

# Evolution of nuclear shape in the light Radon isotopes

University of York University of Jyväskylä Instituut voor Kern- en Stralingsfysica, KU Leuven CERN Institut fuer kernphyysik, Universitaet zu Koeln University of Liverpool University of Manchester University of Edinburgh Technische Universität München Ludwig-Maximilians-Universita Muenchen Technische Universität Darmstadt University of Sofia Weizmann Institute of Science

The Miniball Collaboration



## Shape Coexistence

Atomic nucleus minimises its energy by adopting different deformed mean-field shapes.





## Light Pb isotopes





## 

## Mercury Isotopes



## **Coulomb Excitation (Coulex)**

$$\frac{d\sigma_{CE}}{d\Omega} \propto B(E2, 0_1^+ \to 2_1^+)$$
$$B(E2, 0_1^+ \to 2_1^+) \propto \left| \left\langle I_{2^+} \left\| M(E2) \right\| I_{0^+} \right\rangle \right|$$
$$\beta_2 \propto \sqrt{B(E2, 0_1^+ \to 2_1^+)}$$

Coulex with radioactive beams is a highly successful method for establishing the evolution of nuclear shape



# <sup>74,76</sup>Kr at SPIRAL *E. Clement et al., PRC 75, 054313 (2007)*<sup>70</sup>Se at REX-ISOLDE *A.M. Hurst et al., PRL 98, 072501 (2007)*

## Coulex of Hg Isotopes - IS452



THE UNIVERSITY of fork

## Coulex of Hg Isotopes - IS452



THE UNIVERSITY of York

## Coulex of Hg Isotopes - IS452





## Light Polonium Isotopes



THE UNIVERSITY of York

## **Radon Isotopes**



Macroscopic-microscopic models predict that **deformed ground states** exist beyond <sup>202</sup>Rn.

# E(4+)/E(2+) ratio for <sup>198,200,202</sup>Rn typical of an anharmonic vibrational system.

S.J. Freeman et al., PRC 50 R1754 (1994)

R.B.E. Taylor et al., PRC 54, 2926 (1996); PRC 59, 673 (1999)

Evidence found for deformed intruder states in <sup>202,204</sup>Rn which coexist with spherical ground state. *D.J. Dobson et al., PRC* **66** 064321 (2002)

#### THE UNIVERSITY of York Low Lying Levels in Rn Isotopes





## **Experimental Technique**

Light Radon isotopes accelerated from **REX-ISOLDE**.

<sup>202,204</sup>Rn produced with good yields from **Th** primary targets.

PS Booster and ThC target: <sup>202</sup>Rn - 9 x 10<sup>5</sup> ions/μC <sup>204</sup>Rn - 2 x 10<sup>7</sup> ions/μC

Plasma cooled transfer line provides **Isobarically pure beam**.



<sup>208</sup>Pb has recently been
accelerated as a
preparatory step for light
Hg nuclei at REX-ISOLDE.

## **Experimental Technique**





## Yields

# **3 MeV/u**<sup>202</sup>Rn beam on <sup>120</sup>Sn Target (550 MeV centre of target)



| State            | σ <b>(mb)</b> | γ-ray<br>yields |
|------------------|---------------|-----------------|
| 2 <sub>1</sub> + | 2.55          | 32000           |
| 4 <sub>1</sub> + | 0.1           | 1200            |
| 2 <sub>3</sub> + | 0.009         | 100             |
| 02+              | 0.22          | 2700            |
| 2 <sub>2</sub> + | 0.019         | 2500            |
| 4 <sub>2</sub> + | 0.00068       | <10             |

Estimate using CLX code assuming standard Miniball setup (8 triple cluster Ge detectors and CD detector)



## Programmatic Aspects

First of a proposed programme of **complementary measurements** using the **unique facilities** at **ISOLDE** and at the **University of Jyväskylä**.



**Recoil Distance Method (RDM)** measurements with plunger to obtain **independent lifetimes**. Allow full extraction of the **diagonal matrix elements**, allowing the **sign of the deformation** to be extracted

Conversion electron studies at ISOLDE or SAGE Spectrometer at Jyväskylä. Help to determine properties of excited 0<sup>+</sup> states and E0 content of  $j \rightarrow j$  transitions, related to rms charge radius.





## Summary

# Coulomb Excitation of <sup>202,204</sup>Rn using **REX-ISOLDE** and **Miniball + CD**.

•Obtain **B(E2)** values.

•Search for excited 0<sup>+</sup> and other non-yrast states.

•Infer the sign of nuclear deformation (with RDM measurement).

| Beam              | Min.<br>Intensity        | Target | Ion Source       | Shifts |
|-------------------|--------------------------|--------|------------------|--------|
| <sup>202</sup> Rn | 9 x 10 <sup>5</sup> / μc | ThC    | Plasma<br>Cooled | 15     |
| <sup>204</sup> Rn | 2 x 10 <sup>7</sup> / μc | ThC    | Plasma<br>Cooled | 6      |

## **Radon** Isotopes

Macroscopic-microscopic models predict that deformed ground states exist beyond <sup>202</sup>Rn<sup>2.5</sup>.

# Excitation Energy (MeV) E(4+)/E(2+) ratio for <sup>198,200,202</sup>Rn typical of an anharmonic vibrational system.

S.J. Freeman et al., PRC 50 R1754 (1994)

THE UNIVERSITY of york

R.B.E. Taylor et al., PRC 54, 2926 (1996); PRC 59, 673 (1999)

Evidence found for deformed intruder states in <sup>202,204</sup>Rn which coexist with spherical ground state D.J. Dobson et al., PRC 66 064321 (2002)



## Yields



INTC - 11th February 2008



## **Coulomb Excitation**

Why is it good ?

Details of recent successes at ISOLDE

What will it allow us to extract ?



Hg Data - similar quailty

h February 2008



## **Programmatic Aspects**

First of a proposed programme of **complementary measurements** using the **unique facilities** at **ISOLDE** and at the **University of Jyvaskyla**.

Programs etc.

SAGE this year

2+-2+ / 0+s

INTC - 11th February 2008