LBDS overview on system analysis and design upgrades during LS1

Roberto Filippini, Etienne Carlier, Nicolas Magnin, Jan Uythoven CERN Workshop Machine Availability for post LS1 LHC, 28th Nov 2013

LBDS overview on system analysis and design upgrades

Outline

- LBDS system analysis overview
- Insights on tools and methodologies
- System changes during LS1
- Conclusions and outlook

The LHC Beam Dumping System

The LBDS is the final element of the protection chain, it performs the extraction of the beams <u>on demand</u> (dump requests) either at the end of machine fills or because of safety reasons. Two LBDS exist, one per beam.

System analysis overview

LBDS system analysis 2003-2006

- The scope
 - TSDS, the beam energy tracking BETS, the septa MSD, extraction kickers MKD and dilution kickers MKB. Passive protection elements not in the scope.
- Assumptions
 - > Operation profile of 10 hours, 400 machine fills, 200 days of operation
 - > Post mortem diagnostics returns the system to an "as good as new" state

- Results
 - The LBDS is SIL 4
 - False beam dumps 8 +/- 2 per year
 - Asynchronous dumps **2** per year

MKD most critical system (74%) and main cause of false beam dumps (61%)

Failure statistics 2010-2012

The scope

- MKD and MKB with control and supervision electronics and diagnostics
- Analysis of 3 years of LHC operation 2010-2012
 - Sources: LHC-OP logbook, and LHC-TE/ABT expert logbook

Results

- I 39 failure events of which 90 internal to LBDS
- Updated reliability prediction models
- New failure mechanisms discovered
- Availability and safety: comparison of predictions vs. statistics

Results \rightarrow from raw data to statistics

How → Failures modes observed 18 occurred over 99 identified 7 new failure modes

LBDS availability 2010-2012

- The LBDS counted **29 false beam dumps**, against 24 foreseen (8/year on average).
 - Actuation (15) then surveillance (12) and controls (2)

LBDS safety 2010-2012

- Calculation of the safety margin at a dump request → loss of safety margins in 2011, and a recover in 2012, almost back to the initial levels of 2010
- SIL3 at least is met (hypothesis test)

The safety gauge

Remark \rightarrow too much safety margin leads to an unnecessary reduction of availability

Tools and Methodologies - insights

Failure statistics

Statistical framework and inference tools

Tracking availability Safety trade-off

Availability figures

Tracking reliability

Advanced reliability prediction models

The statistical analysis framework

Failure modes and statistics – MKD system

Advanced models for reliability prediction

• Goal \rightarrow How to capture anomalies from observations

Reliability growth models Interaction-dependency models (CCF) Inaccurate diagnostics Stress models Component Failure rates should Failure on demand always stay in the flat region Decreasing Constant Increasing Failure Failure Failure Rate Rate Rate **Observed Failure** Failure Rate Early Rate "Infant Mortality" 5 Failure Failures Constant (Rando Failures Failure on demand Model apart Time

Tracking Availability

Narrow scope

• Faults that only manifest in operation \rightarrow false beam dumps

Large scope

Any fault that impacts (and retards) on the operation schedule

• Systemic \rightarrow balance safety and availability

- Is the system protected or overprotected?
- Safety margins and safety policies
- Trade-off and optimization

Safety margins

A state based approach → safety by design guarantees that failures do not develop further and let the system operate at sufficient safety margins

The safety gauge

Balance safety and availability

- Which ideal safety policy?
- Quantify the safety margins at every beam dump \rightarrow black box model

Nominal beam dump

The system is fully available or in an acceptable degraded state

False beam dump

The internal dump must be justified → safety margin about to be eroded

Example: Safety margins for the LBDS

- 1. Every system was calculated a safety margin at the beam dump
- 2. The average safety margin was calculated over 2010-2012

