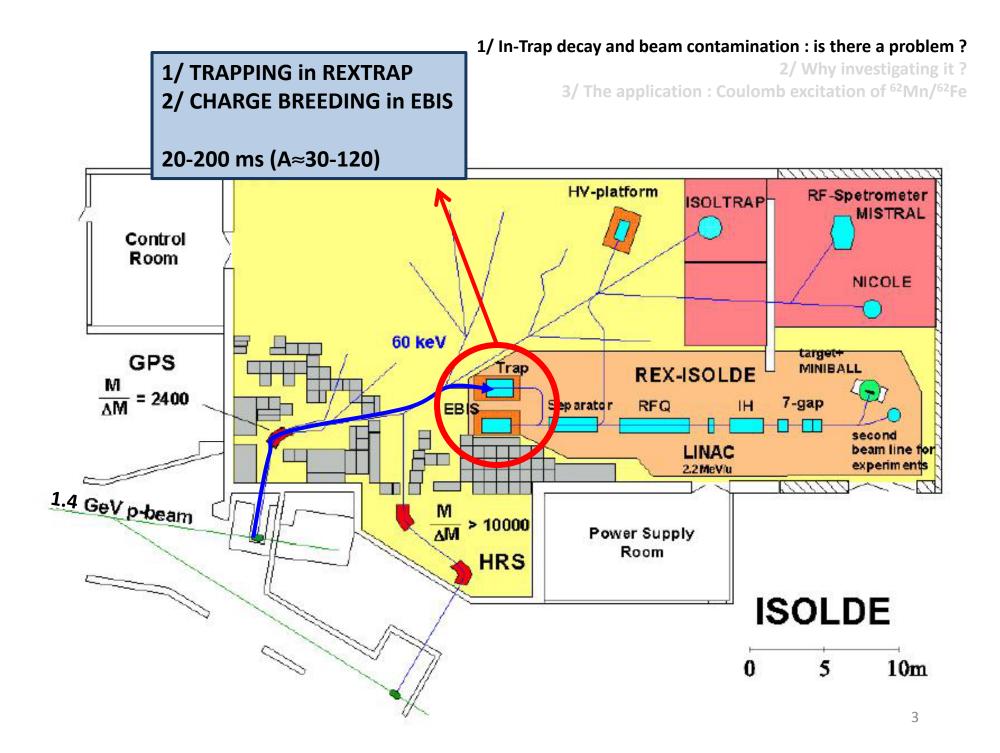
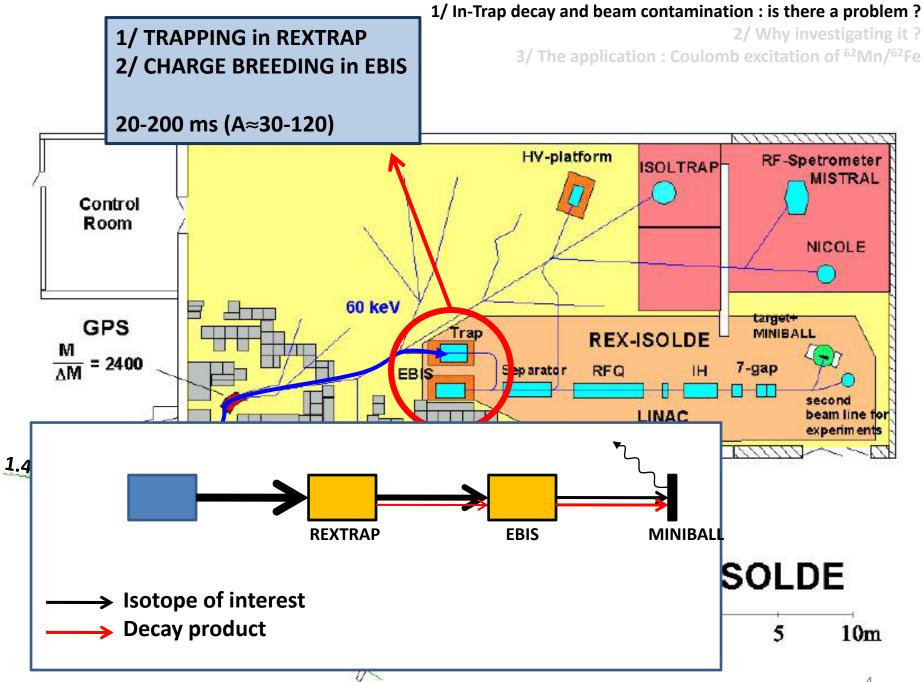
Investigation of beam purity after in-trap decay and Coulomb excitation of ⁶²Mn-⁶²Fe

J. Cederkall, P. Delahaye, J. Van de Walle PH department, ISOLDE, CERN, Switzerland V.N. Fedosseev, B. Marsh, D. Voulot, F. Wenander AB department, CERN, Switzerland N. Bree, J. Diriken, O. Ivanov, M. Huyse, N. Patronis, P. Van Duppen IKS, KU Leuven, Belgium E. Clement, GANIL, Caen, France V. Bildstein, R. Gernhauser, T. Kroll, R. Kruecken, K. Wimmer TUM, Garching, Germany and the MINIBALL collaboration

OUTLINE

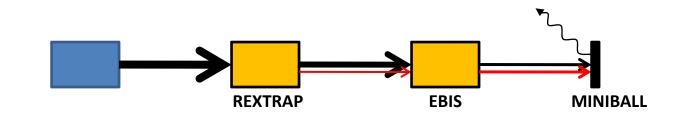
1/ In-Trap decay and beam contamination : is there a problem ?


