

Power Converters Availability for post-LS1 LHC

TE-EPC-CCE

slawosz.uznanski@cern.ch

Nov 28, 2013

- 1. Introduction to LHC Power Converters
- 2. Failures in 2012
- 3. Extrapolating from 2012 to LS1-LS2
- 4. Controller for radiation tolerance
- 5. Future challenges
- 6. Conclusion

Introduction to LHC Power Converters (1/2) Power & Control

LHC Power Converters Introduction (2/2) Types of Power Converters

Failures in 2012 (1/4) Overview

Hardware failures leading to a beam dump Data from Post Mortem analysis – Evian 2012

	Power Part		Control part		Unknowr Non radia	n origin (power or controls) ation related	
2012	VS electrical	VS radiation	FGC electrical	FGC radiation	Unknown	Total	
Faults - Post Mortem (Evian 2012)	15	7	5	4	4	35	
						Total of 35 Beam Dumps fro	m Pl

presented in Evian 2012

Number of hardware failures of the LHC Power Converters Only physics runs with energy above 450 GeV Discarded EOF, MD & MPS TEST

2012	VS electrical	VS radiation	FGC electrical	FGC radiation	Unknown	Total
Faults - Post Mortem (Evian 2012)	15	7	5	4	4	35
Faults - eLogbook (operations)	31	9	5	3	11	59

Number of hardware failures of the LHC Power Converters As recorded by operations in eLogbook Needs an expert input to analyze the root cause of failure

2012	VS electrical	VS radiation	FGC electrical	FGC radiation	Unknown	Total
Faults - Post Mortem (Evian 2012)	15	7	5	4	4	35
Faults - eLogbook (operations)	31	9	5	3	11	59
Faults - EPC Logbook (equipment)	29	9	5	3	6	52

Number of hardware failures of the LHC Power Converters As recorded by EPC Logbook comparing directly with eLogbook Contains equipment expert analysis

2012	VS electrical	VS radiation	FGC electrical	FGC radiation	Unknown	Total
Faults - Post Mortem (Evian 2012)	15	7	5	4	4	35
Faults - eLogbook (operations)	31	9	5	3	11	59
Faults - EPC Logbook (equipment)	29	9	5	3	6	52
Faults - RadWG	x	15	x	10	x	25

Number of radiation-induced events in the LHC Power Converters RadWG database that contains the equipment and radiation expert analysis

2012	VS electrical	VS radiation	FGC electrical	FGC radiation	Unknown	Total
Faults - Post Mortem (Evian 2012)	15	7	5	4	4	35
Faults - eLogbook (operations)	31	9	5	3	11	59
Faults - EPC Logbook (equipment)	29	9	5	3	6	52
Faults - RadWG	х	15	x	10	x	25
Worst case analysis	29	15	5	10	6	65

Worst case analysis

Combined information from:

- 1. EPC Logbook (electrical failures)
- 2. Radiation Working Group (radiation related failures)

Electrical failures

Date	Comments	Equipment
16/04/2012	Magnet Fault	ALICE SOLENOID
28/04/2012	Current measurement problem (Bad Contact ?)	RPMBC.USC55.RTQX1.L5
08/05/2012	Power Module problem	RPMBA.RR53.RQTL11.L5B1
09/05/2012	Power Module Inverter problem	RPTI.SR2.RBAWV.R2
12/05/2012	VERO PSU broken	RPLB.RR53.RCBCV9.L5B1

Failures due to radiation

Date	Title	Area	Event type	Caused by SEE	Beam dump	Equipment	. <mark>HC fill</mark>
08/11/2012	PC SEE Problem: 15h in RR53 AC-DC of 600A	RR57	hard SEE + Access	YES	No	PC 600A Aux. Supply	3272
08/11/2012	SEE fault on 120A	RR53	soft SEE + Access	YES	Yes	PC 120A	3272
30/10/2012	Power converter	RR73	hard SEE + Access	YES	Yes	PC 600A Aux. Supply	3240
27/10/2012	another SEE on PC	RR13	hard SEE + Access	YES	No	PC 600A	3231
26/10/2012	Trip of RCBXV3.R5 (power converter)	UJ56	hard SEE + Access	YES	Yes	PC 600A Aux. Supply	3223
23/10/2012	Trip of power converter RQT12.R1B2, dump	RR17	hard SEE + Access	YES	Yes	PC 600A	3212

:

600A Power Converter (14/15 events) Single Event Burnout of an AC-DC power supply