Control function (TSDS) is the closest to the safety margins

Average safety margins at an internal beam dump

Design upgrades during LS1

Add shielding in MKD MKB cable ducts MKB vacuum

Design update during LS1: Additional re-trigger from BIS

Design update during LS1: Upgrade of TSU cards

Design update during LS1: LBDS powering modifications

- Add a separated connection to a second UPS (US65) for LBDS
- Individual circuit breaker for each crate PSU (Distribution Box)
- Software monitoring of all crate redundant PSU

<u>Goal:</u> Increase SAFETY

Impact on availability:

More surveillance systems => lower availability

Design update during LS1: Add 2 MKB magnets (1 tank) per beam

Design update during LS1: MKB vacuum

Design update during LS1: Changes to HV generators

Sparking in the GTO stacks causing self-triggers: (operation limited to 5 TeV)

- => **HV insulators** are added between:
- Return current Plexiglas isolated rods;
- GTO HV deflectors.

<u>Goal:</u> Increase AVAILABILITY

Design update during LS1: Upgrade of PTUs

- Increase PTU maximum voltage from 3 kV to 4 kV (replacement of HVPS)
- Replace 1.2 kV IGBT with equivalent 1.7 kV type
 => better sensitivity to SEB
- Operate PTU at ~3500 V constant voltage
 => Increased GTO gate current
 - => less GTO wear out

Goal: Increase AVAILABILITY

Design update during LS1: Add shielding in MKD & MKB cable ducts

Add shielding in all MKD & MKB cable ducts between UA and RA:

=> less SEB problems

<u>Goal:</u> Increase AVAILABILITY

System analysis and recommendations (1)

• Safety by design \rightarrow implementation issues

- Prevent the generation of erratic triggers (MKD)
- Loss of redundant chains and Common Cause of Failure (all)
- Overlap between control functions and safety functions (TSDS)
- Safety by design \rightarrow functional, systemic issues
 - Analysis of rare events (e.g. "Swiss cheese" models)
 - Safety measures as possible source of hazards
 - Functional dependencies and domino effects

Tools

- Safety standards
- System analysis qualitative and probabilistic methods
- ► Fault tracking → monitor that every components stays in the flat region and identify anomalies (aging? dependencies? stress?)

System analysis and recommendations (2)

- Scale up risks → operating at higher energies may demand tighter margins of safety and impact on availability
- 1. Review of the existing safety chains
 - Review SIL in the light of possible increased risks
- 2. New hazards or existing hazards that become safety relevant
 - New safety chains and interlocks after LS1 changes
 - New failsafe mechanisms as sources of false beam dumps

Tools

- Risk analysis
- Real-time estimate of safety-availability balance \rightarrow the safety gauge
- ... <u>export the safety gauge (safety margin) concept</u> to every system that has a non trivial safety-availability trade-off - it returns a metric easy to understand and that can be shared throughout designers and operators

Conclusions

Analysis of LBDS over 2010-2012 returned overall satisfying statistics

- Availability and safety improved along the operational period.
- Anomalies sorted out.
- Theoretical models in line with observations
- Experience in methodologies is encompassing
 - Hazards \rightarrow system analysis \rightarrow safety by design
 - Innovative methodologies \rightarrow safety gauge
- All design upgrades are safety-availability informed

. . .

Conclusions (2): design upgrade during LS1

SAFETY is our main concern !

Most of important changes for **SAFETY improvement**...

... Perhaps **reducing AVAILIBILITY** !

Nonetheless, many changes are performed to **improve AVAILIBILITY**...

...where **SAFETY** is not impacted.

...question time

Roberto Filippini email: rob.filippini@tiscali.it

Spare slides - recommendations

Sensitivity to unknowns

- Some failure modes were not foreseen in the theoretical model (7 over 26 recorded)
- Their impact is significant in the overall safety figures
 - They reduced the safety margin or impacted on availability

Function	With new failure modes	Without new failure mode
Actuation	2.77	2.86 1
Control	2.13	2.58 1
Surveillance	3.39	2.85 ↓

R. Filippini, J. Uythoven Review of the LBDS safety and reliability analysis in the light of the operational experience 2010-2012, CERN-ATS-Note-2013-042 TECH. 2013

Recommendations (1)

Further investigations on failure mechanisms

Common Cause Failure suspected in a few components such as the failure of three High Voltage power supplies in the MKD generators, two Triggering Units not responding, and the spurious firing of two Trigger Fan Out units. Further analysis on CCF and consequences on reliability is recommended.