2/ Why investigating it ?


3/ Test beam and application : Coulomb excitation of ⁶²Mn/⁶²Fe

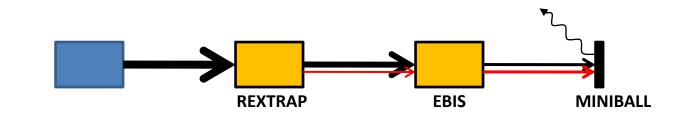
	and the second se					The statement of the st	and the second se		and the second se			
.20	Ni 61 1.1399	Ni 62 3.6345	Ni 63 100 a	Ni 64 0.9256	Ni 65 2.52 h	Ni 66 54.6 h	Ni 67 21 s	Ni 68 29 s	Ni 69 11.4 s	Ni 70 6.0 s	Ni 71 2.56 s	Ni 72 1.57 s
28	σ 2.5 σ _{n. α} 0.00003	α 15	β 0.07 no γ σ 20	or 1.6	β 2.1 γ 1482; 1115; 366 σ 22	β 0.2 no γ	β ⁼ 3.8 γ(1937; 1115; 822)	β γ 758; 84 9	β γ 1871; 680; 1213; 1483	β 3.3 γ 1036; 78 m ₂	β γ 534; 2016	β ⁺⁻ γ 376; 94
	Co 60 10.5 m 5.272 a by 59 gr 0.3	Co 61 1.65 h	Co 62	Co 63 27.5 s	Co 64 0.3 s	Co 65 1.14 s	Co 66 0.18 s	Co 67 425 ms	CO 68 1.6 s 0.23 s	Co 69 227 ms	Co 70 0.50 s 119 ms	Co 71 79 ms
	e ⁻ β ⁻ γ (1332) σ 58 σ 2.0	β 1.2 γ 67; 909	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	β 3.6 γ87; 982	β 7.0 γ 1346; 931	β ⁼ 6.0 γ 1142; 311; 964	β 7.2; 8.5 γ 1426; 1246; 1805	β 8.0 γ 694	β ⁺ γ 2033; β ⁺ 478; γ 2033; 2745 815	β γ 594	β γ 1260; β 608; γ 1260; 1868 970	β γ 566; 774; 253; 281 βn
~	Fe 59 44.503 d	Fe 60 1.5 · 10 ⁶ a	Fe 61 6.0 m	Fe 62 68 s	Fe 63 6.1 s	Fe 64 2.0 s	Fe 65 0.45 s	Fe 66 0.44 s	Fe 67 0.47 s	Fe 68 0.1 s	Fe 69 0.17 s	Fe 70 94 ms
26	β 0.5; 1.6 γ 1099; 1292 σ 13	β 0.1 m	β 2.6; 2.8 γ 1205; 1027; 298	β ⁼⁻ 2.5 γ 506 α	β ⁼ 6.7 γ 995; 1427; 1299	β= γ311	β-	β-	β-	β-	β-	β-
	Mn 58 65.3 s 3.0 s	Mn 59 4.6 s	Mn 60	Mn 61 0.71 s	Mn 62	Mn 63 0.25 s	Mn 64 88.8 ms	Mn 65 92 ms	Mn 66 64.4 ms	Mn 67 45 ms	Mn 68 28 ms	Mn 69 14 ms
	$ \begin{array}{c c} \beta^{-} 3.9 \\ \gamma 811; \\ 1323 \\ \gamma 72; e^{-} 2433 \end{array} $	β 4.4; 4.8 γ 726; 473; 571	6.1 β ⁺ 8.2 γ 823; γ 823; 1969 1150; /γ 272 1532	β 6.4 γ 629; 207	β ^{**} γ 877; 942; 1900	β > 3.7 γ 356	β βn γ 746	β γ 366 βn	β γ 573 βn	β βn	β βn	β βn
24	Cr 57 21.1 s	Cr 58 7.0 s	Cr 59 1.05 s	Cr 60 0.49 s	Cr 61 0.27 s	Cr 62 209 ms	Cr 63 129 ms	Cr 64 43 ms	Cr 65 27 ms	Cr 66 10 ms	Cr 67 >300 ns	2.60E-7
24	β 5.1 γ83; 850; 1752; 1535	β γ 683; 126; 290; 520 m	β γ 1238; 1900; 112; 663	β 6.7 γ 349; 410; 758	в-	β γ 285; 355; 640 m	β ⁻ γ 250 - 3454	β γ 188	β γ 272; 1368 βn ?	в-	β ⁻ ?	3.51E-6

