predictions, comparisons, optimizations, ...)
- Large systems require support in modeling and analysis

Availability modeling and analysis based on Petri nets offers a great potential for CERN

peter.zeiler@ima.uni-stuttgart.de

Thank you for your attention!