Availability concerns

- 7 false beam dumps are from the vacuum
- I2 failures from post mortem and diagnostics => cause of delays in re-arming
- Diagnostics was not always accurate, faults fixed after several interventions
- Some functions might be over-protected, e.g. LBDS surveillance

Safety concerns

- SIL3 is largely met for LBDS, SIL4 possible but further analysis is recommended
- The control functions of the LBDS (TSDS) is estimated to have the smallest safety margin.
- HW changes during LSI in TSDS (controls) and powering.

Recommendations (2)

Data quality

- Good and large quantity, but inconsistencies existed as well as nonhomogeneities in the data reporting, time stamps, consequences from diagnostics and intervention
- Improvements during the years should be consolidated by the definition of standard procedures of data reporting and tools for the automatic information retrieval

Product assurance

Several components did not meet the reliability specification because of design flaws, and were returned to the manufacturer (e.g. Asibus®, Power trigger power supply).

Other issues

- Maintenance, and diagnostics had a relevant impact on operation
- A number of faults/errors are procedural (human factor) and should be taken into account for a more detailed analysis

Spare – Failure models

Control and surveillance functions (spare)

Not validated

								7
#	Failure mode	Model	Population	TTF (years)			TTR (h:mm)	
				Raw	Corrected	Rel. pred.	H. test	
1	TSDS TSU spurious trigger	O, PL, S2, CLK	4	3*4/3 = 4	1-count 12	320	n.a.	No data
2	SCSS voltage tab. corrupted	Not in the model	2	3*2/1 = 6	-	-	n.a.	No data
3	BEM anybus error	TX1,TX2, TX3	50	3*50/5 = 30	1-count 150	380	TRUE	0:37:00
4	TDSD fan out spurious trigger	TO2	100	3*100/2 = <u>150</u>	β-model	16000	n.a.	1:20:00 (singleton)
5	TSDS TSU fail in both LBDS	C1, DR1, TO1	4	3*4/4 = <u>3</u>	<u>β-model</u>	157	n.a.	0:36
6	SCSS PLC Dout board failure	Not in the model	150	3*150/1 = 450	-	-	n.a.	3:05 (singleton)
7	TSDS VME crate PS breakdown	Not in the model	2	3*2/1 = 6	-	-	n.a.	No data
8	RTB out box, fail silent	OUT, DT1, C1	60	3*60/2 = 90	P _D model	726	n.a.	0:26 (singleton)
9	RTB in box, VD fail silent	IN	300^{1}	3*300/1 = 900	<u>Removed</u>	162	n.a.	No data

#	Failure mode	Model	Population	TTF (years)		TTR (h:mm)		
				Raw	Corrected	Rel. pred.	H. Test	-
1	BEA power supply	Not in the model	50	3*50/3 = <u>50</u>	-	-	n.a.	1:29:00
2	Voltage divider	VD	160	3*160/3 = <u>160</u>	-	1140	n.a.	0:37:00 (single data)
3	BEI energy tracking table	ER1, ER3	50	3*50/1 = <u>150</u>	-	386	TRUE	1:25:00 (single data)
4	BEA TX module stuck at timeout error	TX1	50	3*50/1 = <u>150</u>	-	786	n.a.	No data
5	SCSS PLC Din board failure	Not in the model	108	3*108/1 = <u>324</u>	-	-	n.a.	0:50:00 (single data)
6	SCSS PLC cabling failure	Not in the model	-	-	Removed	-	n.a.	No data
7	SCSS Asi Bus SEU	Not in the model	4	3*4/10= 1.2	1-count <u>6</u>	-	n.a.	3:07
8	BEM anybus error	TX1, TX2, TX3	50	3*50/2 = 75	1-count	380	TRUE	3:20
					<u>150</u>			