35


40

2/ Why investigating it ? 3/ The application : Coulomb excitation of ⁶²Mn/⁶²Fe

Post accelerated beams < 2008 : ³¹Mg : 232(15) ms ³²Mg : 95(16) ms ⁸⁰Zn : 545(20) ms ACCEPTED ¹²⁸Cd : 280(40) ms



Isotope of interest
Decay product

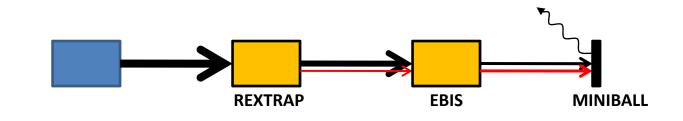
2/ Why investigating it ? 3/ The application : Coulomb excitation of ⁶²Mn/⁶²Fe

Post accelerated beams < 2008 : ³¹Mg : 232(15) ms ³²Mg : 95(16) ms ⁸⁰Zn : 545(20) ms ACCEPTED ¹²⁸Cd : 280(40) ms

 \Rightarrow <u>Decay losses</u> during trapping and charge breeding become significant.

Isotope of interest
Decay product

2/ Why investigating it ? 3/ The application : Coulomb excitation of ⁶²Mn/⁶²Fe


Post accelerated beams < 2008 : ³¹Mg : 232(15) ms ³²Mg : 95(16) ms

⁸⁰Zn : 545(20) ms

ACCEPTED ¹²⁸Cd : 280(40) ms

 \Rightarrow **Decay losses** during trapping and charge breeding become significant.

 \Rightarrow ... in the near future even shorter lived ?

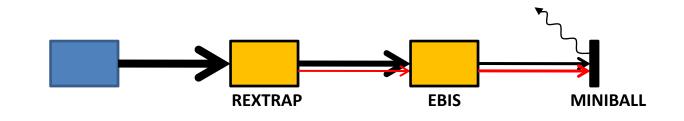
→ Isotope of interest → Decay product

2/ Why investigating it ? 3/ The application : Coulomb excitation of ⁶²Mn/⁶²Fe

Post accelerated beams < 2008 :

³¹Mg : 232(15) ms

³²Mg : 95(16) ms


⁸⁰Zn : 545(20) ms

ACCEPTED ¹²⁸Cd : 280(40) ms

 \Rightarrow **Decay losses** during trapping and charge breeding become significant.

 \Rightarrow ... in the near future even shorter lived ?

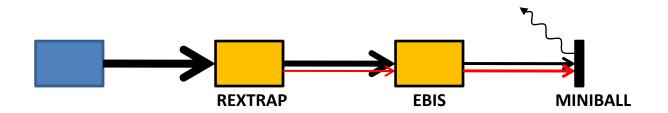
 \Rightarrow Why not benefit from the short half life ...

Isotope of interest
Decay product

2/ Why investigating it ? 3/ The application : Coulomb excitation of ⁶²Mn/⁶²Fe

Post accelerated beams < 2008 :

³¹Mg : 232(15) ms


³²Mg : 95(16) ms

⁸⁰Zn : 545(20) ms

ACCEPTED ¹²⁸Cd : 280(40) ms

 \Rightarrow **Decay losses** during trapping and charge breeding become significant.

- \Rightarrow ... in the near future even shorter lived ?
- \Rightarrow Why not benefit from the short half life ...

Ex. Fe mass measurements at ISOLTRAP with in-trap decay of mother ions (Mn) A. Herlert et al. NJP **7** 44 (2005)

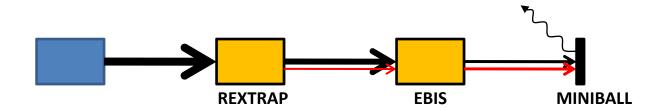
2/ Why investigating it ? 3/ The application : Coulomb excitation of ⁶²Mn/⁶²Fe

Post accelerated beams < 2008 :

³¹Mg : 232(15) ms

³²Mg : 95(16) ms

⁸⁰Zn : 545(20) ms


ACCEPTED ¹²⁸Cd : 280(40) ms

 \Rightarrow **Decay losses** during trapping and charge breeding become significant.

 \Rightarrow ... in the near future even shorter lived ?

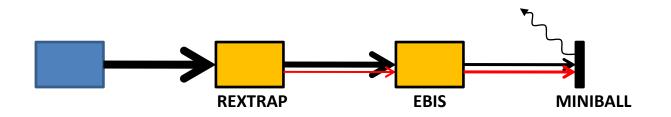
 \Rightarrow Why not benefit from the short half life ...

to produce a post-accelerated beam of decay products.