Detected in the R2E Project framework and fixed by TE-EPC-LPC

CERN 2013

Operation in 2012 (4/4) Failures of FGC

Electrical failures

Date	Title	Beam dump
09/05/2012	Active Filter start-up sequence failed	YES
31/05/2012	Current measurement problem (Bad Contact ?)	YES
13/07/2012	Voltage measurement problem	YES
13/07/2012	Voltage measurement problem (idem as the 13/07/2012 07:14)	YES
21/11/2012	Active Filter fault	YES

Failures due to radiation

Date	Title	LHC point	Area	Event type	Caused by SEE	Beam dump	Equipment	LHC fil
27/10/2012	Power Converter SEE	Point 7	UJ76	s oft SEE	YES	Yes	PC FGC COD	3231
03/10/2012	FGC problem on 60A	Point 6	ARCs	s oft SEE	YES	No	PC FGC COD	3128
07/09/2012	Power converter	Point 5	UJ56	soft SEE + Access	YES	Yes	PC FGC Generic	3036
08/08/2012	FGC Problem on 18L1	Point 1	All	s oft SEE	YES	No	PC FGC COD	3142
22/07/2012	Power converter	Point 4	ARCs	s oft SEE	YES	Yes	PC FGC COD	2870
17/07/2012	Power Converter	Point 5	ARCs	s oft SEE	YES	No	PC FGC COD	2852
28/04/2012	Power-Converter RPLA.28L8.RCBV28.L8B1	Point 8	ARCs	s oft SEE	YES	No	PC FGC COD	2565
19/04/2012	Power-Converter RPLA.18R7.RCBV17.R7B2	Point 7	ARCs	s oft SEE	YES	No	PC FGC COD	2534
16/04/2012	FGC problem on RPLA.18R7.RCBV17.R7B2	Point 7	ARCs	s oft SEE	YES	No	PC FGC COD	2520
10/04/2012	Power-Converter RPHGB.RR17.RD2.R1	Point 1	RR17	s oft SEE	YES	No	PC FGC COD	2498

6

<10

90

2012 data

2012	VS electrical	VS radiation	FGC electrical	FGC radiation	Unknown	Total
Worst case analysis	29	*15 -> 1	5	10	6	51

5

Does not account for the infant mortality of: FGClite replacing FGC2 Voltage Source modifications

22

47?

2017 ≈6.5 TeV operation

CERN 2013

Radiation Tolerant Controller FGClite (1/4) Technical Concept

Dedicated design methodology:

- 1. No $\mu P/\mu C$ as computationally intensive tasks moved to the gateway
- 2. Extensive radiation testing to select/validate all electronic components
- 3. Highly available Gateway/FGClite communication required
- 4. Mitigation of radiation effects at the design level

Uznanski, NSS'13

Equipment budget ≈ 3M CHF

2013 – hardware design & component type testing underway
Q3/2014 – 10 fully validated FGClite proof-of-concept modules
Q3/2014 – start of component batch testing using CHARM (PS East Area)
Q2/2015 – Series production

FGClite project planning

- 1. FGC2 will be used after LS1 for the first months as its failure rate will be acceptable
- 2. FGC2 will start failing due to increasing radiation levels thus FGClite will be installed
- 3. FGClite infant mortality issues will have to be addressed in the first weeks of operation
- 4. FGClite operational will exhibit much lower failure rate than FGC2

Procurement of commercial components (COTS)

- 1. Batch origin (Silicon Date Code) information
- 2. Batch radiation qualification
 - Importance of sample selection
 - Assessment of component-to-component radiation response variability

Reliable communication infrastructure

- 1. Robust FGClite hardware (TE-EPC) and its communication module (BE-CO)
- 2. Robust Gateway software (TE-EPC) and its communication module (BE-CO)
- 3. Robust communication infrastructure: repeaters, cabling, etc... (BE-CO)

Concentrated on 2012 LHC Converters

Looking Back: 1. On the observed availability of Power Converters

Radiation failure rates = new FGC needed

2. On the method used to track Power Converter availability

Different information sources analyzed

EPC Logbook (equipment) and RadWG databse (radiation) used

Looking Forward: 1. On the changes to Power converters during LS1

Radiation failures addressed: FGClite replacing FGC2, modifications to 600A VS Predictions don't account for the infant mortality of new/modified systems But overall an increased number of failures is possible

2. On future reliability studies

In-depth analysis/predictions of radiation-induced failure rates (RHA program) Tracking and extrapolation of failure rates from operational data

3. On future data collection

Integration of EPC logbook data in the MMP/OPIM solution when available

Thank you for attention!

21