Failure on demand

- The failure model on demand assumes that the contribution to the failure is twofold:
 - Constant failure rate
 - Probability on demand P_D

Average failure rate

$$\frac{P_D N}{T} + \lambda = \frac{1}{TTF_{data}}$$

- Example: MKD power switch
 - 60 components, predicted (633) and calculated (60) TTF disagree, a probability on demand model is applied and results in $P_D = 3E-06$.
- Failure mode validated with corrected model

Failure Dependency

- The beta model assumes that the behavior at failure of similar components is not fully independent
 - > The dependency is quantified by a beta factor (math. steps omitted)

 $TTF_{data} = (1 - \beta)TTF$

- Example: MKD HV power supply breakdown
 - 30 components, predicted (150) and calculated (13) TTF disagree. A
 Common Cause Failure beta-model is introduced in addition to the constant failure rate => beta = 0.9 which is high.
- Failure mode validated but further investigation suggested

Hypothesis test

- The hypothesis test verifies that the assumption on the predicted TTF is true on the basis of the observations
 - The test consists of calculating the probability that the number of observed failures k₁ over a time T is compatible with the assumed distribution => the null-hypothesis H₀

$$P_0(k \ge k_1) = 1 - \sum_{k=0}^{k=k_1} p_0(k,T) = \begin{cases} > \alpha = 0.05 \Rightarrow H_0 \text{ is true} \\ \le \alpha = 0.05 \Rightarrow H_0 \text{ is false} \end{cases}$$

- Example: Power Trigger HV Power supply
 - 60 components, predicted (9) and calculated (16) => TTF slightly disagree.
 - The hypothesis test is True.
- Failure mode validated after hypothesis test

Safety metrics

The problem

- The evidence that all beams were safely dumped at every beam dump request for LBDS is a necessary but not sufficient condition to state that the system is SIL3 at least
- Rare events are hopefully not recordable but... their early development can be observed
 - L Look for near misses and close to near misses
 - 2. Identify the event driven failure dynamics
 - 3. Set a metric for safety \rightarrow safety margin
 - 4. Estimate SIL on the calculated safety margin

Spare - Safety

LBDS and safety by design

- The behavior at failure of the LBDS is conceived in order to ...
 - Tolerate faults by redundancy => fault masking
 - Prevent faults by surveillance => failsafe

Example: TSDS and safety distance

Simplified state transition diagram of the TSDS

• Some failure events may be detected and trigger a false dump

Actual safety (0)

Extreme outcomes and singularities

- failure events that moved the LBDS to a potentially unsafe state, or close to it (near miss) before this was discovered.
- I erratic trigger of 2 MKDs over three years, from 30 independent TFO outputs
 - The maximum failure rate threshold in order to be SIL3 at least is 7.2 E-05/h which is met.
- 2 failure at zero safety margin (detected) in the actuation and control functions, in 3 years
 - The maximum failure rate threshold for the control is 7.8 E-05. and the one for the actuation is 1.1 E-03, which are both SIL3 at least.

Actual safety (spare1)

Problem statement

Given the average safety distance at failures for each LBDS function, over the period 2010-2012, the objective is to calculate the maximum component failure rate below which LBDS is SIL3, for 300 days per year (total = 21600 h) with an average machine fill of 10 hours

Data...

- P_E = probability of the initiating events (90/21600)
- N = 1674 number of components at failures in the LBDS
- s = safety distance
- d = detection rate; 0.73 for LBDS, 0.6 (actuation), 0.87 (control) 0.96(surveillance)

Actual safety (spare 2)

- The average failure process is approximated to a Poisson process, initiated by the initiating event E
- The system is safe if the probability of failure over one machine fill is SIL3 at least => the following test is a sufficient but not necessary condition for being SIL3

Actual safety (3)

- Actuation, control, and surveillance functions meet the safety requirements individually and together as LBDS
 - Example: LBDS SIL3 bound is 2.5 E-05/h the highest rate is from the TSDS VME crate power supply failure =1.9 E-05/h with all other components being more reliable.