Ex. Fe mass measurements at ISOLTRAP with in-trap decay of mother ions (Mn) A. Herlert et al. NJP **7** 44 (2005)

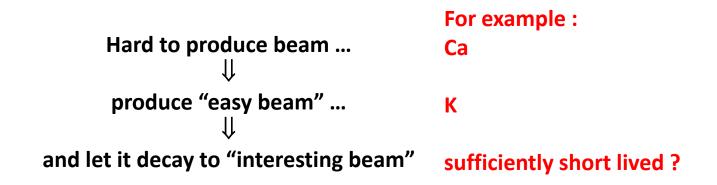

2/ Why investigating it ?

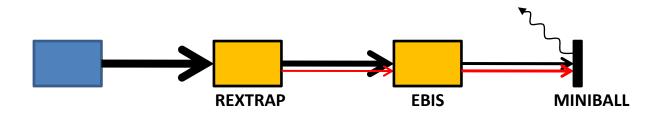
3/ The application : Coulomb excitation of ⁶²Mn/⁶²Fe


2/ Why investigating it ?

3/ The application : Coulomb excitation of ⁶²Mn/⁶²Fe

WHY ? 1/ Nuclear physics interest in decay products ;

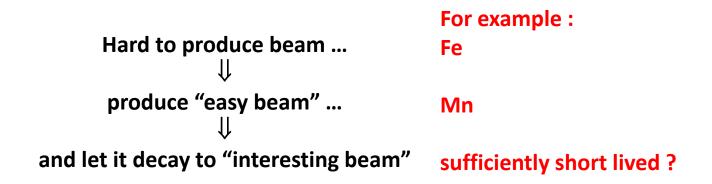

if the "easy beam" is short half life ... !!!

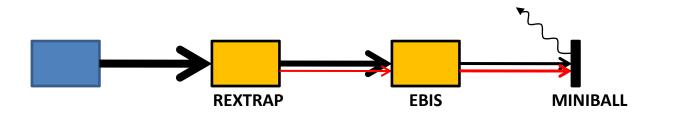


2/ Why investigating it ?

3/ The application : Coulomb excitation of ⁶²Mn/⁶²Fe

WHY ? 1/ Nuclear physics interest in decay products ;

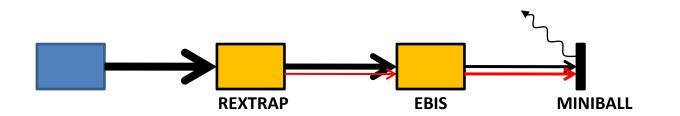




2/ Why investigating it ?

3/ The application : Coulomb excitation of ⁶²Mn/⁶²Fe

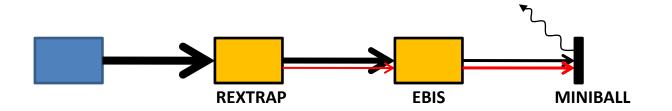
WHY ? 1/ Nuclear physics interest in decay products ;



2/ Why investigating it ?

3/ The application : Coulomb excitation of ⁶²Mn/⁶²Fe

WHY ? 1/ Nuclear physics interest in decay products ; 2/ Gain deeper insight in the (possible) loss of decay products in the REXTRAP/EBIS (crucial for normalization of Coulomb excitation experiments)



2/ Why investigating it ?

3/ The application : Coulomb excitation of ⁶²Mn/⁶²Fe

WHY ? 1/ Nuclear physics interest in decay products ; 2/ Gain deeper insight in the (possible) loss of decay products in the REXTRAP/EBIS (crucial for normalization of Coulomb excitation experiments)

- a) Are decay products lost in the REXTRAP/EBIS ?
- b) How long can these ions be trapped before there are significant losses ?
- c) Can we monitor the change in beam composition with the available beam diagnostics ?

2/ Why investigating it ?

3/ The application : Coulomb excitation of ⁶²Mn/⁶²Fe

a) Are decay products lost in the REXTRAP/EBIS ?

Ion recoil energy after β -decay \Rightarrow order of few 100 eV (depends on Q-value) Typical trap barrier height is of the same order of magnitude

2/ Why investigating it ?

3/ The application : Coulomb excitation of ⁶²Mn/⁶²Fe

a) Are decay products lost in the REXTRAP/EBIS ?

Ion recoil energy after β -decay \Rightarrow order of few 100 eV (depends on Q-value) Typical trap barrier height is of the same order of magnitude

1/ Poorly cooled daughter ions \Rightarrow worse emittance \Rightarrow worse transmission to EBIS

2/ Recoil energy sufficient to escape longitudinal potential well (~ 100 eV)

3/ Radius of transverse motion increases and collides with the walls

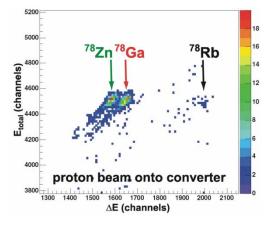
4/ Sideband cooling works for specific A/q (different for daughter product)

 \Rightarrow Losses of daughter isotopes

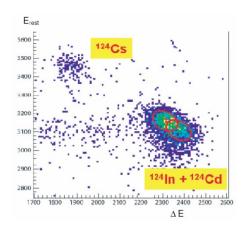
2/ Why investigating it ?

3/ The application : Coulomb excitation of ⁶²Mn/⁶²Fe

b) How long can these ions be trapped before there are significant losses ?


Produce intense beam of daughter isotopes ↓↓ LONGEST POSSIBLE trapping/breeding time

2/ Why investigating it ?

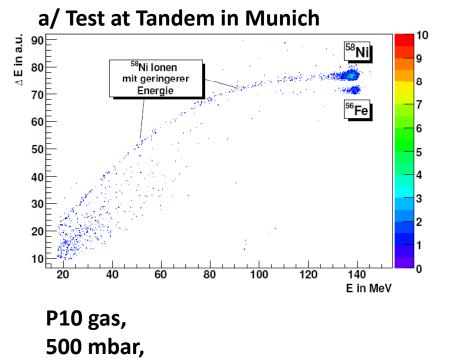

3/ The application : Coulomb excitation of ⁶²Mn/⁶²Fe

c) Can we monitor the change in beam composition with the available beam diagnostics ?

1/ gas-Si dE-E telescope (zero degree beamline)

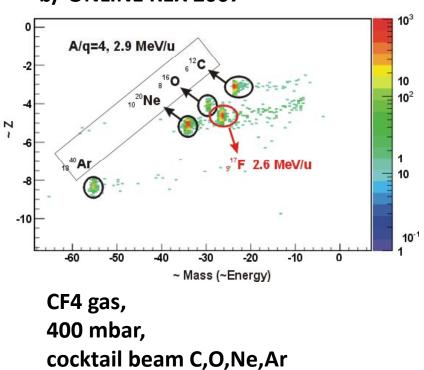
Z ~ 30 : Δ Z=1 resolved

 $Z \sim 50 : \Delta Z = 1$ not resolved


2/ Why investigating it ?

3/ The application : Coulomb excitation of ⁶²Mn/⁶²Fe

c) Can we monitor the change in beam composition with the available beam diagnostics ?


1/ gas-Si dE-E telescope (zero degree beamline)

2/ Bragg chamber (in MINIBALL beamdump)

⁵⁸Ni beam on ⁵⁶Fe target

W. Weinzierl, Diplomarbeit, TUM, Munich, 2006

b/ ONLINE REX 2007

2/ Why investigating it ?

3/ The application : Coulomb excitation of ⁶²Mn/⁶²Fe

c) Can we monitor the change in beam composition with the available beam diagnostics ?

- 1/ gas-Si dE-E telescope (zero degree beamline)
- 2/ Bragg chamber (in MINIBALL beamdump)
- 3/ Beamdump Germanium detector :

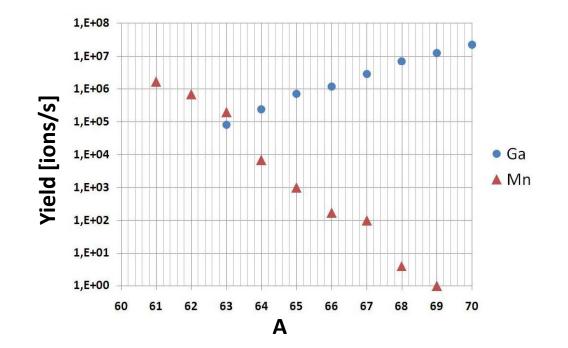
Monitor the change in γ -ray intensities with different trapping/breeding times

3/ Test beam and application : Coulomb excitation of ⁶²Mn/⁶²Fe

CAN WE PRODUCE A "HARD-TO-GET" POST-ACCELERATED BEAM OF DECAY PRODUCTS AFTER IN-TRAP DECAY ???

3/ Test beam and application : Coulomb excitation of ⁶²Mn/⁶²Fe

CAN WE PRODUCE A "HARD-TO-GET" POST-ACCELERATED BEAM OF DECAY PRODUCTS AFTER IN-TRAP DECAY ???


PROOF OF PRINCIPLE WITH Mn-Fe

2/ Why investigating it ?

3/ Test beam and application : Coulomb excitation of ⁶²Mn/⁶²Fe

Test beamtime : ⁶¹Mn – ⁶¹Fe : 4 shifts

✓ Yield ⁶¹Mn = 1.7E6/µC (UC_x target + RILIS) ✓ ⁶¹Ga (T_{1/2}=168 ms) contamination minimal ✓ Half life ⁶¹Mn = 0.67(4) s

3/ Test beam and application : Coulomb excitation of ⁶²Mn/⁶²Fe

Test beamtime : ⁶¹Mn – ⁶¹Fe : 4 shifts

✓ Yield ⁶¹Mn = 1.7E6/µC (UC_x target + RILIS) ✓ ⁶¹Ga (T_{1/2}=168 ms) contamination minimal ✓ Half life ⁶¹Mn = 0.67(4) s