Safety: SIL3,SIL4 graphical tests

LBDS safety gauge 2010-2012

Table 1: Distribution of safety margins from operational failure data

	Zero-margin	1-margin	2-margin	3-margin	Safety distance	
					Average ¹	Variance
Actuation	1	8	35	-	2.77	0.23
Control	1	11	3	-	2.13	0.24
Surveillance	-	3	8	12	3.39	0.5
LBDS	2	22	46	12	2.82	0.5
Vacuum	-	4	-	19	3.65	0.57
PM diagnostics	-	9	3	1	2.38	0.39
Others	-	6	3	2	2.63	0.56

Ideal behaviour

Spare – various statistics

Failure modes

- 2518 LBDS components exposed to failures during 2010-2012 resulted in 90 failure events, distributed in 29 different failure modes...
- ...but almost 70 failure modes never occurred

Actual availability

Assumptions

- Only LBDS false beam dumps in the phases injection and stable beam are considered
- No repetition of the same internal dump request, i.e. occurrence of the same event (e.g. inaccurate diagnostics) after a short interval => 5 false dumps not considered.

Results

- > The LBDS counted **29 false beam dumps**, against the 24 (on average) foreseen.
- Actuation (15) then surveillance (12) and control (2)

False beam dumps

LBDS System analysis 2003-2006 (2)

- The probability of being not able to dump the beam on demand is estimated to be I.8E-07 per year of operation = largely SIL4
- The generated number of false beam dumps was 8 +/- 2

Raw data by time series 2010-2012 Put together 8, 9 and 10

Anomalies

1 Vacuum and BEM Anybus®

2 Vacuum and diagnostics

3 SCSS Asibus®

Failure distribution vs. functions

- I 39 failure events recorded of which 90 in the LBDS
 - Actuation (MKD, MKB) is the largest contributor (60%)

LBDS false dumps vs. machine phase

A total of 97 events during 2010-2012 triggered a false dump (with or without the beam) of which 66 from the LBDS, i.e. 73% of the total

57

Workshop Machine Availability for post LS1 LHC

Spare - MPS

Machine Protection and LBDS

The LHC machine protection system MPS allows operation with the beams only if the LHC is cleared from faults/errors, and it supervises its functioning in order to prevent that a failure may develop into a critical accident.

Machine Protection System 2003-2006

- The reliability sub-working group of the machine protection system working group was charged to perform the analysis of safety and availability of the most critical systems of the MPS
- The scope
 - All active devices, supervision and interlocking elements including the Beam Loss Monitors, Quench Protection System, Beam Interlocking Systems, Power Interlock System, LBDS.

Reliability w.g. 2006

System	Unsafety/year	False dumps/year		
		Average	Std. dev.	
LBDS	$2.4 \times 10^{-7} \times 2 = 4.8 \times 10^{-7}$	$4\times2=8.0$	2.0	
BIC	$1.4 imes10^{-8}$	0.5	0.5	
BLM	$\begin{array}{c} \hline 1.44 \times 10^{-3} (\text{BLM1}) \\ \hline 0.06 \times 10^{-3} (\text{BLM2}) \end{array}$	17.0	4.0	
PIC	$0.5 imes 10^{-3}$	1.5	1.2	
QPS	$0.4 imes 10^{-3}$	15.8	3.9	
MPS	$2.3 imes10^{-4}$	41.0	6.0	

B. Todd, MP Workshop Annecy 2013

	2010	2011	2012	Totals
Qualifying Fills [#]	355	503	585	1443
MPS Equipment Failure [#]	43 [12.7%]	71 [14.1%]	82 [14.0%]	196 [13.6%]
Quench Protection	24	48	56	128
Beam Loss Monitors	4	4	18	26
Beam Dumping System	9	11	4	24
Software Interlock System	4	2	4	10
Powering Interlocks	-	5	-	5
Beam Interlock System	2	1	-	3

Most results confirmed, with a few exceptions