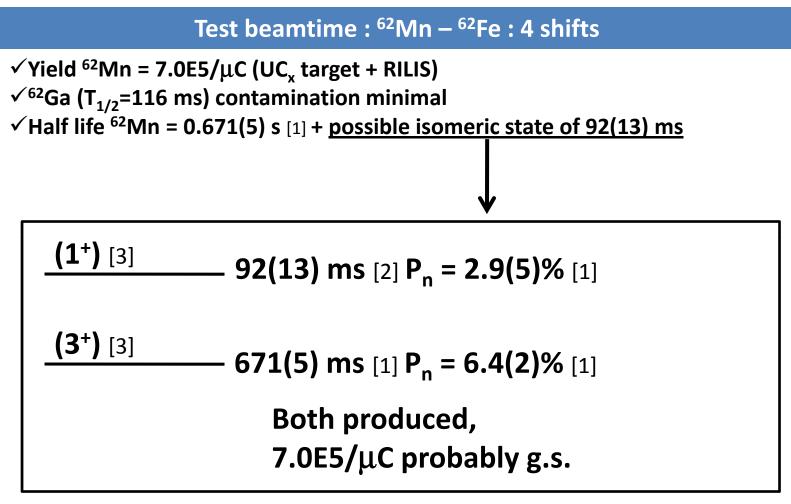
 \rightarrow Change trapping + breeding time : 50 - 200 - 400 ms \rightarrow Change only trapping/breeding time and fix breeding/trapping time \rightarrow Test the usage of the RFQ as injector to EBIS

Monitor the change in beam composition

2/ Why investigating it ?

3/ Test beam and application : Coulomb excitation of ⁶²Mn/⁶²Fe

Test beamtime : ⁶¹Mn – ⁶¹Fe : 4 shifts


✓ Yield ⁶¹Mn = 1.7E6/µC (UC_x target + RILIS) ✓ ⁶¹Ga (T_{1/2}=168 ms) contamination minimal ✓ Half life ⁶¹Mn = 0.67(4) s

T [*]	Fe content					
	Analytical	Simulation [**]				
50 ms	7%	6%				
200 ms	26%	12%				
400 ms	46%	29%				

[*] T = Trapping time = Charge breeding time

[**] From F. Ohlsson MSc thesis, Chalmers University 2007

3/ Test beam and application : Coulomb excitation of ⁶²Mn/⁶²Fe

- [1] M. Hannawald, PhD Thesis, U. Mainz 1999
- [2] O. Sorlin et al., NPA 669, 351-367 (2000)
- [3] G. Audi et al., NPA 729 ,3-128 (2003)

3/ Test beam and application : Coulomb excitation of ⁶²Mn/⁶²Fe

Test beamtime : ⁶²Mn – ⁶²Fe : 4 shifts

✓ Yield ⁶²Mn = 7.0E5/µC (UC_x target + RILIS) ✓ ⁶²Ga (T_{1/2}=116 ms) contamination minimal ✓ Half life ⁶²Mn = 0.671(5) s [1] + possible isomeric state of 92(13) ms

> →Fix trapping + breeding time to longest possible ($\ge T_{1/2}$) →Check beam composition (no problem with normalization) →Perform Coulomb excitation on 4.0 mg/cm² ¹⁰⁹Ag target

3/ Test beam and application : Coulomb excitation of ⁶²Mn/⁶²Fe

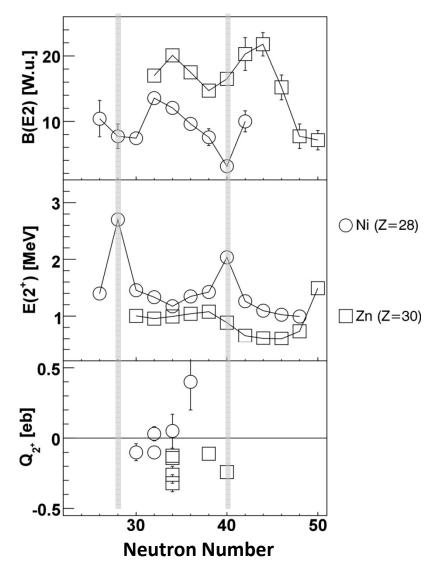
Test beamtime : ⁶²Mn – ⁶²Fe : 4 shifts

 \checkmark Yield ⁶²Mn = 7.0E5/ μ C (UC_x target + RILIS)

 $\sqrt{62}$ Ga (T_{1/2}=116 ms) contamination minimal

 \checkmark Half life ⁶²Mn = 0.671(5) s [1] + possible isomeric state of 92(13) ms

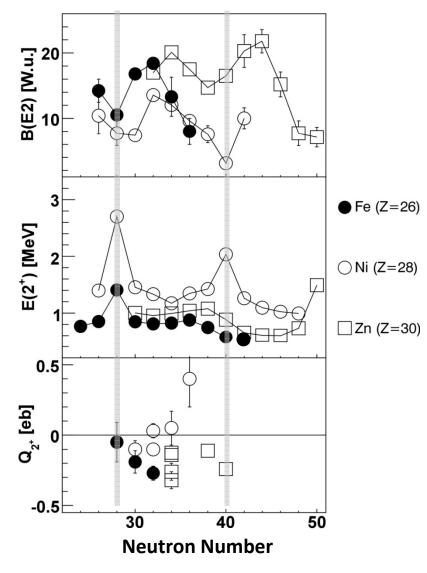
T [*]	Fe content					
	Analytical	Simulation [**]				
50 ms	7%	6%				
200 ms	26%	12%				
400 ms	46%	29%				


[*] T = Trapping time = Charge breeding time

[**] From F. Ohlsson MSc thesis, Chalmers University 2007

[1] M. Hannawald, PhD Thesis, Universitat Mainz 1999

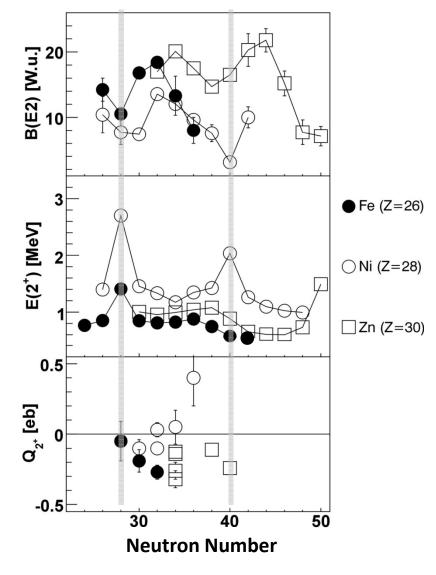
1/ In-Trap decay and beam contamination : is there a problem ? 2/ Why investigating it ?

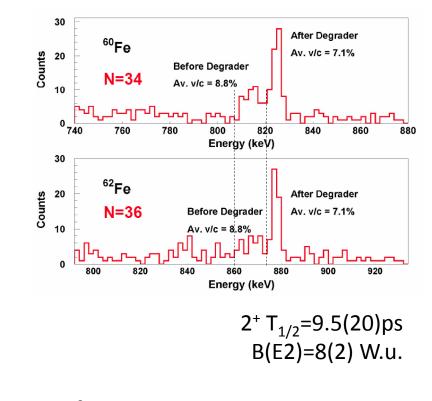

3/ Test beam and application : Coulomb excitation of ⁶²Mn/⁶²Fe

Increased collectivity for Z>28 and 38<N<44

1/ In-Trap decay and beam contamination : is there a problem ? 2/ Why investigating it ?

3/ Test beam and application : Coulomb excitation of ⁶²Mn/⁶²Fe

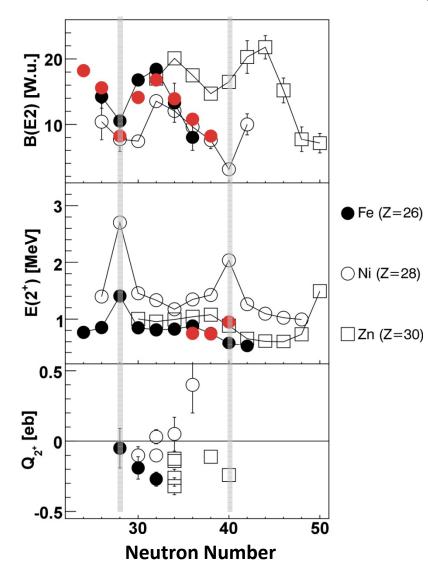



Increased collectivity for Z>28 and 38<N<44

ALSO for Z<28, ex. Z=26 (Iron) And 36<N< ??

1/ In-Trap decay and beam contamination : is there a problem ? 2/ Why investigating it ?

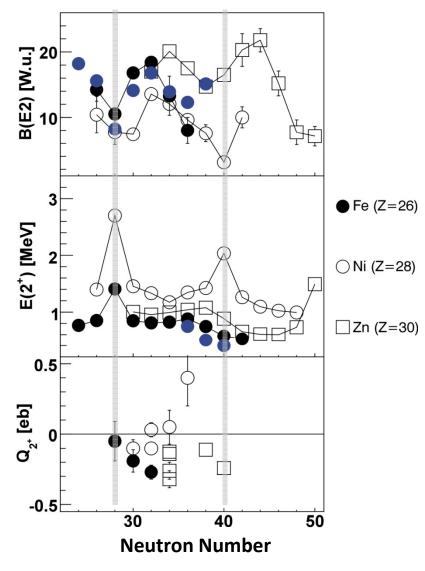
3/ Test beam and application : Coulomb excitation of ⁶²Mn/⁶²Fe



Lifetime measurements at Legnaro, Picture from presentation by A. Gadea, Conference on Trends in Nuclear Structure, Zakopane 4-10 sept. 2006

1/ In-Trap decay and beam contamination : is there a problem ? 2/ Why investigating it ?

3/ Test beam and application : Coulomb excitation of ⁶²Mn/⁶²Fe

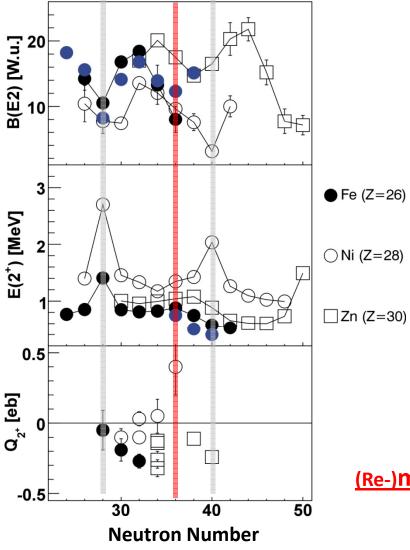


Calculations from Caurier et al. EPJA, 15, 145-150 (2002)

• pf-shell (KB3G interaction)

1/ In-Trap decay and beam contamination : is there a problem ? 2/ Why investigating it ?

3/ Test beam and application : Coulomb excitation of ⁶²Mn/⁶²Fe


Calculations from Caurier et al. EPJA, 15, 145-150 (2002)

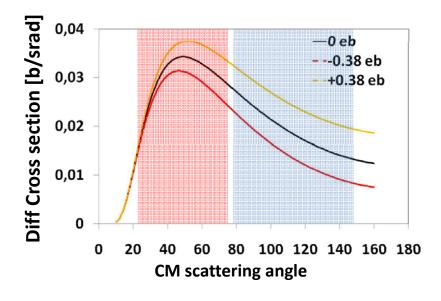
pf-shell (KB3G interaction)
 pfgd (⁵²Ca core)

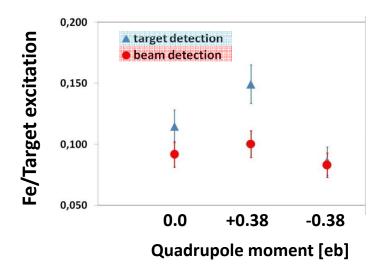
How do the $1g_{9/2}$ and possibly $2d_{5/2}$ neutron orbitals influence the quadrupole collectivity below Z=28 ?

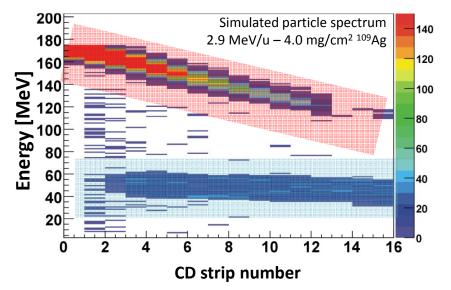
1/ In-Trap decay and beam contamination : is there a problem ? 2/ Why investigating it ?

3/ Test beam and application : Coulomb excitation of ⁶²Mn/⁶²Fe

Calculations from Caurier et al. EPJA, 15, 145-150 (2002)

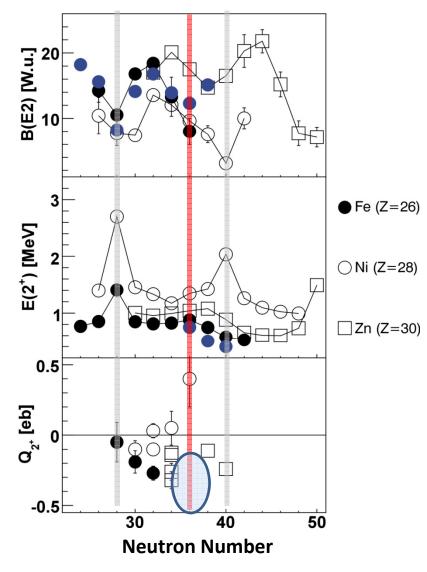

pf-shell (KB3G interaction)
 pfgd (⁵²Ca core)


How do the $1g_{9/2}$ and possibly $2d_{5/2}$ neutron orbitals influence the quadrupole collectivity below Z=28 ?


(Re-)measure the (unpublished) B(E2) value in ⁶²Fe

1/ In-Trap decay and beam contamination : is there a problem ? 2/ Why investigating it ?

3/ Test beam and application : Coulomb excitation of ⁶²Mn/⁶²Fe


Statistics in 4 shifts assuming : 200 ms trapping and breeding time 2 μ A proton beam 4 mg/cm² ¹⁰⁹Ag target

Sensitivity to quadrupole moment :

-Target and beam detection in CD detector -Combination with lifetime measurements

1/ In-Trap decay and beam contamination : is there a problem ? 2/ Why investigating it ?

3/ Test beam and application : Coulomb excitation of ⁶²Mn/⁶²Fe

Sensitivity to quadrupole moment :

-Target and beam detection in CD detector -Combination with lifetime measurements

3/ Test beam and application : Coulomb excitation of ⁶²Mn/⁶²Fe

CONCLUSION : RADIOACTIVE BEAM TIME REQUEST : 8 SHIFTS

4 shifts :

- ⁶¹Mn

- 1 shift optimization Bragg chamber + dE-E

- 3 shifts characterizing the change in beam composition

with different trapping/charge breeding times

4 shifts :

- ⁶²Mn

- Coulomb excitation on Ag target to obtain a relevant physics result